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Purpose: Myopia and its extreme form, high myopia, are common vision disorders worldwide, especially in Asia.
Identifying genetic markers is a useful step toward understanding the genetic basis of high myopia, particularly in the
Chinese population, where it is highly prevalent. This study was conducted to provide evidence of linkage for autosomal
dominant high myopia to a locus on chromosome 5p13.3-p15.1 in a large Chinese family.
Methods: After clinical evaluation, genomic DNA from 29 members of this family was genotyped. A genome-wide screen
was then performed using 382 markers with an average inter-marker distance of 10 cM, and two-point linkage was analyzed
using the MLINK program. Mutation analysis of the candidate genes was performed using direct sequencing.
Results: Linkage to the known autosomal dominant high myopia loci was excluded. The genome-wide screening identified
a maximum two-point LOD score of 3.71 at θ=0.00 with the microsatellite marker D5S502. Fine mapping and haplotype
analysis defined a critical region of 11.69 cM between D5S2096 and D5S1986 on chromosome 5p13.3-p15.1. Sequence
analysis of the candidate genes inside the linked region did not identify any causative mutations.
Conclusions: A genetic locus was mapped to chromosome 5p13.3-p15.1 in a large Chinese family with autosomal
dominant high myopia.

Myopia, the most common eye disease worldwide, is also
the leading cause of visual impairment [1]. The prevalence of
myopia has been increasing in recent decades, especially in
East Asian areas such as Japan, Singapore, and China [2-4].
The Chinese appear to be more susceptible to myopia than
other populations. The prevalence of myopia in primary
school children aged 5 to 16 years of Hong Kong is 36.71%
[5]. In adult persons more than 40 years old, Chinese residing
in Singapore have a prevalence of myopia as high as 38.7%
while the prevalence observed in European-derived
populations in United States and Australia are 26.2% and 17%
respectively [3,6,7]. High myopia, which is defined as a
refractive error equal to or below −6.00 diopters (D), is also
more prevalent in Chinese than Caucasian populations [3,8].
Individuals with high myopia have a greater chance of
subsequently developing serious complications, including
glaucoma, retinal detachment, and choroidal
neovascularization, which if not treated early and
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appropriately, may lead to permanent visual impairment or
blindness [9-11].

Genetic and environmental factors both contribute to the
development of myopia. Environmental factors such as work
at close range and prolonged reading are suggested to be
involved in the progression of myopia [1,12,13] and a body
of evidence supports the idea that heredity plays a central role
in the etiology of myopia. Twin studies have reported a high
degree of heritability for myopia, with monozygotic twins
being more highly correlated than dizygotic twins [14,15]. In
addition, the children of parents with myopia tend to have
myopia more frequently than children of parents without
myopia [16].

The inheritance of high myopia is equivocal. It may be
inherited as an autosomal dominant, autosomal recessive, or
X-linked recessive trait. Genetic mapping studies have
identified at least 18 chromosomal regions suspected of
harboring a myopia gene. X-linked recessive inheritance
myopia has been mapped on Xq28 (MYP1) and Xq23–25
(MYP13) [17,18]. In addition, Yang et al. [19] found that the
locus at 14q22.1-q24.2 (MYP18) was responsible for high
myopia in a consanguineous Chinese family in an autosomal
recessive pattern. Some research groups focusing on
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autosomal dominant high myopia have identified suggestive
linkages on chromosome 18p11.31 (MYP2) [20], 12q21–23
(MYP3) [21], 7q36 (MYP4) [22], 17q21–22 (MYP5) [23],
4q22-q27 (MYP11) [24], 2q37.1 (MYP12) [25], 10q21.1
(MYP15) [26], and 5p15 (MYP16) [27]. Furthermore, certain
loci have also been implicated in common myopia: 22q12
(MYP6) [28], 11p13 (MYP7), 3q26 (MYP8), 4q12 (MYP9),
8p23 (MYP10) [29], 1p36 (MYP14) [30], and 7p15 (MYP17)
[31]. Identifying the genetic markers for myopia would be a

useful step toward understanding the molecular defects that
lead to the pathophysiology of myopia.

