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Abstract
The objectives of this work were the classification of dynamic metabolic biomarker candi-

dates and the modeling and characterization of kinetic regulatory mechanisms in human

metabolism with response to external perturbations by physical activity. Longitudinal meta-

bolic concentration data of 47 individuals from 4 different groups were examined, obtained

from a cycle ergometry cohort study. In total, 110 metabolites (within the classes of acylcarni-

tines, amino acids, and sugars) were measured through a targeted metabolomics approach,

combining tandemmass spectrometry (MS/MS) with the concept of stable isotope dilution

(SID) for metabolite quantitation. Biomarker candidates were selected by combined analysis

of maximum fold changes (MFCs) in concentrations and P-values resulting from statistical

hypothesis testing. Characteristic kinetic signatures were identified through a mathematical

modeling approach utilizing polynomial fitting. Modeled kinetic signatures were analyzed for

groups with similar behavior by applying hierarchical cluster analysis. Kinetic shape tem-

plates were characterized, defining different forms of basic kinetic response patterns, such as

sustained, early, late, and other forms, that can be used for metabolite classification. Acetyl-

carnitine (C2), showing a late response pattern and having the highest values in MFC and

statistical significance, was classified as late marker and ranked as strong predictor (MFC =

1.97, P < 0.001). In the class of amino acids, highest values were shown for alanine (MFC =

1.42, P < 0.001), classified as late marker and strong predictor. Glucose yields a delayed

response pattern, similar to a hockey stick function, being classified as delayed marker and

ranked as moderate predictor (MFC = 1.32, P < 0.001). These findings coincide with existing

knowledge on central metabolic pathways affected in exercise physiology, such as β-oxida-

tion of fatty acids, glycolysis, and glycogenolysis. The presented modeling approach demon-

strates high potential for dynamic biomarker identification and the investigation of kinetic

mechanisms in disease or pharmacodynamics studies using MS data from longitudinal

cohort studies.
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Author Summary

Human metabolism is controlled through basic kinetic regulatory mechanisms, where the
overall system aims to maintain a state of homeostasis. In response to external perturbations,
such as environmental influences, nutrition or physical exercise, circulating metabolites show
specific kinetic response patterns, which can be computationally modeled. In this work, we
searched for dynamic metabolic biomarker candidates and analyzed specific kinetic mecha-
nisms from longitudinal metabolic concentration data, obtained through a cycle ergometry
stress test. In total, 110 metabolites measured from blood samples of 47 individuals were ana-
lyzed using tandemmass spectrometry (MS/MS). Dynamic biomarker candidates could be
selected based on the amplitudes of changes in metabolite concentrations and the significance
of statistical hypothesis testing. We were able to characterize specific kinetic patterns for
groups of similarly behaving metabolites. Kinetic shape templates were identified, defining
basic kinetic response patterns to physical exercise, such as sustained, early, late and other
shape forms. The presented approach contributes to a better understanding of (patho)physio-
logical biochemical mechanisms in human health, disease or during drug therapy, by offering
tools for classifying dynamic biomarker candidates and for modeling and characterizing
kinetic regulatory mechanisms from longitudinal experimental data.

Introduction

Metabolite kinetics—biochemical aspects
Basic principles in reaction kinetics of biomolecules were described by the work of Guldberg &
Waage [1–3] more than 150 years ago and recently resumed by Voit et al., 2015 [4] in their per-
spective article "150 years of mass action". The underlying concept is the law of mass action,
describing the quantitative aspects of a chemical reaction under ideal conditions. If a substance
C is formed by the reaction of substance A and substance B, the production of C can be
described by the following equation

Product C ¼ k � A � B ð1Þ
where A, B, and C are concentrations changing over time, and k is a rate constant describing
the speed of the reaction. Probably the most widely known and used modification of the origi-
nal model in biochemistry is the Michaelis-Menten rate law (MMRL) introduced by Michaelis
& Menten in 1913 [5]

v ¼ Vmax S
Km þ S

ð2Þ

where v is the reaction rate, Vmax the maximum reaction rate, S the concentration of the sub-
strate, and Km the Michaelis constant (the substrate concentration at half of the maximum
reaction rate).

The Michaelis-Menten model describes the reaction kinetics of an enzyme-catalyzed single-
substrate reaction, in which the conversion of a substrate S into a product P takes place via the
formation of an intermediate complex ES, where k1, k2 and k3 denote reaction rates [4]

E þ S
 k2

!
k1

ES!k3 E þ P ð3Þ
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Guldberg and Waage also examined the fact that biochemical systems tend to remain in
homeostasis, which is described by the equilibrium constant [6]

Keq ¼
½C�c½D�d
½A�a½B�b ð4Þ

Keq is the equilibrium constant in the general reaction aA + bB$cC + dD, where a, b, c, d are
the number of molecules of A, B, C, D participating, and [A], [B], [C], [D] are the molar reac-
tion concentrations of the reaction components at equilibrium [7].

When analyzing regulatory mechanisms of metabolite kinetics, a key question addresses the
effect of external perturbations disturbing homeostasis, e.g., caused by environmental influ-
ences, nutrition, drug interventions (pharmacodynamics) or physical activity (studied in this
work through clinical exercise testing). These effects can be measured and examined by longi-
tudinal cohort studies, which investigate dynamic changes in metabolite concentrations over
time.

In chronic toxicity testing, which occupies a central position in the analysis of dynamic
time-course metabolic data, studies are performed to explore the influences of toxic substances
on human or animal metabolism. Mechanisms of metabolite kinetics are analyzed, e.g., by
investigating the effect of pesticide exposure on children [8,9], by in-vitro examination of drug
induced effects in neurotoxicity using brain cell cultures [10], or by analysis of toxic effects of
polymers or nanoparticles to the water flea daphnia magna [11,12]. In biotechnological process
monitoring, metabolic interactions are analyzed, e.g., in studying the sensitivity of the biocata-
lyst Clostridium thermocellum to ethanol stress [13], in exploring the forced ageing process of
Port wine [14] or by the examination and optimization of cell culture media, as e.g., of Chinese
hamster ovary (CHO) cells [15–17]. In pharmacodynamics, time-course data are collected, e.g.,
to study the effect of continuous exposure of breast cancer cells to an anti-cancer chemother-
apy drug on the metabolic level [18] or to explore the metabolism of albumin in patients with
systemic inflammatory response syndrome after continuous venovenous hemofiltration [19].
Research questions on kinetic mechanisms in physical exercise cover fundamental work, e.g.,
on studying the influence of improved metabolic health on patterns in plasma metabolites [20]
or analyzing the effects of aerobic exercise on oral glucose tolerance [21].

In this work, in response to an incrementally increased physical load by cycle ergometry
and depending on the underlying metabolic regulatory mechanisms, metabolites are expected
to show specific kinetic signatures and shape patterns. Expected kinetic response patterns
include: a sustained response (mainly constant concentration over time, overlaid with biologi-
cal or instrumental noise), an early response (main decrease/increase of concentrations shortly
after start of activity), a halving interval response (major change in concentration at half time
of physical activity, e.g., a sigmoid behavior with a plateau), a late response (strongest decrease/
increase of concentration towards the end of physical activity), and a delayed response pattern
(first mainly sustained metabolite concentration, then showing a strong reaction after the end
of activity during the recovery phase, respectively).

Modeling of kinetic mechanisms—computational aspects
Regarding computational and mathematical aspects of characterizing kinetic regulatory mech-
anisms, different approaches of fundamental models for the analysis of metabolic processes
have been described in the literature: qualitative models for topological network analysis, mod-
els of flux balance analysis using stoichiometric network construction and detailed kinetic
models representing metabolic processes using ordinary differential equations (ODEs) [22,23].
Furthermore, different intermediate approaches do exist, e.g., the approach of structural kinetic
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modeling (SKM), approximating local biochemical mechanisms within a metabolic network by a
parametric linear representation [23]. An overview on different "approximative kinetic formats
used in metabolic network modeling" is given by Heijnen, 2005 [24]. An example for the dynamic
simulation of kinetic mechanisms in metabolism—by simulating the mitochondrial fatty acid β-
oxidation—is presented by Modre et al., 2009 [25]. Further examples for theoretical network
models as well as dynamic kinetic simulations can be found in the context of the e-cell project
[26], e.g., models for drosophila [27] or the metabolic simulation of red blood cell storage [28].

With respect to the analysis of dynamic metabolic data, Smilde et al., 2010 [29] distinguish
between six groups of methods: methods based on fundamental models, predefined basic func-
tions, dimension reduction, multivariate time series models, analysis-of-variance (ANOVA)
type models, and methods based on imposing smoothness. Analyses of periodic or oscillating
data can be performed using methods such as Fourier analysis, wavelet transformation or prin-
cipal component analysis (PCA) with wavelets [29,30]. Hidden Markov models were presented
as a way for using basic functions, allowing flexibility and adaptation in modeling [29,31]. In
particular, in gene-expression analysis orthogonal polynomials were introduced for qualitative
and quantitative modeling [32,33].

Alternative methods for the analysis of longitudinal metabolic data, typically used in nuclear
magnetic resonance (NMR) spectroscopy, comprise weighted principal component analysis
(WPCA) [34] or analysis of variance (ANOVA) simultaneous component analysis (ASCA)
[35]. A statistical framework for metabolic biomarker discovery in NMR data was presented by
Berk et al., 2011 [36], introducing a smoothing spline mixed effects (SME) model, combined
with an associated functional test statistic. Mishina et al., 1993 [37] suggested analyzing the
kinetics of biomolecules by fitting differential equations for the application in pharmacody-
namics. A method for investigating between-metabolite relationships by simultaneous compo-
nent analysis with individual differences constraints (SCA-IND) was presented by Jansen et al.,
2012 [38]. A new method for combined analysis of proteomics and metabolomics data using
integrative pathway analysis was introduced by Stanberry et al., 2013 [39]. As an example for a
web-based, freely accessible online service, Metaboanalyst [40] offers the profiling of longitudi-
nal time-course data on the basis of a multivariate empirical Bayes approach.

Metabolic biomarker discovery
Metabolic biomarkers play an essential role in clinical diagnostics because of their ability to
provide specific insights by being functional endpoints of human molecular interactions [41].
The general process for the discovery, verification, and validation of metabolic biomarker can-
didates was described by Baumgartner & Graber, 2008 [42]. This process ranges from experi-
mental study design, over clinical study execution, execution of bioanalytical methods and
acquisition of data, consolidation and integration of data, application of bioinformatics algo-
rithms and data mining methods for the identification of biomarker candidates, up to an inde-
pendent validation of putative biomarkers by clinical trials. In their review article,
Baumgartner et al., 2011 [43] give a comprehensive survey of computational data analysis strat-
egies for the discovery of biomarker candidates from metabolic data.

A milestone in clinical application of metabolic biomarkers was set by establishing routine
newborn screening programs for inherited metabolic disorders [44]. The search for novel met-
abolic biomarkers in disease covers a wide range of clinical application areas, e.g., the identifi-
cation of metabolic markers in prostate cancer by a rule-based feature selection algorithm [45],
the search of early markers as well as late markers in planned and spontaneous myocardial
infarction [46,47], the investigation of metabolic mechanisms in diabetes [48–50] or the dis-
covery of putative biomarker candidates in chronic kidney disease [51–53].
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Research objectives
In this article, we present a computational methodology, aimed at the modeling and characteri-
zation of kinetic regulatory mechanisms and the discovery of dynamic metabolic biomarker
candidates in physical activity. Dynamic time-course metabolic concentration data are gener-
ated from a longitudinal biomarker cohort study by standardized cycle ergometry experiments.
In total, 110 metabolites (including metabolite classes of acylcarnitines, amino acids and sug-
ars) are quantitated by a targeted metabolomics approach utilizing mass spectrometry. After a
thorough examination of the measured concentration data in terms of data quality assurance
and reliability, we selected a set of 30 metabolites relevant in exercise physiology and consid-
ered them for data analysis and modeling in this work.