In this study, we recruited a four-generational Chinese
family with autosomal dominant high myopia. Through
genome-wide screening and linkage analysis, we mapped the
disease to a locus on chromosome 5p13.3-p15.1.

Figure 1. Pedigree and haplotype diagram of the family. Circles and squares denote females and males, respectively; blackened symbols denote
affected individuals; a diagonal line through a symbol means that the individual is deceased. Haplotypes were constructed on the basis of the
minimum number of recombinations between these markers. Solid bar: the chromosome assumed to carry the inherited disease allele; open
bar: normal haplotypes. Only essential members are shown; nonparticipating family members were excluded. For individuals IV:2, only one
set of parental-allele information was available; therefore, the genotype information was indeterminate (denoted by question marks) for markers
D5S416 and D5S385. Individual III:17 was recombinant for the telomeric marker D5S2096. Individuals III:7 and III:11 were recombinant
for the centromeric marker D5S1986.
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METHODS

Family and clinical evaluation: A large family with
autosomal dominant high myopia was identified in Zhejiang

province, China. This family contained 11 affected
individuals over four generations. Participating in this study
were 29 individuals (aged 11 to 80 years): 10 affected and 19

TABLE 1. CLINICAL INFORMATION OF INDIVIDUALS IN THE FAMILY.

Subject Gender
Myopia

phenotype

Age at
onset

(years)

Age at
exam

(years)
Refractive Error

OD
Refractive Error

OS

Axial
Length
(OD;OS
[mm])

II:1 F A 7 80 −11.00DS
−4.00DC×100

−16.00DS
−2.00DC×105

29.24; 30.10

II:5 F A 8 79 −10.50DS −0.
50DC×90

−12.00DS
−2.00DC×100

27.92; 27.57

III:1 M NA 45 +1.00DS
+1.00DC×180

+1.00DS
+1.00DC×180

NP

III:2 F A 11 43 −2.50DS
−0.50DC×40

−11.50DS
−1.50DC×150

22.62; 26.80

III:3 M NA 49 +0.50DS sph +0.50DS
+0.50DC×180

23.04; 23.01

III:5 M NA 55 +0.75DC×180 +0.75DC×180 24.11; 24.20
III:6 F NA 48 +1.00DS

+0.75DC×180
+1.00DS

+1.00DC×180
22.82; 22.59

III:7 M A 6 41 −24.00DS
−2.00DC×40

−26.00DS
−2.00DC×120

31.42; 31.18

III:8 M NA 46 −4.50DS
−0.50DC×90

−3.50DS
−0.50DC×90

25.40; 25.51

III:9 F A 11 43 +0.50DS
−1.50DC×40

−15.50DS
−1.50DC×140

22.92; 28.81

III:10 F NA 37 +0.50DS
+0.50DC×20

+1.00DS sph 22.61; 22.03

III:11 M A 6 40 −16.00DS
−1.00DC×60

+0.50DS
−2.50DC×160

31.21; 25.60

III:12 F NA 36 +0.50DS sph +0.50DS sph 22.72; 22.49
III:13 M A 5 45 −10.00DS sph −9.00DS

−1.00DC×120
29.40; 29.32

III:14 F NA 36 +1.00DS
−0.50DC×180

+1.00DS sph 23.41; 23.02

III:15 M NA 41 +0.50DS sph +0.50DS sph 23.42; 23.57
III:16 F NA 39 +0.75DS sph +0.75DS sph 23.02; 23.11
III:17 M A 5 46 −17.00DS sph −15.00DS sph 29.54; 31.56
III:18 M NA 58 +1.00DS