Metabolite concentrations of 47 individuals, showing different lengths in their concentra-
tion time curves (depending on the individual’s maximum physical load), are made compara-
ble by means of data preprocessing. Biomarker candidates are selected depending on
maximum fold changes (MFCs) (the amplitude of changes in concentrations) and the corre-
sponding P-values resulting from statistical hypothesis testing. Kinetic signatures of metabo-
lites are quantified by a mathematical modeling approach using polynomial fitting, specifying
the dynamic response patterns of analyzed metabolites during physical activity. A similarity
measure for characterized metabolite kinetic signatures is obtained through specification of
groups of metabolites by hierarchical cluster analysis. Kinetic shape templates are identified,
specifying common kinetic response patterns and enabling the classification of dynamic meta-
bolic biomarker candidates according to their kinetic patterns. Findings are verified and inter-
preted through biochemical and metabolic pathway analyses associated with physical activity.

Results

Selection of dynamic biomarker candidates
Putative dynamic biomarker candidates are selected from the pool of analyzed metabolites by
combined analysis of MFCs in concentrations and corresponding P-values from statistical hypoth-
esis testing (see sectionMaximum fold changes and statistical hypothesis testing). Results for this
data analysis step are visualized as a volcano plot (Fig 1). The plot demonstrates log2 values of
MFCs compared to-log10 values of P-values. A significance level of 0.001 was chosen for the selec-
tion of statistical hypothesis testing results (horizontal blue line). Moderate biomarker candidates
are classified with a MFC greater than 1.20 (vertical blue line). Strong biomarker candidates are
classified with a MFC greater than 1.40 (vertical green line). Detailed data of all analyzed metabo-
lites, including MFCs, log2(MFCs), P-values, and-log10(P-values), are summarized in Table 1.

For the analyzed classes of metabolites, putative biomarker candidates could be selected and
ranked according to MFCs and P-values. As strong biomarker candidates, acetylcarnitine (C2,
MFC = 1.97, P<0.001), showing the highest values in the entire set of analyzed metabolites,
propionylcarnitine (C3, MFC = 1.52, P< 0.001) and alanine (MFC = 1.42, P< 0.001) were
identified. Valerylcarnitine (C5, MFC = 1.38, P< 0.001), arginine (MFC = 1.36, P< 0.001),
glucose (MFC = 1.32, P< 0.001), butyrylcarnitine (C4, MFC = 1.27, P< 0.001), methylmalo-
nylcarnitine (C3-DC-M, MFC = 1.26, P< 0.001), hydroxyvalerylcarnitine (C5_OH,
MFC = 1.26, P< 0.001), and octadecadienylcarnitine (C18:2, MFC = 1.21, P< 0.001) were
ranked as moderate biomarker candidates.

Characterization of metabolite kinetic signatures
Kinetic signatures of analyzed metabolites are expected to show specific characteristic regulatory
patterns, in response to the incremental increase of physical activity using a cycle ergometry
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stress test. Kinetic patterns of the selected 30 metabolites, characterized by a polynomial fitting
approach (see section Mathematical modeling), are visualized in Fig 2 (acylcarnitines), Fig 3
(amino acids) and Fig 4 (glucose). For standardized visualization of profiles, the vertical axis is
normalized to a range of-20% to 40% of relative concentration. Note that acetylcarnitine (C2)
exceeds this specified range, showing a maximum increase in relative concentration of 67%.

Different kinetic response patterns were observed. The majority of metabolites show a sus-
tained response, e.g., threonine, with basically constant behavior in concentration over time,
however overlaid with biological or instrumental noise. An early response pattern is shown
with valerylcarnitine (C5) with an early decrease in relative concentration (of approx. -16%)
after starting exercise followed by an increase in relative concentration (to a maximum of
13%). Methionine could be identified as a metabolite showing a halving interval response

Fig 1. Volcano plot. The volcano plot displays the log2(MFC) between minimum and maximum
concentrations values versus the-log10(P-value) calculated from statistical hypothesis testing. The horizontal
blue line indicates the selected significance level of 0.001. The vertical blue line indicates the threshold for
classification as moderate predictor (MFC > 1.20). The vertical green line denotes the classification threshold
for a strong predictor (MFC > 1.40). Acetylcarnitine (C2), propionylcarnitine (C3) and alanine could be
selected as strong biomarker candidates. Valerylcarnitine (C5), arginine, glucose, butyrylcarnitine (C4),
methylmalonylcarnitine (C3-DC-M), and hydroxyvalerylcarnitine (C5-OH) were identified as moderate
biomarker candidates.

doi:10.1371/journal.pcbi.1004454.g001
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pattern with characteristics similar to a sigmoid function, showing first a sustained reaction,
then an increase in relative concentration at half time of physical activity (by approx. 13%) and
followed by a plateau (at approx. 9% of relative concentration) towards the end of physical
exercise. Metabolites showing a late response pattern are e.g., acetylcarnitine (C2) with a slight
decrease (-10%) and then a strong continuous increase in relative concentration (up to 67%) or
alanine with a continuous increase (of approx. 32%) up to the end of exercise. Glucose shows a
delayed response pattern (similar to a L-curve / hockey stick function, see section Mathemati-
cal modeling) with a minor increase in relative concentration (approx. 2%) at the beginning of
exercise, followed by a continuous decrease (down to-12%) and a major steep increase in rela-
tive concentration (up to 13%) after the end of exercise during the recovery phase.

Table 1. Selection of dynamic biomarker candidates.

Metabolite MFC log2(MFC) P-value -log10(P-value)

Acetylcarnitine (C2) 1.97 0.98 2.84E-13 12.55

Propionylcarnitine (C3) 1.52 0.6 2.84E-13 12.55

Alanine 1.42 0.51 2.84E-13 12.55

Valerylcarnitine (C5) 1.38 0.46 4.49E-09 8.35

Arginine 1.36 0.44 6.85E-06 5.16

Glucose 1.32 0.4 2.38E-08 7.62

Butyrylcarnitine (C4) 1.27 0.35 4.31E-08 7.37

Methylmalonylcarnitine (C3-DC-M) 1.26 0.33 6.93E-08 7.16

Hydroxyvalerylcarnitine (C5-OH) 1.26 0.33 3.35E-05 4.48

Octadecadienylcarnitine (C18:2) 1.21 0.28 1.05E-04 3.98

Ornithine 1.19 0.25 1.87E-05 4.73

Tryptophan 1.18 0.24 9.28E-03 2.03

Octadecanoylcarnitine (C18) 1.17 0.23 1.97E-05 4.71

Methionine 1.16 0.21 9.81E-03 2.01

Histidine 1.14 0.18 1.72E-05 4.76

Phenylalanine 1.14 0.18 1.51E-06 5.82

Hexadecanoylcarnitine (C16) 1.12 0.16 7.68E-03 2.11

Citrulline 1.12 0.16 9.91E-02 1.00

Glutamic_Acid 1.12 0.17 1.48E-09 8.83

Tyrosine 1.12 0.17 1.21E-07 6.92

Glycine 1.11 0.15 1.48E-09 8.83

Lysine 1.11 0.15 7.77E-03 2.11

Proline 1.11 0.16 2.09E-02 1.68

Serine 1.11 0.15 9.10E-03 2.04

Octadecenoylcarnitine (C18:1) 1.10 0.14 1.04E-02 1.98

Threonine 1.09 0.12 2.25E-02 1.65

Valine 1.09 0.12 2.25E-02 1.65

xLeucine (Leucine + Isoleucine) 1.09 0.12 1.08E-02 1.97

Carnitine (C0) 0.92 -0.12 1.08E-02 1.97

Aspartic_Acid 0.88 -0.19 4.55E-01 0.34

For selection of dynamic biomarker candidates, MFC, log2(MFC), P-value, and-log10(P-value) are summarized for each metabolite in the table. The

majority of metabolites show a positive value for log2(MFC), where only two metabolites, namely carnitine (C0) and aspartic acid, show a negative value.

Identical P-values, shown for some metabolites, result from the applied statistical test (Wilcoxon Signed Rank test for paired samples), which uses ranks

for hypothesis testing. P-values are adjusted according to the false discovery rate (FDR) correction for multiple comparisons (see section Maximum fold

changes and statistical hypothesis testing).

doi:10.1371/journal.pcbi.1004454.t001
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Fig 2. Kinetic signatures of acylcarnitines. Kinetic signatures of the 11 selected acylcarnitines are depicted. Dynamic curves were characterized by
polynomial fitting of 9th degree to the median concentration values of the analyzed metabolites. For visualization, relative changes (in %) of metabolite
concentrations in reference to their initial concentration at rest are displayed. An early response pattern is shown for valerylcarnitine (C5) with a decrease in
relative concentration of approx. 16%. Late response profiles include acetylcarnitine (C2), propionylcarnitine (C3) and butyrylcarnitine (C4).

doi:10.1371/journal.pcbi.1004454.g002
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Fig 3. Kinetic signatures of amino acids. Kinetic signatures of the 18 selected amino acids. Methionine yields a halving interval response pattern with a
plateau (sigmoid characteristics). Alanine and arginine show a late response pattern.

doi:10.1371/journal.pcbi.1004454.g003
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Identification of metabolite groups with similar patterns
Groups of metabolites, showing similar kinetic patterns with response to physical exercise,
were identified by hierarchical cluster analysis (see section Hierarchical cluster analysis), result-
ing in a set of seven distinct clusters. Metabolites and their corresponding cluster affiliations
are summarized in Table 2.

Cluster 1 consists of the two amino acids alanine and arginine. Cluster 2 and cluster 3 comprise
a multitude of metabolites of similar metabolite kinetics, which show roughly sustained response
patterns. In cluster 4, the metabolites octadecadienylcarnitine (C18:2) and glucose are clustered
together. Cluster 5 consists of only acetylcarnitine (C2), the metabolite showing the strongest
response. In cluster 6, propionylcarnitine (C3) and butyrylcarnitine (C4) are grouped together. Clus-
ter 7 represents valerylcarnitine (C5), a biomarker candidate showing an early response pattern.

Specification of kinetic shape templates
Kinetic shape templates, serving for the classification of similar metabolite dynamics, could be
specified based on the median concentration curves of each identified cluster (see section Hier-
archical cluster analysis). Identified shapes and their characteristics are summarized in Fig 5,
based on relative concentration changes in reference to the initial concentration at rest. Identi-
fiers of kinetic shape templates hereby correspond to identifiers of resulting metabolite clusters
from hierarchical cluster analysis.

Fig 4. Kinetic signature of glucose. A delayed response pattern is apparent in glucose, decreasing in
relative concentration (-12%) towards the end of exercise with a steep increase (up to 13%) after the end of
exercise during the recovery phase.

doi:10.1371/journal.pcbi.1004454.g004
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Templates for sustained response patterns, observed in the majority of metabolites, are spec-
ified by shapes 2 and 3. Shape 7 specifies a template for dynamic biomarker candidates, show-
ing an early response pattern (valerylcarnitine (C5)). Shape 1 describes a template showing a
late response pattern with a continuous increase in concentration (alanine and arginine).
Shapes 5 (acetylcarnitine (C2)) and 6 (propionylcarnitine (C3) and butyrylcarnitine (C4))
define further templates for late response patterns, differing in their dynamics in concentration
time courses and maximum concentration changes. Shape 4 demonstrates a template for a
delayed response pattern, showing characteristics similar to a L-curve / hockey-stick function
(glucose and octadecadienylcarnitine (C18:2)).