+1.00DC×180
+1.00DS

+0.50DC×180
23.78; 23.81

III:19 F NA 58 +1.00DS
+0.75DC×180

+1.00DS
+0.50DC×180

22.45; 22.37

IV:1 F A 6 15 −13.00DS
−3.00DC×10

−10.00DS
−5.00DC×165

28.27; 27.73

IV:2 F NA 25 −0.75DS sph −0.50DS sph 23.30; 23.02
IV:3 F NA 28 −5.50DS sph −5.50DS sph 25.41; 25.50
IV:4 F NA 17 −4.25DS

−1.00DC×170
−5.00DS

−1.00DC×170
25.55; 25.72

IV:5 F NA 11 +0.50DS sph +0.50DS sph 22.31; 22.49
IV:6 M NA 16 −1.00DS sph −1.00DS sph 24.41; 24.29
IV:7 M NA 13 +0.50DS sph +0.50DS sph 23.95; 23.86
IV:8 M NA 30 +1.50DC×90 +1.75DC×90 22.67; 23.93
IV:9 M A 4 32 −6.50DS

−2.25DC×30
−8.00DS

−2.00DC×170
28.03; 27.81

          In the table, “A” indicates affected; “NA” indicates not affected; “M” indicates male; “F” indicates female; “OD” indicates right
          eye; “OS” indicates left eye; “NP” indicates not preformed; “sph” indicates sphere; and “mm” indicates millimeters.
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TABLE 2. PRIMERS DESIGNED FOR MUTATION SCREENING.

Exon Primer Sequence (F,R)
Melting Temperature

(°C)
Product Size

(bp)
CDH6
1 F:CAGACGGAGTCATACAAGTTCTGAG 58 824
 R: GCCCTTTGGTAATTGACCAGC 59  
2 F:GCACATGCCTTCCATTTAGC 57 770
 R: GGTTGTGGGTGTTTCAACTGG 59  
3 F: CTCCCAAACTCTGTTCCAGTTC 57 775
 R: TCTCTTTCAACCTCCCACTCC 57  
4 F: CCAAAGTTCTCGACTTCCTCAG 57 369
 R: GTGTTTGGTGGATGTATGCAAG 57  
5 F: ATCTATCTCCCCTGTGTGGTTG 57 521
 R: TTCCTGAGTGTATGCCATGTTG 57  
6 F: AAGAAGAACAGGCCACCATTAG 56 583
 R: GGTTTTGCCATGTTGGTCTC 57  
7 F: CATTTTTCAGGGCTGTGTGG 58 592
 R: CATCTTTTCTCAAGTGCAGGC 56  
8 F: GGTGATCTTCAAAGTCATGCAAC 57 538
 R: GAAACATTACTGCAAACCACTCC 57  
9 F: GTCTAAAGGGAATCGGCAATC 56 397
 R: TGGAATCAGCCTCAGTCTTTG 57  
10 F: TACTGATATCTCGTGGGTAGAGGC 58 552
 R: GCAAAGTGGTGAATGTATGTGG 57  
11 F: GCCAGTGGCTCAAACTTTACC 57 573
 R: CAGGCTGTATGCCTTAATGGG 58  
12 F: ATCATGGATGGAGGCAAGTG 57 756
 R: AACGGGTAGAACAGAGAAGCC 58  
CDH10
1 F: CTATCAGCAGAACCTTTCTCTCCG 60 562
 R: CAAACATTTATCTCCTCCCTCTCC 58  
2 F: CACAACAGAAGGCGTGATTCC 59 603
 R: TGCTTCCTCACTGAACTCAATAGC 59  
3 F: TTTACCAAGCAAAGACAGGAGC 57 672
 R: CTCATGGTAGCAAATCAAAGAGG 57  
4 F: TTGCTCCTCCTTCTGGTACTGTG 59 626
 R: TTCATGTTCGGTAAAGCAGTCC 58  
5 F: GTGGTATTGCTAGGAAAGGGTAAC 56 600
 R: GGATCATAGGTCTTCCTGTCTCTG 57  
6 F: AAAAGCCCCGGAAGTTCCTAG 60 611
 R: CAGGTTTCCTGTCTCAATCAACC 59  
7 F: TGTAACTGGGTGGGAGCATATC 58 467
 R: AGTAGAGACAGGGTTTCACCATG 56  
8 F: TCAGTGATATGTGTGGGTTTGC 57 521
 R: CGGCCTGTTAATCTGTTTCATG 58  
9 F: CACTTCATACCCACAAGATGCC 58 577
 R: GCATTCGTCTCTCATCTCTCTAGC 58  
10 F: TAAAGGGTATGATCCAAAAGACAC 56 587
 R: ATCTCCAGCCGTTCTAATCTTATC 56  
11 F: GTAAGCACACACGCACAGATG 56 997
 R: TTTCCAAGCTCCTACACATGC 57  
12-1 F: TGCTAAACCCTTCAGCGTCTC 58 779
 R: AAATTGTGCTGACTGGCAGG 57  
12-2 F: TCCATTGCTGAATCTCTGAGTTC 57 889
 R: CATAGCATATCAAGACTCGCTGG 58  
CDH12
1 F: CAGGTGACAGTTCTCTGATATGC 55 679
 R: ATCCCAATCAAAAACGGAAG 55  
2 F: CAATAGTGATAATCAGGTGTGAGG 58 398
 R: TTGTTGTGTTTATGTCAACTCCTTG 57  
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TABLE 2. CONTINUED.

Exon Primer Sequence (F,R)
Melting Temperature

(°C)
Product Size

(bp)
3 F: TGCTGATTAGGATGTGGGC 56 403
 R: TCCAGTCTGGGTGAAAGAGTG 56  
4 F: AGCGTTCTTGCTAATCAGGTC 55 367
 R: GAAATTCAGTGCCATGCAGTC 57  
5 F: GGCAGATATAATGAGCGTTGTG 56 537
 R: CCTTCCTATCAAGCGGTTGTC 57  
6 F: TGGCACATCCTTTTAATGGTG 57 421
 R: TGTTGAAGAGGTCTCATTGTATCTC 55  
7 F: CGAGTCCAGCAGATAAGAGTCATG 59 233
 R: GGCTGGTGATAATGTTGCCTC 58  
8 F: ATATTTCTCATTGTGGCATGGC 58 511
 R: GCTTCCTAAAGACTAAGTGTCTGG 57  
9 F: GCCCAGTTAAAATTCTAGAGCAGC 59 560
 R: CACGGAGTATCAGTACCCCAAC 57  
10 F: TCACCATTTCTGCCACATTC 56 414
 R: CATCATGCAGTTTTGGACAGAG 57  
11 F: TTTCCCCTTGAGCATACTGAC 56 399
 R: GAAAAACATCTCAGCAGGGAC 55  
12 F: TGTAGAAGCAATAACTGACCGG 56 384
 R: TCATCTGTGCGGTATCACCTC 57  
13 F: CCTCTTTGAAACTGATGACCG 56 366
  R: ACAATGCAAGCAACCTGCC 58  
14 F: CTATTGAGCAGATACCAACTTGAAG 55 385
 R: AAAAAAAGGAAGAGAGAGCGAG 55  
15-1 F: CATTCACGAAACTCAGCCAC 55 521
 R: GATAGTCATAGTCCTGGTCGGC 56  
15-2 F: CTGCCCCACCATACGATTC 57 494
 R: ATAGGCCTGAGCTTGTCTCAG 55  
15-3 F: TCTGCCAACAAGAGATACATCC 57 632
 R: ATTTGAGCCCTGAGGCCTC 58  
PDZD2
1-1 F: CTCTTCCTCTCCCAGGTGTGA 58 410
 R: AGGTGCAGCACGGCATTG 60  
1-2 F: AGCCTGAACATGAACACAGGC 59 776
 R: TGGTGCTCCAGTTGAAGATGTG 60  
2 F: AAGCTCAATACCTCAGTCCATCG 58 720
 R: CAGCTTGTATTTCCCGCATG 58  
3 F: CCAGTTGCCACTAGCCACATC 59 615
 R: TGTGCTCAGAGGTGTGTTCAATT 58  
4 F: AACAATCGCATCCCCAACTG 59 587
 R: TGCGCCATTGCACTCCAG 61  
5 F: CCTGGCCTTTGAGGTAACCTT 58 425
 R: TGGTGTCTTTTCCCATCATGGT 60  
6 F: GGAATTGGCCAATGCAAGG 60 671
 R: TTGCTCCAAAAGCTGCAACTC 59  
7 F: GCCTGACACTAATGGCTTCAGC 60 630
 R: CTATGAGACGCCATCGTCTCC 58  
8 F: TTTATTAGAGCCGGGGTTTCAC 58 639
 R: TGCAATGGCTCATGCCTATAATC 60  
9 F: TTAACTCCAGGCCTGGTTAGGG 60 592
 R: CCAGCCCTAAGGTAAGAATGGAC 59  
10 and 11 F: GTGACATTCCTGGGAGCTAAGCTA 60 816
 R: AGAGCTCCATGCTACTGGTAACTTC 58  
12 F: GCCATGGGCTCATTCTATTAACAG 60 529
 R: GGGAAGCCAAGATCTAGAGTTCTC 58  
13 F: GCATAATGACCTTTGCCCACTT 59 575
 R: CTTACCTCCCACCAGACAAGTTTC 59  
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TABLE 2. CONTINUED.