Classification of dynamic biomarker candidates
Dynamic metabolic biomarker candidates are identified and classified through a two-step anal-
ysis procedure: first, by analysis of MFCs in concentrations and statistical hypothesis testing,

Table 2. Metabolite groups with similar patterns.

Metabolite Cluster identifier

Alanine 1

Arginine 1

Aspartic Acid 2

Carnitine (C0) 2

Octadecanoylcarnitine (C18) 2

Octadecenoylcarnitine (C18:1) 2

Hydroxyvalerylcarnitine (C5-OH) 2

Citrulline 2

Histidine 2

Serine 2

Threonine 2

Valine 2

xLeucine (leucine + isoleucine) 2

Hexadecanoylcarnitine (C16) 3

Methylmalonylcarnitine (C3-DC-M) 3

Glutamic Acid 3

Glycine 3

Lysine 3

Methionine 3

Ornithine 3

Phenylalanine 3

Proline 3

Tryptophan 3

Tyrosine 3

Octadecadienylcarnitine (C18:2) 4

Glucose 4

Acetylcarnitine (C2) 5

Propionylcarnitine (C3) 6

Butyrylcarnitine (C4) 6

Valerylcarnitine (C5) 7

Metabolites and their cluster affiliations which were identified by hierarchical cluster analysis. Cutting the

hierarchical tree at a threshold of 35 results in 7 different clusters.

doi:10.1371/journal.pcbi.1004454.t002
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and second, by reviewing and characterizing specified metabolic response patterns and kinetic
shape templates.

Fig 5. Kinetic shape templates. Kinetic shape templates for the classification of similar dynamic patterns.

doi:10.1371/journal.pcbi.1004454.g005
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The majority of metabolites show a sustained response pattern, staying within an interval of
relative MFC of less than 20%, being ineligible as putative biomarker candidates. Valerylcarnitine
(C5), yielding an early response pattern, was classified as early marker and moderate predictor
(MFC = 1.38, P< 0.001). Methionine shows a halving interval response pattern with a sigmoid
behavior, but having a moderate amplitude in concentration (MFC = 1.16, P> 0.001) and was
therefore not selected as a biomarker candidate. A late response pattern with weak early decrease
in concentration was observed with propionylcarnitine (C3) (strong predictor, MFC = 1.52,
P< 0.001), and butyrylcarnitine (C4) (moderate predictor, MFC = 1.27, P< 0.001), both
classified as late biomarker candidates. Alanine (strong predictor, MFC = 1.42, P< 0.001) and
arginine (moderate predictor, MFC = 1.36, P< 0.001) showed a late response pattern with a con-
tinuous increase in concentration from the beginning of exercise and were classified as late mark-
ers. Highest concentration changes yielded acetylcarnitine (C2), demonstrating a late response
pattern with a very strong increase towards the end of exercise. C2 was ranked as strong predictor
(MFC = 1.97, P< 0.001) and classified as late marker. Showing basic delayed response patterns,
glucose (MFC = 1.32, P< 0.001) and octadecadienylcarnitine (C18:2) (MFC = 1.21, P< 0.001)
were identified as moderate predictors and classified as delayed markers.

Biochemical interpretation of findings
Thanks to an elaborate body of knowledge in biochemistry, a peculiarity within the process of
data analysis in metabolomics lies in the dedicated biochemical interpretation of results [54].
This knowledge is nowadays annotated in public databases, e.g., the Kyoto Encyclopedia of
Genes and Genomes (KEGG) [55], and eases the interpretation of findings in the context of
annotated biochemical pathways.

In exercise physiology, various biochemical reactions in metabolism play an essential role,
predominantly in carbohydrate metabolism (glycolysis and glycogenolysis), in lipid metabo-
lism (β-oxidation of free fatty acids) and amino acid metabolism [6]. During a cycle ergometry
stress test, an individual increasingly consumes adenosine triphosphate (ATP); to compensate
this energy consumption and maintain homeostatic levels of ATP, its production is up-regu-
lated, first primarily by aerobic processes (respiration), and then anaerobic fermentation.
Under the low-impact conditions chosen in this study (low initial output of 50 Watt (W) and
slow increase of 25 W every three minutes), the metabolic data demonstrate that the body uses
both glycolysis and β-oxidation of fatty acids as readily available energy sources, before protein
catabolism contributes in a substantial manner. Of course, the pools of monosaccharides and
free fatty acids have to be replenished by glycogenolysis and lipolysis, respectively.

The findings of this work, i.e., identified biomarker candidates of exercise metabolism, and
characterized metabolite signatures via specified kinetic shape templates, can be explained
through the metabolic regulatory mechanisms in physical activity. Significant changes in con-
centrations of acetylcarnitine (C2) and closely related short-chain acylcarnitines (C3, C4, and
C5) arise from their involvement in the β-oxidation of free fatty acids with acetylcarnitine (the
single most significant finding) representing the actual end-point of the β-oxidation of even-
numbered fatty acids which constitute the vast majority of dietary fatty acids and of fatty acids
in the body's adipose tissue. The strong increase in concentrations of alanine and arginine are
representative for an increased production of glucogenic amino acids through high glycolytic
activity. This connection is most obvious for alanine, which is the corresponding amino acid of
the alpha-keto acid pyruvate and is, thus, a direct mirror of glycolytic or gluconeogenetic flux
[48]. The third major finding, the overproduction of glucose after the end of the exercise, is due
to the inertia of metabolic regulation. In order to supply the glycolysis with enough fuel, glu-
cose has to be released from its storage by glycogenolysis. At the abrupt end of the exercise, the
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increased activity of the glycogenolytic machinery cannot be stopped immediately and, there-
fore, leads to overcompensated glucose levels.

Discussion

Summary
In this work we have presented a computational modeling and statistics approach for the iden-
tification of dynamic metabolic signatures through characterization of kinetic patterns of circu-
lating metabolites from a physical exercise study. Dynamic time-course metabolic
concentration data were obtained through clinical exercise testing using a cycle ergometry
stress test.

The data of 47 individuals from four different groups were analyzed: male and female test
persons, with either average physical activity or competitive athletic activity. Lactate concentra-
tions were measured for all individuals as a gold standard for profiling physical activity. Metab-
olite concentrations were quantitated by a targeted metabolomics approach, combining mass
spectrometry analytics with the concept of stable isotope dilution. From the initial set of 110
metabolites (including classes of acylcarnitines, amino acids and sugars), we selected a reliable
and quality assured set of 30 metabolites for data analysis playing a possible role in exercise
physiology.

Based on the generic process for biomarker discovery in metabolomics, a computational
approach for the analysis of longitudinal metabolic concentration data was developed. Compu-
tational tools were implemented in R [56] for automating the data analysis workflow. The
source file (R script file) and the underlying dataset (Microsoft Excel file) are provided as sup-
porting information (S1 File and S2 File). Individual workload curves, differing in the number
of measurements due to variability in the individual's physical capacity and exertion, were
made comparable by data preprocessing steps including rescaling and linear interpolation of
concentration-time curves.

Putative dynamic biomarker candidates for physical activity were selected by combined
analysis of MFCs in concentrations and P-values of statistical hypothesis testing. Kinetic pat-
terns of analyzed metabolites were characterized based on a mathematical modeling approach
utilizing polynomial fitting as the method of choice. Metabolite groups, showing similar kinetic
response patterns, were obtained by applying hierarchical cluster analysis to the set of charac-
terized metabolite kinetic patterns. Kinetic shape templates could be specified according to the
identified clusters, defining basic kinetic response patterns used for classification of dynamic
biomarker candidates.

The following kinetic response patterns could be defined: sustained response (basically con-
stant concentration over time, overlaid with biological and instrumental noise), early response
(significant change in concentration at the beginning of exercise), late response (continuous
decrease/increase towards the end of activity), and delayed response (first basic sustained
response, with a strong response and steep decrease/increase in concentration after the end of
the exercise during the recovery phase).

The selected two-step data analysis and modeling strategy including MFCs in concentra-
tions and statistical hypothesis testing, and the modeling of kinetic shape templates led to the
identification and classification of dynamic metabolic biomarker candidates for profiling phys-
ical activity. The highest values for MFCs and P-values in the analyzed set of metabolites were
shown for acetylcarnitine (C2) (MFC = 1.97, P< 0.001), yielding a late response pattern, and
being classified as strong predictor and late marker. Alanine showed the highest values in the
class of amino acids (MFC = 1.42, P< 0.001) and yielded a late response pattern, being classi-
fied as strong predictor and late marker. The only considered sugar, glucose, yet playing a key
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role in physical activity, yielded a delayed response pattern classified as moderate predictor
(MFC = 1.32, P< 0.001) and delayed marker.

In terms of biochemical interpretation, findings were verified and interpreted according to
their function in metabolic pathways, associated primarily with physical exercise (β-oxidation of
fatty acids, glycolysis, and glycogenolysis). Interestingly, biomarker candidates, identified with the
highest predictive value, yielded late response patterns. This might be seen in the context that lac-
tate (also a key indicator for profiling physical activity) first shows an almost sustained response
pattern before yielding an exponential increase in concentration up to a maximum physical load.
The primary occurrence of late response patterns can be interpreted as a consequence of evolu-
tionary developed regulatory mechanisms in metabolism to keep the individual's metabolic sys-
tem in homeostasis after external perturbations such as spontaneous physical activity.

Using our computational approach we were able to select and classify dynamic metabolic
biomarker candidates and to characterize physiologically plausible metabolite kinetic patterns
in physical activity, combining the strengths of statistical testing (hypothesis testing), mathe-
matical modeling (curve fitting) and empiric data analysis (hierarchical cluster analysis).

Methodology
Experimental limitations and confounders in the analyzed data may result from uncertainties
about the nutrition of test persons before exercising (recorded in questionnaires but not objec-
tively verifiable), varying individual motivations and consequently different levels of exertion,
potential issues during sample taking (e.g., incomplete removal of sweat at the point of punc-
ture), or from general limitations of the analytical approach based on dried blood spots [57]. It
should be noted, that at least two test persons obviously consumed nutritional supplements in
the form of branch-chained amino acids, influencing the measurement values of xleucine (sum
of leucine and isoleucine).

With reference to the selected cohort, it should be noted that the study participants formed
a heterogeneous group, i.e., they differed in their level of physical activity and status of training.
Therefore, the baseline concentrations and the kinetic patterns may, to a certain extent, depend
on the volunteers' differences in physical fitness, or other confounding factors such as anthro-
pometric measures or dietary habits. Although this paper is primarily focused on the method-
ology for deriving kinetic patterns and not so much on the discovery of exercise-related
biochemical mechanisms, the results should be seen with these limitations in mind.

In terms of data preprocessing, the presented data analysis strategy reveals strong indiffer-
ence towards the handling of outliers because median concentration values are selected from
rescaled and interpolated concentration curves. Cut-off values for the selection of metabolic
biomarker candidates (utilizing MFCs and P-values) were chosen empirically by reviewing
obtained results and assuming that responses, showing changes in concentration within a
range of-10% to +10%, are accepted as biochemically and analytically-caused data variability.
For kinetic modeling, an empirical approach (instead of applying pre-defined mathematical
basic functions) based on polynomial fitting was chosen, allowing for a more physiological
characterization of metabolite kinetics. Looking at the complete set of characterized metabolite
kinetic signatures, the user can choose an appropriate polynomial degree after visual inspection
or by developing a proper statistical quality measure e.g., based on an estimation of the residu-
als. In a few cases, minor artifacts of approx. 3% in concentration values of the fitted polynomi-
als do occur, obviously resulting from a slight overfitting of curves due to the chosen
polynomial degree.