Exon Primer Sequence (F,R)
Melting Temperature

(°C)
Product Size

(bp)
14 F: GGAGGATGGTCATAATCCTTGG 58 691
 R: CTATCTCAAGCCTTCTCTGCCTG 58  
15 F: CTGGGATCATCATGCAGGTAGTAG 59 584
 R: TAAAGCCCCAAGTCCTGACTCAC 60  
16 F: GTTGTCAATTTAGCCGTTCTGAG 57 579
 R: AGTAGAGATGGGGTTTCACCATGT 59  
17-1 F: AGCCATGTTGCCTAGGCCTT 60 583
 R: CCATGCCCTCTGGGATACTC 58  
17-2 F: GACAGAGAAGGGGACTGCATT 57 725
 R: CCAGCCATCATCCTTTCCC 59  
18 F: TGGATCTGCTGGCTCCTAGTC 58 430
 R: TCTCAAACTCCTGACCTCAAGTG 57  
19-1 F: GCTGGTCTCGAACTCCTGACC 60 657
 R: AGGTGCATGGATTCCTGTCATT 59  
19-2 F: ACAATACCAGGAGGGTGGCTG 60 820
 R: CTTGTGCAAAGACACACGGG 59  
19-3 F: GACAGCACCTCCCTATCAGGC 60 800
 R: CATGATGGGCCTCCTAGCG 60  
19-4 F: GCATTAATGCAGCTGCCAGTC 59 705
 R: GCGAGACAAATGTCCTGATGC 59  
19-5 F: TGACAGAAACACCACAGCTGC 58 721
 R: GTATTCTGCCTTTCTAATGGCTG 56  
19-6 F: AATCAGGCTCTATCGCCAGGT 59 630
 R: ATCCGCTGCTTCACAGAGAA 57  
19-7 F: TATATAGTGTAAAGCCGCTGCTGG 59 779
 R: TGGGAACTCTGCATTATCTTTGC 59  
20 F: ATTCATAGCAGTTCCCCTTGCC 60 520
 R: CTGAAGCTGGCTAGCAGCAC 58  
21 F: AGAACCTTTAGGGCCTGTGG 57 638
 R: AAGGTGACCCTCTGGATGGTC 59  
22 F: GAGGCTGAGATTGCACCACTG 59 765
 R: CCTTACCAGTCCTAACAAGAGGC 57  
23 F: AGTGCTACTGGGCTCAAGTGC 58 511
 R: GGGATAATGATGACACCCACC 57  
24-1 F: ACAGATTATGTTTGGAGGGGC 57 675
 R: TCACATCTTGTATCCCCATCAGTA 57  
24-2 F: TGTGCAACAGCAATGAAATTAAC 56 732
 R: TGCTCTTGGACTGACCAGTC 55  
24-3 F: TAGAGGGAGCAGAAAGGTCAACA 59 771
 R: TCATGCACACAGGTATGGCAA 60  
24-4 F: GTAAAGGAGCAGAAATGTAGTTACA 56 722
 R: AGGTCTACCCTTGTACTCCAGATAT 55  
24-5 F: TTAATTAATAAACGCACAGCCCTA 56 844
 R: GTACCTCTGATGCATTTAGGTGAC 56  
GLOPH3
1 F: TAATTAACTCCCGCGCCGA 60 776
 R: GGGGAGGATCCAGAAAGCA 59  
2 F: TGGGGTTAACTGAGTATTCCTTGG 59 814
 R: TATTGTCCTGTGACCCTGCCA 60  
3 F: GCTACTGAGTCTAGCCAATTTTCAT 56 637
 R: TACCACCACAGCTTAACCTAGCC 58  
4-1 F: GGTCTGGCTAGGCTTAAGGGG 60 613
 R: GAATGGTTCACCCCGAGCA 60  
4-2 F: AAGAGAGTGCGGCAGCTTCTC 60 734
 R: CCCATCCCAAACTGGCTCT 58  
4-3 F: GGCCTTCAACTCACCAAAGGTA 59 679
 R: TACATGCAACATCTGCTAGGACTG 58  
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unaffected (Figure 1). The study conformed to the guidelines
involving human research as stated in the Declaration of
Helsinki. Informed consent was obtained from every subject
after an explanation of the nature, procedures and possible
consequences of the study. This family was chosen based on
the presence of numerous male and female family members
and successful multiple generations with high myopia,
suggesting an autosomal dominant mode of inheritance.
Individuals with a spherical refractive error equal to or lower

than −6.00 D, axial length longer than 26 mm in at least one
eye and a history of myopia onset before 12 years of age were
considered affected. Ophthalmology examination was
performed for all of the members. No participant had any
known ocular disease or insult that could predispose to
myopia, such as a history of retinopathy of premature or
neonatal problems, or a known genetic disease or connective
tissue disorder associated with myopia, such as Stickler or

TABLE 2. CONTINUED.

Exon Primer Sequence (F,R)
Melting Temperature

(°C)
Product Size

(bp)
4-4 F: GGCTTGTGACCAGTACCAATCT 57 578
 R: AAACACAAATGACATGCTTGCTC 58  
ZFR
1 and 2 F: TTAAGGAGCCGCGAAGACG 60 664
 R: TTCGTCGCATCGACAGGAT 59  
3 F: GACCTTTTGTGGTCCGTCATT 57 578
 R: GGTATGTCCCAAACTACCAAGG 56  
4 F: GCCAGGATGGTCTTTATCTGCT 58 664
 R: CAGCTTATTTCAGCAGGAATGG 58  
5 F: GGAGAAATTGCTGGCATAAAAT 56 603
 R: CTAAGCCCAAGACTCATAATGAGC 57  
6 F: AAGGTTCTTCAAGGCAGGGAC 58 667
 R: CCCTGAAAATTCTCATGCCAC 58  
7 F: CGGGCGATACAGAGAACCATAG 59 568
 R: GACAGGTCTCCAGTCTTTCCCTC 59  
8 F: GAGGGAAAGACTGGAGACCTGTC 59 893
 R: AGGGTCTTTGTGTGTGCAGATC 58  
9 F: GATGAGGAGGGTGTTGGGTG 59 675
 R: TGCACACCACAGTGGCAATAC 59  
10 F: GAGGTTGTAGTGAGCTGAGTTCAA 56 486
 R: AACCAAACATCCATCTGAGTCTAC 55  
11 F: TACATGTAGATTGTTTTGGGGC 55 492
 R: TTGTTTGAAACCGAGGCACT 57  
12 F: TGGGAAGAAATTTTAGCTAGGCTG 59 516
 R: AAGCTGAGGCAGGAGAATTGCT 60  
13 F: GGTGTACATGCATGCATGCAT 59 569
 R: TGCAAGCAGCTGCAGAATACAT 60  
14 F: GATGGAAATTTTAATGGCACAAA 57 573
 R: TCCTAACAACTGCCTTCTTATGAT 55  
15 F: AATAATACTGGCATGTACGGCAG 57 406
 R: ATGCCAGCATGTTGCCTTCTA 59  
16 F: GGCTCATGTGACACTGATGCTAC 58 366
 R: GCAATATGCAGATCATCATACCC 57  
17 F: CTGAGCTTCCATTGAACGGTG 59 335
 R: CCCAGGATTTTTCATCAGAAAAG 58  
18 and 19 F: GATTACAGACGTGAGCCACTGTG 58 666
 R: TCTAGGGGCTTGCTTACTACAGA 56  
20-1 F: TAGGTTGCATTTGGAGGGAGG 60 774
 R: CAAACTCTGCAGTCTCACGTTACA 58  
20-2 F: CGAGATGGTATCCTTTACCCC 56 570
 R:CACACCAATAAGGAACTGTCACC 57  
20-3 F: CTTGTGTATAAGTGGAAAGGGCA 57 594
 R: GGCCGTGCTTAGACAACAAAC 58  