Identification of groups of similarly behaving metabolites by hierarchical cluster analysis is
somewhat affected by the number of interpolated points in the concentration curves and by the
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degree chosen for fitted polynomials. A higher number of interpolation points as well as differ-
ent degrees of polynomials were tested, showing high stability in cluster analysis, however, at a
lower node height of the dendrogram the arrangement of single metabolites changes slightly
between the clusters. Note that the selection of clusters basically depends on the chosen height
(cut-off) of the hierarchical tree. Depending on the selected cut-off value, two metabolites, i.e.,
methylmalonylcarnitine (C3-DC-M) and hydroxyvalerylcarnitine (C5-OH) might also be clas-
sified as additional biomarker candidates, interesting for further investigation. Specification of
kinetic shape templates finally builds upon the number of specified clusters, depending compu-
tationally on the selected cut-off in hierarchical cluster analysis and biochemically on the eligi-
bility and meaningfulness of clustered templates in terms of metabolite kinetics.

Previous work
Metabolic concentration data used in this study have served as a database for the development
and validation of novel data mining and biomarker discovery strategies in previously published
studies by our group. In Netzer et al., 2011 [58] we presented a two-step network-based approach
for the identification of metabolic biomarkers, classifying alanine, acetylcarnitine (C2), propio-
nylcarnitine (C3), and glycine, as strong, and arginine, citrulline, and lysine as moderate bio-
marker candidates, represented as major hubs in the dynamic network. These findings show
high accordance with identified dynamic metabolic biomarker candidates in physical activity
using the approach presented in this work, again selecting alanine, acetylcarnitine (C2), propio-
nylcarnitine (C3) as strong predictors, and arginine as moderate marker candidate.

In a second paper [59] we introduced a method for biomarker identification by inferring
two different types of networks, i.e., correlation networks and ratio networks. This more theo-
retical approach calculates scores to prioritize features using topological descriptors. Groups of
obese test persons (with a body mass index (BMI)> 30) and healthy controls were compared
in this study, which identified highly discriminatory biomarker candidates, i.e., histidine, orni-
thine, acetylcarnitine (C2), and proline.

Conclusions
In this article, we have presented a computational methodology for dynamic biomarker classifi-
cation and modeling of kinetic metabolic patterns in physical activity. Insight into kinetic regu-
latory mechanisms could be provided by characterizing specific kinetic signatures for selected
key metabolites within the groups of acylcarnitines and amino acids, and for glucose. A new
data analysis strategy for the characterization and classification of dynamic biomarker candi-
dates was introduced. We were able to specify common kinetic shape templates, identified
from groups of metabolites showing a similar characteristic in dynamic time-course responses.
Findings demonstrated high accordance with previously published data and established bio-
chemical knowledge, e.g., the response of glucose, showing a behavior similar to a hockey stick
function with a delayed increase in concentration after the end of physical exercise during the
recovery phase.

Due to the selected study design of a cycle ergometry experiment, in which physical exercise
was increased incrementally (every 3 minutes by 25 W), known kinetic patterns could be partly
confirmed by our observations, in particular in response to the selected workload protocol.
Major impact of the presented methodology can be seen in the fact that kinetic mechanisms in
metabolism could be qualified and quantified not only through a “strong”mathematical
model, but by an empiric deduction and description of de facto kinetic response patterns from
quantitated metabolic time-course concentration data, measured under in-vivo experimental
conditions.
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A further direction of research might be the analysis of additional classes of metabolites and
the description and interpretation of kinetic patterns subsequent to active exercise in the recov-
ery phase. Especially for glucose—which increases rapidly in concentration within the analyzed
interval of the recovery phase—a prolonged examination time would be highly interesting,
since glucose might be expected to be classified as strong predictor. From the computational
viewpoint, a very challenging task would be the development of in-silico pathway models, inte-
grating the identified kinetic signatures into a theoretical mathematical model for hypothesis
generation and verification (see e.g., Teusink et al., 2000 [60]). The development of a kinetic
model based on an ordinary differential equations (ODEs) description including kinetic
parameters selected from our research might be an aim for additional research which, however,
is beyond the scope of this article.

The approach presented in this work also shows high potential for contributing to other ap-
plication areas such as pathophysiology and pharmacodynamics. In pharmacodynamics and tox-
icology (particularly in chronic toxicity testing), for instance, it might be applied to assess
treatment effects more accurately by profiling metabolite levels over time instead of looking at
end-points only (see [29]). In many complex diseases, the dynamic analysis may well identify
more meaningful biomarkers and reveal a deeper insight into the actual pathomechanisms. To
name one important example that is actually very close to the present study: in chronic obstruc-
tive pulmonary disease (COPD), physical exercise—and bicycle ergometry in particular—is com-
monly used to assess the severity of the disease and also to model exacerbations of the patients’
condition [61,62]. In this setting, a dynamic depiction of the metabolic changes clearly has the
potential to resolve regulatory mechanisms and distinguish cause and effect of the observed alter-
ations (Christian Schudt, personal communication). This is especially plausible for the pathway
leading to the synthesis of inflammation mediators such as prostaglandins, leukotrienes, throm-
boxanes etc., which is closely associated with the pathology of the disease and depends on the
release of polyunsaturated fatty acids from phospholipids in a stoichiometric manner [63–66].

In this article, main focus was put on the development of a computational methodology to
examine longitudinal metabolic concentration data and to present a basic approach for the
mathematical modeling and statistical analysis of dynamic kinetic metabolic mechanisms. As
previously stated (see section Methodology), individual metabolic response patterns are partly
influenced by different factors such as physical fitness and training status, anthropometric
parameters or dietary habits. Because of limitations in the specification and verification of the
observed metabolic kinetic patterns, a further research goal might be to systematically investi-
gate the underlying metabolic and physiological regulatory mechanisms by conducting addi-
tional hypothesis-driven prospective cohort studies. Furthermore, an extension of this paper is
planned that will compare specific groups of interest, e.g., defined with regard to training status
(response in lactate increases) or anthropometric characteristics.

Referring to the practical execution of exercise physiology experiments, it should be noted
that most commonly only one blood sample is collected, usually after the end of exercise. How-
ever, the results of the presented work clearly demonstrate that characterized metabolites show
a very differential kinetic characteristic during physical activity. Consequently one-point mea-
surements may lead to misinterpretations and emphasize an obvious need for multiple mea-
surements in exercise physiology (typically before, multiple times during, and after exercise).

Materials and Methods

Ethics statement
This study was conducted in full accordance with the principles expressed in the Declaration of
Helsinki. Written informed consent was obtained from all study participants, together with a
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detailed questionnaire on nutrition and health status. In addition, a physician subjected all
individuals to a detailed examination to ensure that they could undergo the cycle ergometry
test without health risks, and this physician was also present at all times during the exercise to
monitor the electrocardiogram (ECG) that was continuously recorded. All laboratory work
and data analysis was conducted anonymously.

Experimental study design
In this work, longitudinal metabolic concentration data were obtained through clinical exercise
testing using a cycle ergometry stress test. General guidance for clinical exercise testing can be
found in "Guidelines for Clinical Exercise Testing Laboratories" [67] and "Recommendations for
Clinical Exercise Laboratories" [68]. General recommendations for cycle ergometry studies were
described by Driss & Vandewalle, 2013 [69], providing technical and clinical protocols including
limitations for study design and execution. The overall cycle ergometry experiment was designed
as a longitudinal biomarker cohort study, with 47 persons divided into 4 different groups, i.e.,
male and female individuals, with either average physical activity or competitive athletic activity.
Study participants included amateur endurance athletes (16 males / 8 females) and professional
alpine skiers (11 males / 12 females). The anthropometric characteristics of the study participants
(age, body mass index (BMI), height, and weight) are summarized in Table 3. Detailed informa-
tion on anthropometric data, the general training status, and the physical load during the cycle
ergometer experiment are provided as supporting information (S3 File).

Clinical study execution
The workload of the cycle ergometry test was increased incrementally by 25 W every 3 minutes
up to the individual’s maximum physical load (the basic scheme of the study protocol is
depicted in S1 Fig). The initial workload level of 25 W was skipped for all individuals, starting
the exercise with a workload of 50 W. The lowest observed maximum workload was 150 W
(one individual), and the highest workload level was 425 W, also reached by one individual.
From each individual blood samples for metabolite profiling were taken (i) at rest (directly
before starting the exercise), (ii) with each new workload level up to individual’s maximum
physical load, and (iii) after a short recovery phase of five minutes after the maximum work-
load (highest Watt level). In addition, for all test subjects, lactate concentrations were measured
as a gold standard and reference for assessing physical activity. Concentration-time curves of
preprocessed lactate data are visualized in S2 Fig. Median values of lactate concentrations were
roughly 1.2 mM at rest, 8.5 mM at maximum workload, and 7.2 mM after recovery. According
to the study protocol, lactate samples were taken at 1:30 min, samples for metabolite profiling
at 2:30 min after starting a new ergometry workload level. All samples were taken from the

Table 3. Anthropometric data.

Measure Mean Minimum Maximum

Age [y] 34.19 20 53

Body mass index (BMI) 23.27 18.42 28.98

Height [m] 1.75 1.60 1.86

Weight [kg] 71.35 52 96

Summary of anthropometric data of study participants. Mean, minimum and maximum values are denoted

for age, body mass index (BMI), height and weight.

doi:10.1371/journal.pcbi.1004454.t003
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earlobe, collected as dried blood spots (DBS) [57] and analyzed under standardized study
conditions.

Targeted metabolite quantitation
In metabolomics, two basic conceptual approaches are used: untargeted and targeted metabo-
lite profiling methods. Untargeted metabolomics seeks to create a holistic picture of metabo-
lism by trying to identify a comprehensive set of metabolites as a snapshot of a metabolic state,
while targeted metabolomics aims at a quantitation of pre-selected metabolites defined by a
priori knowledge [70,71]. The two state-of-the-art technologies for analyzing metabolites are
nuclear magnetic resonance (NMR) spectroscopy [72] and mass spectrometry (MS) [73].
Dynamic time-course metabolic concentration values, building the basis for data analysis and
modeling in this work, were gathered from a targeted metabolomics approach [70,74,75], using
triple quadrupole tandem mass spectrometry (MS/MS) [76] coupled with the concept of stable
isotope dilution (SID) [77] for metabolite quantitation.

Measured metabolite concentrations
Longitudinal metabolite concentration data were quantified for three classes of metabolites:
acylcarnitines, amino acids, and sugars. In total, 110 metabolites were measured: 40 acylcarni-
tines, 18 amino acids, and 52 sugars. Quantitated concentration data of all measured metabo-
lites were thoroughly examined with respect to data quality assurance and reliability.
Metabolites either below the detection limit (LOD) of 50 nM, measurements with lots of miss-
ing values or wide variabilities were excluded from this analysis. As result, targeted concentra-
tion data of a selected set of 30 metabolites are considered for data analysis in this work: 11
acylcarnitines, 18 amino acids, and 1 sugar. Analyzed acylcarnitines include: carnitine (C0),
acetylcarnitine (C2), propionylcarnitine (C3), methylmalonylcarnitine (C3-DC-M), butyryl-
carnitine (C4), valerylcarnitine (C5), hydroxyvalerylcarnitine (C5-OH), hexadecanoylcarnitine
(C16), octadecanoylcarnitine (C18), octadecenoylcarnitine (C18:1), and octadecadienylcarni-
tine (C18:2). Amino acids are: alanine, arginine, aspartic acid, citrulline, glutamic acid, glycine,
histidine, lysine, methionine, ornithine, phenylalanine, proline, serine, threonine, tryptophan,
tyrosine, valine, and xleucine (the sum of leucine and isoleucine). Analyzed metabolite within
the class of sugars was glucose. Collected data were almost complete, except some missing data
at individual’s maximum load (twelve individuals, however lactate could be measured after
1:30 min for all of them), and at 150 W for one test person (no. 9).

Data analysis workflow
Central steps of the selected data analysis workflow include the technical validation of raw
data, preprocessing of data, selection of putative dynamic biomarker candidates, mathematical
modeling and characterization of metabolite kinetic patterns, identification of metabolite
groups with similar kinetic behavior, specification of observed kinetic shape templates, classifi-
cation of dynamic biomarker candidates and the biochemical interpretation of findings. A
flowchart of the used data analysis workflow is shown in Fig 6, representing the whole data-
driven process for the discovery of biomarkers in metabolomics. Results from the different
steps of the data analysis workflow are exemplarily shown and visualized for glucose, a key ana-
lyte, playing a central role in metabolism of exercise physiology and demonstrating a very spe-
cific kinetic pattern in response to physical activity.
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Raw data—descriptive analysis and visualization
Raw data of the cycle ergometry experiment were test-wise reviewed and visualized in two dif-
ferent basic ways to obtain a better understanding about the nature of the metabolic time-
course data. Concentration data were initially analyzed by building subsets of data, referring to
the levels of each individual’s maximum physical load. For each subset a box plot was gener-
ated, visualizing the specific measurements (data points of the horizontal axis) versus the
metabolite concentrations (see section Clinical study execution). In S3 Fig, resulting box plots
for glucose are exemplarily shown. Eight box plots were generated, where the lowest value of
individual maximum workload (150 W) resulted in 7 data points (1 test person) and the high-
est value (425 W) in 18 measurement points (1 test person). Second, analyzed metabolites were
visualized as raw concentration curves (exemplarily shown for glucose in S4 Fig), illustrating
differences in individual workload and time of exercise of examined test persons. The horizon-
tal axis hereby represents time points of measurements in minutes.

Data preprocessing
Different lengths of metabolic concentration-time curves, resulting from the variability of
each individual’s maximum physical load, were made comparable by rescaling the data in time

Fig 6. Data analysis workflow. Flow chart of the selected data analysis and biomarker discovery workflow (according to the workflow described by
Baumgartner & Graber, 2008 [42]). Intermediate discovery steps include the technical validation of raw data, preprocessing of data, selection of dynamic
biomarker candidates, modeling and characterization of metabolite kinetic patterns, identification of metabolite groups with similar kinetic behavior,
specification of observed kinetic shape templates, classification of dynamic biomarker candidates, and subsequently the biochemical interpretation of
findings.

doi:10.1371/journal.pcbi.1004454.g006
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(S5 Fig). Measurement at rest was defined as 0%, maximum workload of each individual as
100% and recovery value as median value of 117%—resulting in an aligned workload curve to a
uniform length. This requires additional data points added to the concentration curves using a
linear interpolation approach (Fig 7A).

Metabolic concentration-time curves underwent simple descriptive analysis by generating a
box plot representation from rescaled concentration curves (Fig 7B). In a next step, median
concentration values were extracted from interpolated concentration curves (S6 Fig), serving
as a basis for mathematical modeling by curve fitting (see section Mathematical modeling).
This approach perfectly treats the problem of outliers in the data without the need of applying
additional methods for outlier detection and removal. However, a small set of extreme outliers
was observed that was manually removed after careful visual inspection (in test person no. 14
all data points at recovery, in test person no. 35 all data points at 175 W and in test person no.
42 the data point for glucose at rest). Regarding missing concentration values it should be
noted that our dataset was almost complete, except missing values at individuals’maximum
workload in 12 test persons and at 150 W in one individual (no. 9), representing the last data
points in the concentration time curves.

Maximum fold changes and statistical hypothesis testing
Maximum fold changes in metabolite concentrations and P-values of statistical hypothesis test-
ing serve as a score for the ranking of putative biomarker candidates (see section Selection of
dynamic biomarker candidates). The combination of fold changes and P-values, visualized
using a volcano plot, is described in the literature as method of choice for the analysis and visu-
alization of significant changes (e.g., on microarray data [78,79] or in diverse metabolomics
applications [80–82]). As a general approach, especially in genomics studies, this method is
usually used for data comparing the starting and end point of dynamic processes such as regu-
lation of gene expression.

In this work, utilizing longitudinal time course concentration data, MFCs are calculated by
the difference between observed minimum and maximum concentration values of a metabo-
lite, independently from their timely occurrence. MFCs are calculated based on median

Fig 7. Glucose concentration curves. A) Concentration curves of all test persons after linear interpolation. B) Box plot representation of concentration
curves of all test persons.

doi:10.1371/journal.pcbi.1004454.g007

Dynamic Metabolic Biomarkers in Physical Activity

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004454 August 28, 2015 21 / 30



concentration values extracted from interpolated concentration curves (see section Data pre-
processing). Measurement indices are determined, and consequently, if the minimum concen-
tration occurs earlier in the time course, the ratio of maximum concentration to minimum
concentration is calculated and vice versa. This modality is summarized in the following
pseudo-code:

if (conc_min_index< conc_max_index)

maximum fold change ¼ conc max=conc min ð5Þ
else

maximum fold change ¼ conc min=conc max ð6Þ

P-values of statistical hypothesis testing are calculated in a similar way, first by determining
measurement index positions of minimum and maximum median concentration values of
interpolated concentration curves and in a subsequent step, by extracting interpolated individ-
ual concentration values at identified index positions as basis for statistical hypothesis testing.
Interpolated minimum and maximum concentration values of all 30 metabolites were assessed
with respect to their density distribution by visual inspection using graphical methods such as
histogram analysis [83] and quantile-quantile plots [84]. A Shapiro-Wilk Normality test was
applied for normality testing of both minimum and maximum concentration data (significance
level P = 0.01) [85–87]. Metabolites hereby yielded inhomogeneous distributions (e.g., normal
distribution for histidine, octadecanoylcarnitine (C18) or glycine, non-normal distribution e.g.,
for xLeucine, citrulline or proline, and partly differences in distributions between minimum
and maximum concentrations, e.g., for arginine). To ensure comparability between metabo-
lites, a Wilcoxon Signed Rank Test [88] (non-parametric hypothesis test for paired samples)
was used for the calculation of P-values (significance level P = 0.001). Since ranks are used for
paired hypothesis testing, identical P-values are partly shown for some metabolites. Finally, cal-
culated P-values were adjusted according to the false discovery rate (FDR) correction for multi-
ple comparisons [89].

Mathematical modeling
The initial goal of our work was the mathematical modeling of metabolite kinetic patterns and
shape templates, utilizing a set of predefined mathematical basis functions [29]. However, the
introduction of predefined basic functions for the analysis of dynamic metabolomics data is
and remains a challenge as also discussed by Smilde et al., 2010 [29]. Note that putative basic
functions in this work are associated with kinetic patterns in response to linear increasing
physical activity and can be basically classified into the following set of shape templates:

a. a sustained response pattern, showing a mainly constant concentration over time, overlaid
with biological or instrument noise, represented e.g., by a constant function

f ðxÞ ¼ c ð7Þ

b. an early response pattern, with an early significant change in concentration, mathemati-
cally described e.g., by a logarithmic function

f ðxÞ ¼ lnðxÞ ð8Þ
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c. a halving interval response, showing a change in concentration at the half time of exercise
with a following plateau, represented e.g., by a sigmoid basis function

f ðxÞ ¼ 1

ð1þ e�tÞ ð9Þ

d. a late response, with a continuous decrease/increase up to the end of physical activity,
described e.g., by a linear, a quadratic, or an exponential function

f ðxÞ ¼ cx ð10Þ

f ðxÞ ¼ x2 ð11Þ

f ðxÞ ¼ ex ð12Þ

e. a delayed response pattern, showing first a sustained characteristic followed by a strong
response after the end of physical exercise during the recovery phase, mathematically rep-
resented by a so-called L-curve or hockey stick function [90,91].

Fitting the above-introduced basic functions to measured concentration-time curves was
thoroughly examined and tested with the goal to characterize kinetic response patterns accord-
ing to these theoretical models. In this analysis curve fitting was performed using median
metabolite concentration values, extracted from interpolated concentration-time curves (see
section Data preprocessing). Our preliminary results demonstrated that the approach of fitting
the pre-defined set of mathematical basis functions was not feasible for the measured response
curves caused by an incremental increase of physical workload. We therefore revised our initial
concept by utilizing polynomial fitting of preprocessed data. This modality enables us to design
kinetic response patterns that are physiologically reasonable and relevant. Polynomials of
degree n are defined by following equation:

f ðxÞ ¼
Xn

i¼0 aix
i ð13Þ

After testing different polynomial degrees, we decided for a degree of nine, showing the best
results in terms of curve/shape representation and smoothness (S7 Fig). To ensure comparabil-
ity of analyzed metabolites after polynomial fitting, relative concentration values were calcu-
lated (in percentage of concentration changes with respect to the initial concentration at rest)
(see Fig 4).

Note that there are multiple applications in metabolomics using polynomial fitting, e.g. for
baseline correction [92,93], prediction of germination curves [94], calculation of mass correc-
tion profiles [95] or in spectrum deconvolution [96].

Hierarchical cluster analysis
Metabolite groups, showing similar kinetic response patterns, were examined and identified
using hierarchical cluster analysis [97]. Cluster analysis was performed based on the concentra-
tion values of the fitted polynomials of 9th degree (see section Mathematical modeling).

Results are visualized as a heatmap in Fig 8. Relative workload values of the x-axis are dis-
played in linear order. Red colors indicate lower values in dynamic time-course concentrations
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of specific metabolites, lighter colors indicate higher concentration values. The resulting cluster
dendrogram is separately shown in S8 Fig. Clusters of metabolites, showing similar dynamic
behavior, were empirically identified by cutting the hierarchical tree at a threshold of 35, result-
ing in seven different metabolite clusters (see section Identification of metabolite groups with
similar patterns).

Descriptive statistical analysis for each cluster was performed and corresponding box plots
were generated (S9 Fig). Median concentration curves of each cluster, allowing for an accurate
representation and specification of kinetic shape templates, were selected (S10 Fig) (see section
Specification of kinetic shape templates).

Supporting Information
S1 Fig. Study protocol. Study protocol of the cycle ergometry performance test, exemplarily
shown for the maximum workload level of 425W.Workload is increased by 25W every 3 min-
utes (25 W level is skipped). Blood samples are taken at rest, with every new workload level,
and after a recovery period of five minutes after the individual maximum workload.
(TIF)

S2 Fig. Lactate concentration curves. Lactate concentration curves of the 47 analyzed individ-
uals. To ensure comparability of individual workload curves, concentration curves are rescaled

Fig 8. Heatmap.Colored heatmap, visualizing the results of hierarchical cluster analysis. Concentration values are scaled and centered for each metabolite
by row, resulting in an improved color representation. Relative workload values (x-axis) are visualized in linear order, resulting in a colored representation of
the polynomially fitted concentration curves for each metabolite.

doi:10.1371/journal.pcbi.1004454.g008
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and values interpolated (see section Data preprocessing).
(TIF)

S3 Fig. Raw data box plots. Box plots for descriptive analysis of raw data. Data are visualized
by grouping persons into subgroups reaching the same maximal workload level. The minimum
number of measurements is seven (at 150 W of individual’s maximum load) and the maximum
number of measurements is 18 (at 425 W).
(TIF)

S4 Fig. Glucose raw concentration curves. Visualization of raw concentration curves for glu-
cose, where data are visualized with regard to time points of measurement. The shortest indi-
vidual workload curve ends after approx. 23 minutes, the longest individual workload curve
after approx. 56 minutes.
(TIF)

S5 Fig. Glucose rescaled concentration curves. To ensure comparability of differing individ-
ual workload curves, a rescaling of data is performed referring to the individual maximum
physical load as 100%. The values for recovery are rescaled with respect to the median recovery
value of 117%.
(TIF)

S6 Fig. Glucose median concentration values. Glucose median concentration values extracted
from interpolated concentration curves, which are used as a basis for mathematical modeling.
(TIF)

S7 Fig. Glucose fitted polynomial.Mathematical modeling by fitting a polynomial of 9th

degree to median concentration values, extracted from interpolated concentration values.
(TIF)

S8 Fig. Hierarchical cluster dendrogram. Dendrogram of hierarchical clusters analysis.
Metabolites acetylcarnitine (C2), valerylcarnitine (C5), propionylcarnitine (C3), butyrylcarni-
tine (C4), octadecadienylcarnitine (C18:2), glucose, alanine, and arginine are separated at a
high cut-off level.
(TIF)

S9 Fig. Cluster box plots. For each cluster a box plot for a descriptive representation is gener-
ated. Median values are selected from the concentration curves of each cluster, serving as basis
for the specification of kinetic shape templates.
(TIF)

S10 Fig. Cluster median concentration curves.Median concentration curves of all metabolite
clusters (identified through hierarchical cluster analysis), serving as basis for the specification
of kinetic shape templates.
(TIF)

S1 File. Source file. R script file for the modeling of kinetic patterns of dynamic metabolic bio-
markers.
(ZIP)

S2 File. Underlying dataset.Microsoft Excel file containing longitudinal metabolic concentra-
tion data.
(ZIP)
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S3 File. Participant characteristics. Anthropometric data and workload performed on the
cycle ergometer, listed for each study participant.
(ZIP)

Acknowledgments
The authors gratefully acknowledge the support of Dr. med. Brigitte Auer and her team (Medi-
sport Auer, Innsbruck, Austria, http://www.medisport-auer.at/) in guiding, performing and
monitoring the cycle ergometry exercise test.

Author Contributions
Designed and supervised the work: CB KMW. Conceived the data analysis workflow and the
mathematical modeling approach: MN. Designed the data analysis workflow, implemented the
computational approach, performed tests, and wrote the paper: MB. Approved the final manu-
script: CB KMW.

References
1. Guldberg CM, Waage P. Studier i affiniteten. (Translation: Studies on affinities.) Forhandlinger i

Videnskabs-Selskabet i Christiania. 1864.

2. Guldberg CM, Waage P. E´tudes sur les affinites chimiques. (Translation: Studies on chemical affini-
ties.) Christiania: Brøgger & Christie. 1867.

3. Guldberg CM, Waage P. Über die chemische Affinität. (Translation: On chemical affinity.) Erdmann’s
Journal für practische Cehmie. 1879; 127:69–114.

4. Voit E, Martens H, Omholt SW. 150 years of the mass action law. PLoS Comput Biol. 2015; 11(1):
e1004012. doi: 10.1371/journal.pcbi.1004012 PMID: 25569257

5. Michaelis L, Menten ML. Die Kinetik der Invertinwirkung. (Translation: The kinetics of invertase activity.)
Biochemische Zeitschrift. 1913; 49:333–369.

6. Devlin TM (Ed.). Textbook of Biochemistry with Clinical Correlations. 6th ed. Hoboken, NJ: Wiley-
Liss; 2006.

7. Nelson DL, Cox MM. Lehninger Principles of Biochemistry. 5th ed. New York: W. H. Freeman and
Company; 2008.

8. Koch D, Lu C, Fisker-Andersen J, Jolley L, Fenske RA. Temporal association of children's pesticide
exposure and agricultural spraying: report of a longitudinal biological monitoring study. Environmental
health perspectives. 2002; 110(8):829. PMID: 12153767

9. Lu C, Barr DB, Pearson MA, Waller LA. Dietary intake and its contribution to longitudinal organophos-
phorus pesticide exposure in urban/suburban children. Environmental health perspectives. 2008; 116
(4):537. doi: 10.1289/ehp.10912 PMID: 18414640

10. Pomponio G, Zurich MG, Schultz L, Weiss DG, Romanelli L, Gramowski-Voss A, et al. Amiodarone bio-
kinetics, the formation of its major oxidative metabolite and neurotoxicity after acute and repeated expo-
sure of brain cell cultures. Toxicol In Vitro. 2015. pii:S0887–2333(15)00013–2.

11. Barmentlo SH, Stel JM, van Doorn M, Eschauzier C, de Voogt P, Kraak MH. Acute and chronic toxicity
of short chained perfluoroalkyl substances to Daphnia magna. Environ Pollut. 2015; 198:47–53. doi:
10.1016/j.envpol.2014.12.025 PMID: 25553346

12. Mackevica A, Skjolding LM, Gergs A, Palmqvist A, Baun A. Chronic toxicity of silver nanoparticles to
Daphnia magna under different feeding conditions. Aquat Toxicol. 2015; 161C:10–16.

13. Yang S, Giannone RJ, Dice L, Yang ZK, Engle NL, Tschaplinski TJ, et al. Clostridium thermocellum
ATCC27405 transcriptomic, metabolomic and proteomic profiles after ethanol stress. BMCGenomics.
2012; 13:336. doi: 10.1186/1471-2164-13-336 PMID: 22823947

14. Castro CC, Martins RC, Teixeira JA, Silva Ferreira AC. Application of a high-throughput process analyt-
ical technology metabolomics pipeline to Port wine forced ageing process. Food Chem. 2014;
143:384–91. doi: 10.1016/j.foodchem.2013.07.138 PMID: 24054256

15. ChongWP, Yusufi FN, Lee DY, Reddy SG, Wong NS, Heng CK, et al. Metabolomics-based identifica-
tion of apoptosis-inducing metabolites in recombinant fed-batch CHO culture media. J Biotechnol.
2011; 151(2):218–24. doi: 10.1016/j.jbiotec.2010.12.010 PMID: 21167884

Dynamic Metabolic Biomarkers in Physical Activity

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004454 August 28, 2015 26 / 30

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004454.s013
http://www.medisport-auer.at/
http://dx.doi.org/10.1371/journal.pcbi.1004012
http://www.ncbi.nlm.nih.gov/pubmed/25569257
http://www.ncbi.nlm.nih.gov/pubmed/12153767
http://dx.doi.org/10.1289/ehp.10912
http://www.ncbi.nlm.nih.gov/pubmed/18414640
http://dx.doi.org/10.1016/j.envpol.2014.12.025
http://www.ncbi.nlm.nih.gov/pubmed/25553346
http://dx.doi.org/10.1186/1471-2164-13-336
http://www.ncbi.nlm.nih.gov/pubmed/22823947
http://dx.doi.org/10.1016/j.foodchem.2013.07.138
http://www.ncbi.nlm.nih.gov/pubmed/24054256
http://dx.doi.org/10.1016/j.jbiotec.2010.12.010
http://www.ncbi.nlm.nih.gov/pubmed/21167884


16. Selvarasu S, Ho YS, ChongWP,Wong NS, Yusufi FN, Lee YY, et al. Combined in silico modeling and
metabolomics analysis to characterize fed-batch CHO cell culture. Biotechnol Bioeng. 2012; 109
(6):1415–29. doi: 10.1002/bit.24445 PMID: 22252269

17. Mohmad-Saberi SE, Hashim YZ, Mel M, Amid A, Ahmad-Raus R, Packeer-Mohamed V. Metabolomics
profiling of extracellular metabolites in CHO-K1 cells cultured in different types of growth media. Cyto-
technology. 2013; 65(4):577–86. doi: 10.1007/s10616-012-9508-4 PMID: 23179090

18. Cao B, Li M, ZhaW, Zhao Q, Gu R, Liu L, et al. Metabolomic approach to evaluating adriamycin phar-
macodynamics and resistance in breast cancer cells. Metabolomics. 2013; 9(5):960–973. PMID:
24039617

19. Chen Y, Ren J, Qin X, Li G, Zhou B, Gu G, et al. Metabolism of Albumin after Continuous Venovenous
Hemofiltration in Patients with Systemic Inflammatory Response Syndrome. BioMed Research Interna-
tional. 2015; 2015:917674. doi: 10.1155/2015/917674 PMID: 25650044

20. Campbell C, Grapov D, Fiehn O, Chandler CJ, Burnett DJ, Souza EC, et al. Improved metabolic health
alters host metabolism in parallel with changes in systemic xeno-metabolites of gut origin. PLOS ONE.
2014; 9(1):e84260. doi: 10.1371/journal.pone.0084260 PMID: 24416208

21. Knudsen SH, Karstoft K, Pedersen BK, van Hall G, Solomon TP. The immediate effects of a single bout
of aerobic exercise on oral glucose tolerance across the glucose tolerance continuum. Physiol Rep.
2014; 2(8):e12114. doi: 10.14814/phy2.12114 PMID: 25168869

22. Rios-Estepa R, Lange BM. Experimental and mathematical approaches to modeling plant metabolic
networks. Phytochemistry. 2007; 68(16):2351–2374.

23. Steuer R, Junker BH. Computational models of metabolism: stability and regulation in metabolic net-
works. In: Rice SA (Ed.). Advances in chemical physics, vol. 142. Hoboken, NJ: JohnWiley & Sons;
2009.

24. Heijnen JJ. Approximative kinetic formats used in metabolic network modeling. Biotechnology and bio-
engineering. 2005; 91(5):534–545. PMID: 16003779

25. Modre-Osprian R, Osprian I, Tilg B, Schreier G, Weinberger KM, Graber A. Dynamic simulations on the
mitochondrial fatty acid beta-oxidation network. BMC Syst Biol. 2009; 3:2. doi: 10.1186/1752-0509-3-2
PMID: 19126203

26. Takahashi K, Ishikawa N, Sadamoto Y, Sasamoto H, Ohta S, Shiozawa A, Miyoshi F, Naito Y,
Nakayama Y, Tomita M. E-Cell 2: multi-platform E-Cell simulation system. Bioinformatics. 2003; 19
(13):1727–9. PMID: 15593410

27. Smolen P, Hardin PE, Lo BS, Baxter DA, Byrne JH. Simulation of Drosophila Circadian Oscillations,
Mutations, and Light Responses by a Model with VRI, PDP-1, and CLK. Biophysical journal. 2004; 86
(5):2786–2802. PMID: 15111397

28. Nishino T, Yachie-Kinoshita A, Hirayama A, Soga T, Suematsu M, Tomita M. Dynamic simulation and
metabolome analysis of long-term erythrocyte storage in adenine-guanosine solution. PLoS ONE.
2013; 8(8):e71060. doi: 10.1371/journal.pone.0071060 PMID: 24205395

29. Smilde AK, Westerhuis JA, Hoefsloot HCJ, Bijlsma S, Rubingh CM, Vis DJ, et al. Dynamic metabolomic
data analysis: a tutorial review. Metabolomics. 2010; 6(1):3–17. PMID: 20339444

30. Bakshi BR. Multiscale pca with application to multivariate statistical process monitoring. AIChE Journal.
1998; 44:1596–1610.

31. Schliep A, Schonhuth A, Steinhoff C. Using hidden markov models to analyze gene expression time
course data. Bioinformatics. 2003; 19:i255–i263. PMID: 12855468

32. Storey JD, XiaoW, Leek JT, Tompkins RG, Davis RW. Significance analysis of time course microarray
experiments. Proceedings of the National Academy of Sciences of the United States of America. 2005;
102(36):12837–12842. PMID: 16141318

33. Conesa A, NuedaMJ, Ferrer A, Talon M. Masigpro: A method to identify significantly differential expres-
sion profules in time-course microarray experiments. Bioinformatics. 2006; 22(9):1096–1102. PMID:
16481333

34. Jansen JJ, Hoefsloot HC, Boelens HF, Van Der Greef J, Smilde AK. Analysis of longitudinal metabolo-
mics data. Bioinformatics. 2004; 20(15):2438–2446. PMID: 15087313

35. Smilde AK, Jansen JJ, Hoefsloot HC, Lamers RJA, Van Der Greef J, TimmermanME. ANOVA-simulta-
neous component analysis (ASCA): a new tool for analyzing designed metabolomics data. Bioinformat-
ics. 2005; 21(13):3043–3048. PMID: 15890747

36. Berk M, Ebbels T, Montana G. A statistical framework for biomarker discovery in metabolomic time
course data. Bioinformatics. 2011; 27(14):1979–1985. doi: 10.1093/bioinformatics/btr289 PMID:
21729866

Dynamic Metabolic Biomarkers in Physical Activity

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004454 August 28, 2015 27 / 30

http://dx.doi.org/10.1002/bit.24445
http://www.ncbi.nlm.nih.gov/pubmed/22252269
http://dx.doi.org/10.1007/s10616-012-9508-4
http://www.ncbi.nlm.nih.gov/pubmed/23179090
http://www.ncbi.nlm.nih.gov/pubmed/24039617
http://dx.doi.org/10.1155/2015/917674
http://www.ncbi.nlm.nih.gov/pubmed/25650044
http://dx.doi.org/10.1371/journal.pone.0084260
http://www.ncbi.nlm.nih.gov/pubmed/24416208
http://dx.doi.org/10.14814/phy2.12114
http://www.ncbi.nlm.nih.gov/pubmed/25168869
http://www.ncbi.nlm.nih.gov/pubmed/16003779
http://dx.doi.org/10.1186/1752-0509-3-2
http://www.ncbi.nlm.nih.gov/pubmed/19126203
http://www.ncbi.nlm.nih.gov/pubmed/15593410
http://www.ncbi.nlm.nih.gov/pubmed/15111397
http://dx.doi.org/10.1371/journal.pone.0071060
http://www.ncbi.nlm.nih.gov/pubmed/24205395
http://www.ncbi.nlm.nih.gov/pubmed/20339444
http://www.ncbi.nlm.nih.gov/pubmed/12855468
http://www.ncbi.nlm.nih.gov/pubmed/16141318
http://www.ncbi.nlm.nih.gov/pubmed/16481333
http://www.ncbi.nlm.nih.gov/pubmed/15087313
http://www.ncbi.nlm.nih.gov/pubmed/15890747
http://dx.doi.org/10.1093/bioinformatics/btr289
http://www.ncbi.nlm.nih.gov/pubmed/21729866


37. Mishina EV, Straubinger RM, Pyszczynski NA, JuskoWJ. Enhancement of tissue delivery and receptor
occupancy of methylprednisolone in rats by a liposomal formulation. Pharmaceutical research. 1993;
10(10):1402–1410. PMID: 8272400

38. Jansen JJ, Szymanska E, Hoefsloot HC, Jacobs DM, Strassburg K, Smilde AK. BetweenMetabolite
Relationships: an essential aspect of metabolic change. Metabolomics. 2012; 8(3):422–432. PMID:
22661919

39. Stanberry L, Mias GI, HaynesW, Higdon R, Snyder M, Kolker E. Integrative analysis of longitudinal
metabolomics data from a personal multi-omics profile. Metabolites. 2013; 3(3):741–760. doi: 10.3390/
metabo3030741 PMID: 24958148

40. Xia J, Mandal R, Sinelnikov IV, Broadhurst D, Wishart DS. MetaboAnalyst 2.0—a comprehensive
server for metabolomic data analysis. Nucleic Acids Res. 2012; 40(Web Server issue):W127–33. doi:
10.1093/nar/gks374 PMID: 22553367

41. Lundin U, Modre-Osprian R, Weinberger KM. Targeted metabolomics for clinical biomarker discovery
in multifactorial diseases. In: Ikehara K, editor. Advances in the Study of Genetic Disorders. Croatia:
InTech; 2011. pp. 81–98.

42. Baumgartner C, Graber A. Data mining and knowledge discovery in metabolomics. In: Masseglia F,
Poncelet P, Teisseire M (Eds.). Successes and new directions in data mining. London: Information
Science Reference; 2008. pp. 141–166.

43. Baumgartner C, Osl M, Netzer M, Baumgartner D. Bioinformatic-driven search for metabolic biomark-
ers in disease. J Clin Bioinforma. 2011; 1:2. doi: 10.1186/2043-9113-1-2 PMID: 21884622

44. Röschinger W, Olgemöller B, Fingerhut R, Liebl B, Roscher AA. Advances in analytical mass spectrom-
etry to improve screening for inherited metabolic diseases. Eur J Pediatr. 2003; 162 Suppl 1:S67–76.
PMID: 14618396

45. Osl M, Dreiseitl S, Pfeifer B, Weinberger K, Klocker H, Bartsch G, et al. A new rule-based algorithm for
identifying metabolic markers in prostate cancer using tandemmass spectrometry. Bioinformatics.
2008; 24(24):2908–14. doi: 10.1093/bioinformatics/btn506 PMID: 18815183

46. Lewis GD, Wei R, Liu E, Yang E, Shi X, Martinovic M, et al. Metabolite profiling of blood from individuals
undergoing plannedmyocardial infarction reveals early markers of myocardial injury. J Clin Invest.
2008; 118:3503–3512. doi: 10.1172/JCI35111 PMID: 18769631

47. Baumgartner C, Lewis GD, Netzer M, Pfeifer B, Gerszten RE. A new data mining approach for profiling
and categorizing kinetic patterns of metabolic biomarkers after myocardial injury. Bioinformatics. 2010;
26(14):1745–51. doi: 10.1093/bioinformatics/btq254 PMID: 20483816

48. Altmaier E, Ramsay SL, Graber A, Mewes HW,Weinberger KM, Suhre K. Bioinformatics analysis of tar-
geted metabolomics—uncovering old and new tales of diabetic mice under medication. Endocrinology
2008;(149: ):3478–3489.

49. Gieger C, Geistlinger L, Altmaier E, Hrabé de Angelis M, Kronenberg F, Meitinger T, et al. Genetics
meets metabolomics: a genome-wide association study of metabolite profiles in human serum. PLoS
Genet. 2008; 4(11):e1000282. doi: 10.1371/journal.pgen.1000282 PMID: 19043545

50. Suhre K, Meisinger C, Döring A, Altmaier E, Belcredi P, Gieger C, et al. Metabolic footprint of diabetes:
a multiplatform metabolomics study in an epidemiological setting. PLoS One. 2010; 5(11):e13953. doi:
10.1371/journal.pone.0013953 PMID: 21085649

51. Argilés Á, Siwy J, Duranton F, Gayrard N, Dakna M, Lundin U, et al. CKD273, a new proteomics classi-
fier assessing CKD and its prognosis. PLoS One. 2013; 8(5):e62837. doi: 10.1371/journal.pone.
0062837 PMID: 23690958

52. Duranton F, Lundin U, Gayrard N, Mischak H, Aparicio M, Mourad G, et al. Plasma and urinary amino
acid metabolomic profiling in patients with different levels of kidney function. Clin J Am Soc Nephrol.
2014; 9(1):37–45. doi: 10.2215/CJN.06000613 PMID: 24235289

53. Nkuipou-Kenfack E, Duranton F, Gayrard N, Argilés A, Lundin U, Weinberger KM, et al. Assessment of
metabolomic and proteomic biomarkers in detection and prognosis of progression of renal function in
chronic kidney disease. PLoS One. 2014; 9(5):e96955. doi: 10.1371/journal.pone.0096955 PMID:
24817014

54. Breit M, Baumgartner C, Weinberger KM. Data handling and analysis in metabolomics. In: Khanmo-
hammadi Mohammadreza (Ed.). Current Applications of Chemometrics. New York: Nova Science
Publishers; 2015. pp. 181–203.

55. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000; 28
(1):27–30. PMID: 10592173

56. Ihaka R, Gentleman R. R: a language for data analysis and graphics. Journal of computational and
graphical statistics. 1996; 5(3):299–314.

Dynamic Metabolic Biomarkers in Physical Activity

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004454 August 28, 2015 28 / 30

http://www.ncbi.nlm.nih.gov/pubmed/8272400
http://www.ncbi.nlm.nih.gov/pubmed/22661919
http://dx.doi.org/10.3390/metabo3030741
http://dx.doi.org/10.3390/metabo3030741
http://www.ncbi.nlm.nih.gov/pubmed/24958148
http://dx.doi.org/10.1093/nar/gks374
http://www.ncbi.nlm.nih.gov/pubmed/22553367
http://dx.doi.org/10.1186/2043-9113-1-2
http://www.ncbi.nlm.nih.gov/pubmed/21884622
http://www.ncbi.nlm.nih.gov/pubmed/14618396
http://dx.doi.org/10.1093/bioinformatics/btn506
http://www.ncbi.nlm.nih.gov/pubmed/18815183
http://dx.doi.org/10.1172/JCI35111
http://www.ncbi.nlm.nih.gov/pubmed/18769631
http://dx.doi.org/10.1093/bioinformatics/btq254
http://www.ncbi.nlm.nih.gov/pubmed/20483816
http://dx.doi.org/10.1371/journal.pgen.1000282
http://www.ncbi.nlm.nih.gov/pubmed/19043545
http://dx.doi.org/10.1371/journal.pone.0013953
http://www.ncbi.nlm.nih.gov/pubmed/21085649
http://dx.doi.org/10.1371/journal.pone.0062837
http://dx.doi.org/10.1371/journal.pone.0062837
http://www.ncbi.nlm.nih.gov/pubmed/23690958
http://dx.doi.org/10.2215/CJN.06000613
http://www.ncbi.nlm.nih.gov/pubmed/24235289
http://dx.doi.org/10.1371/journal.pone.0096955
http://www.ncbi.nlm.nih.gov/pubmed/24817014
http://www.ncbi.nlm.nih.gov/pubmed/10592173


57. Guthrie R, Susi A. A simple phenylalanine method for detecting phenylketonuria in large populations of
newborn infants. Pediatrics. 1963; 32:338–43. PMID: 14063511

58. Netzer M,Weinberger KM, Handler M, Seger M, Fang X, Kugler KG, et al. Profiling the human response
to physical exercise: a computational strategy for the identification and kinetic analysis of metabolic bio-
markers. J Clin Bioinforma. 2011; 1(1):34. doi: 10.1186/2043-9113-1-34 PMID: 22182709

59. Netzer M, Kugler KG, Müller LA, Weinberger KM, Graber A, Baumgartner C, et al. A network-based fea-
ture selection approach to identify metabolic signatures in disease. J Theor Biol. 2012; 310:216–22.
doi: 10.1016/j.jtbi.2012.06.003 PMID: 22771628

60. Teusink B, Passarge J, Reijenga CA, Esgalhado E, van der Weijden CC, Schepper M, et al. Can yeast
glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry.
European Journal of Biochemistry. 2000; 267(17):5313–5329. PMID: 10951190

61. Andrianopoulos V, Wagers SS, Groenen MT, Vanfleteren LE, Franssen FM, Smeenk FW, Vogiatzis I,
Wouters EF, Spruit MA; CIRO+ Rehabilitation Network. Characteristics and determinants of endurance
cycle ergometry and six-minute walk distance in patients with COPD. BMC PulmMed. 2014 May 31;
14:97. doi: 10.1186/1471-2466-14-97 PMID: 24885117

62. Holz O, Roepcke S, Lauer G, Elmlinger M, Lahu G, Hohlfeld JM. Exercise Challenge Amplifies Differ-
ences In Metabolomic Signals Between Healthy Smokers And SmokersWith COPD (gold2). Am J
Respir Crit Care Med. 2014; 189:A5952.

63. Seggev JS, ThorntonWH Jr, Edes TE. Serum leukotriene B4 levels in patients with obstructive pulmo-
nary disease. Chest. 1991 Feb; 99(2):289–91. PMID: 1846571

64. Verhoeven GT, Garrelds IM, Hoogsteden HC, Zijlstra FJ. Effects of fluticasone propionate inhalation on
levels of arachidonic acid metabolites in patients with chronic obstructive pulmonary disease. Mediators
Inflamm. 2001 Feb; 10(1):21–6. PMID: 11324900

65. Dagouassat M, Gagliolo JM, Chrusciel S, Bourin MC, Duprez C, Caramelle P, Boyer L, Hue S, Stern
JB, Validire P, Longrois D, Norel X, Dubois-Randé JL, Le Gouvello S, Adnot S, Boczkowski J. The
cyclooxygenase-2-prostaglandin E2 pathway maintains senescence of chronic obstructive pulmonary
disease fibroblasts. Am J Respir Crit Care Med. 2013 Apr 1; 187(7):703–14. doi: 10.1164/rccm.
201208-1361OC PMID: 23328527

66. An J, Li JQ, Wang T, Li XO, Guo LL, Wan C, Liao ZL, Dong JJ, Xu D, Wen FQ. Blocking of thromboxane
A2 receptor attenuates airway mucus hyperproduction induced by cigarette smoke. Eur J Pharmacol.
2013 Mar 5; 703(1–3):11–7. doi: 10.1016/j.ejphar.2013.01.042 PMID: 23399768

67. Pina IL, Balady GJ, Hanson P, Labovitz AJ, Madonna DW, Myers J. Guidelines for Clinical Exercise
Testing Laboratories A Statement for Healthcare Professionals From the Committee on Exercise and
Cardiac Rehabilitation, American Heart Association. Circulation. 1995; 91(3):912–921. PMID: 7828326

68. Myers J, Arena R, Franklin B, Pina I, KrausWE, McInnis K, et al. Recommendations for Clinical Exer-
cise Laboratories A Scientific Statement From the American Heart Association. Circulation. 2009; 119
(24):3144–3161. doi: 10.1161/CIRCULATIONAHA.109.192520 PMID: 19487589

69. Driss T, Vandewalle H. The measurement of maximal (anaerobic) power output on a cycle ergometer:
a critical review. BioMed research international. 2013; 2013:589361. doi: 10.1155/2013/589361 PMID:
24073413

70. Weinberger KM. Einsatz von Metabolomics zur Diagnose von Stoffwechselkrankheiten. (Translation:
Metabolomics in diagnosing metabolic diseases.) Ther Umsch. 2008; 65(9):487–91. doi: 10.1024/
0040-5930.65.9.487 PMID: 18791962

71. Astarita G, Langridge J. An emerging role for metabolomics in nutrition science. J Nutrigenet Nutrige-
nomics. 2013; 6(4–5):181–200. doi: 10.1159/000354403 PMID: 24009004

72. Wishart DS. Quantitative metabolomics using NMR. TrAC Trends in Analytical Chemistry. 2008; 27
(3):228–237.

73. Dettmer K, Aronov PA, Hammock BD. Mass spectrometry-based metabolomics. Mass spectrometry
reviews. 2007; 26(1):51–78. PMID: 16921475

74. Ramsay SL, Guggenbichler W, Weinberger KM, Graber A, Stoeggl WM (Inventors). Biocrates Life Sci-
ences AG (Assignee). Device for quantitative analysis of a drug or metabolite profile. US patent
20070003965. Published 2007 Jan 4.

75. Ramsay SL, Stoeggl WM, Weinberger KM, Graber A, Guggenbichler W (Inventors). Biocrates Life Sci-
ences AG (Assignee). Apparatus and method for analyzing a metabolite profile. US patent
20070004044. Published 2007 Jan 4.

76. Roberts LD, Souza AL, Gerszten RE, Clish CB. Targeted metabolomics. Current Protocols in Molecular
Biology. 2012;30–2.

Dynamic Metabolic Biomarkers in Physical Activity

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004454 August 28, 2015 29 / 30

http://www.ncbi.nlm.nih.gov/pubmed/14063511
http://dx.doi.org/10.1186/2043-9113-1-34
http://www.ncbi.nlm.nih.gov/pubmed/22182709
http://dx.doi.org/10.1016/j.jtbi.2012.06.003
http://www.ncbi.nlm.nih.gov/pubmed/22771628
http://www.ncbi.nlm.nih.gov/pubmed/10951190
http://dx.doi.org/10.1186/1471-2466-14-97
http://www.ncbi.nlm.nih.gov/pubmed/24885117
http://www.ncbi.nlm.nih.gov/pubmed/1846571
http://www.ncbi.nlm.nih.gov/pubmed/11324900
http://dx.doi.org/10.1164/rccm.201208-1361OC
http://dx.doi.org/10.1164/rccm.201208-1361OC
http://www.ncbi.nlm.nih.gov/pubmed/23328527
http://dx.doi.org/10.1016/j.ejphar.2013.01.042
http://www.ncbi.nlm.nih.gov/pubmed/23399768
http://www.ncbi.nlm.nih.gov/pubmed/7828326
http://dx.doi.org/10.1161/CIRCULATIONAHA.109.192520
http://www.ncbi.nlm.nih.gov/pubmed/19487589
http://dx.doi.org/10.1155/2013/589361
http://www.ncbi.nlm.nih.gov/pubmed/24073413
http://dx.doi.org/10.1024/0040-5930.65.9.487
http://dx.doi.org/10.1024/0040-5930.65.9.487
http://www.ncbi.nlm.nih.gov/pubmed/18791962
http://dx.doi.org/10.1159/000354403
http://www.ncbi.nlm.nih.gov/pubmed/24009004
http://www.ncbi.nlm.nih.gov/pubmed/16921475


77. Claeys M, Muscettola G, Markey SP. Simultaneous measurement of imipramine and desipramine by
selected ion recording with deuterated internal standards. Biomed Mass Spectrom. 1976; 3(3):110–6.
PMID: 990418

78. Cui X, Churchill GA. Statistical tests for differential expression in cDNAmicroarray experiments.
Genome Biol. 2003; 4(4):210. PMID: 12702200

79. Li W. Volcano plots in analyzing differential expressions with mRNAmicroarrays. Journal of bioinfor-
matics and computational biology. 2012; 10(06).

80. Xia J, Psychogios N, Young N, Wishart DS. MetaboAnalyst: a web server for metabolomic data analy-
sis and interpretation. Nucleic acids research. 2009; 37(suppl 2):W652–W660.

81. Sana TR, Fischer S, Wohlgemuth G, Katrekar A, Jung KH, Ronald PC, et al. Metabolomic and tran-
scriptomic analysis of the rice response to the bacterial blight pathogen Xanthomonas oryzae pv. ory-
zae. Metabolomics. 2010; 6(3):451–465. PMID: 20676379

82. Patti GJ, Tautenhahn R, Rinehart D, Cho K, Shriver LP, Manchester M, et al. A view from above: cloud
plots to visualize global metabolomic data. Analytical chemistry. 2013; 85(2):798–804. doi: 10.1021/
ac3029745 PMID: 23206250

83. Pearson K. Contributions to the mathematical theory of evolution. II. Skew variation in homogeneous
material. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and
Engineering Sciences. 1895; 186:343–414.

84. Wilk MB, Gnanadesikan R. Probability plotting methods for the analysis of data. Biometrika. 1968; 55
(1):1–17. PMID: 5661047

85. Shapiro SS, Wilk MB. An analysis of variance test for normality (complete samples). Biometrika. 1965;
52(3–4):591–611.

86. Razali NM, Wah YB. Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-
darling tests. Journal of Statistical Modeling and Analytics. 2011; 2(1):21–33.

87. Ghasemi A, Zahediasl S. Normality tests for statistical analysis: a guide for non-statisticians. Int J Endo-
crinol Metab. 2012; 10(2):486–9. doi: 10.5812/ijem.3505 PMID: 23843808

88. Wilcoxon F. Individual comparisons by ranking methods. Biometrics Bulletin. 1945; 1(6):80–83.

89. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to
multiple testing. Journal of the Royal Statistical Society Series B. 1995; 57:289–300.

90. Yanagimoto T, Yamamoto E. Estimation of safe doses: critical review of the hockey stick regression
method. Environmental health perspectives. 1979; 32:193. PMID: 540593

91. Barrowman NJ, Myers RA. Still more spawner-recruitment curves: the hockey stick and its generaliza-
tions. Canadian Journal of Fisheries and Aquatic Sciences. 2000; 57(4):665–676.

92. Gan F, Ruan G, Mo J. Baseline correction by improved iterative polynomial fitting with automatic thresh-
old. Chemometrics and Intelligent Laboratory Systems. 2006; 82(1):59–65.

93. Bao Q, Feng J, Chen F, MaoW, Liu Z, Liu K, et al. A new automatic baseline correction method based
on iterative method. Journal of Magnetic Resonance. 2012; 218:35–43. doi: 10.1016/j.jmr.2012.03.010
PMID: 22578553

94. Joosen RV, Kodde J, Willems LA, Ligterink W, van der Plas LH, Hilhorst HW. germinator: a software
package for high-throughput scoring and curve fitting of Arabidopsis seed germination. The Plant Jour-
nal. 2010; 62(1):148–159. doi: 10.1111/j.1365-313X.2009.04116.x PMID: 20042024

95. Lommen A, Gerssen A, Oosterink JE, Kools HJ, Ruiz-Aracama A, Peters RJ, et al. Ultra-fast searching
assists in evaluating sub-ppmmass accuracy enhancement in U-HPLC/Orbitrap MS data. Metabolo-
mics. 2011; 7(1):15–24. PMID: 21461040

96. Wei X, SunW, Shi X, Koo I, Wang B, Zhang J, et al. MetSign: A computational platform for high-resolu-
tion mass spectrometry-based metabolomics. Analytical chemistry. 2011; 83(20):7668–7675. doi: 10.
1021/ac2017025 PMID: 21932828

97. Witten IH, Frank E, Hall MA. Data mining—practical machine learning tools and techniques. 3rd ed.
Burlington, MA: Elsevier; 2011.

Dynamic Metabolic Biomarkers in Physical Activity

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004454 August 28, 2015 30 / 30

http://www.ncbi.nlm.nih.gov/pubmed/990418
http://www.ncbi.nlm.nih.gov/pubmed/12702200
http://www.ncbi.nlm.nih.gov/pubmed/20676379
http://dx.doi.org/10.1021/ac3029745
http://dx.doi.org/10.1021/ac3029745
http://www.ncbi.nlm.nih.gov/pubmed/23206250
http://www.ncbi.nlm.nih.gov/pubmed/5661047
http://dx.doi.org/10.5812/ijem.3505
http://www.ncbi.nlm.nih.gov/pubmed/23843808
http://www.ncbi.nlm.nih.gov/pubmed/540593
http://dx.doi.org/10.1016/j.jmr.2012.03.010
http://www.ncbi.nlm.nih.gov/pubmed/22578553
http://dx.doi.org/10.1111/j.1365-313X.2009.04116.x
http://www.ncbi.nlm.nih.gov/pubmed/20042024
http://www.ncbi.nlm.nih.gov/pubmed/21461040
http://dx.doi.org/10.1021/ac2017025
http://dx.doi.org/10.1021/ac2017025
http://www.ncbi.nlm.nih.gov/pubmed/21932828