          Forward and reverse primers designed for CDH6, CDH10, CDH12, PDZD2, GLOPH3, and ZFR for mutation screening.
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Marfan syndrome. The results of the ophthalmic examinations
are summarized in Table 1.
Genotyping and linkage analysis: Genomic DNA was isolated
from peripheral blood leucocytes by the standard proteinase
K digestion and phenol-chloroform extraction. The genome-
wide screen was conducted on ABI 3700 sequencer by using
PRISM Linkage Mapping Set MD-10 (Applied Biosystems,
Inc., Foster City, CA) that have 382 highly polymorphic
fluorescent markers with an average spacing of 10 cM. The
markers were amplified by polymerase chain reaction (PCR)
under the following conditions: 50 ng genomic DNA, 2 pmol
each primer, 0.2 μl dNTP (10 mM each), 1 μl 10× buffer,
0.6 μl MgCl2 (25 mM) and 0.4 U HotStar Taq DNA
polymerase (Qiagen, Santa Clarita, CA) in a final volume of
10 μl. Six to eight primer pairs were multiplexed in the
amplification reaction. Samples were incubated in a PTC-225
DNA Engine Tetrad (MJ Research, Waltham, MA) for 15 min
at 95 °C to predenature, followed by 35 cycles of 30 s at 94 °C,
40 s at 55 °C, 40 s at 72 °C, and a final extension at 72 °C for
10 min. Amplification products were appropriately pooled
into prescribed panels, diluted, and denatured for 5 min at
95 °C, then incubated on ice for 2 min. Subsequently, the
products were run in an automated DNA sequencer (ABI
Prism 3700; Applied Biosystems).

Data were analyzed using GeneScan 3.7NT and
Genotyper 3.7NT software (Perkin Elmer, Foster City, CA).
Two-point LOD scores were calculated using the MLINK
program from the Linkage software package (version 5.2). For
fine mapping, additional microsatellite markers spanning the
chromosome 5p region were selected from the genetic map of
the Marshfield Center for Medical Genetics (Marshfield, WI).
The myopia in the family was analyzed as an autosomal
dominant trait with 90% penetrance and with a disease-gene
allele frequency of 0.01. Recombination frequencies were
assumed to be equal between males and females. Haplotype
analysis was performed with Cyrillic software (version 2.0)
and confirmed by inspection.
Positional candidate gene mutation screening: The identified
genes located in the linkage region were proposed as candidate
genes on the basis of their functional information. Mutations
of these genes were screened by direct sequencing. Using the
soft Primer Express 2.0 (Perkin Elmer), primers were
designed to amplify each exon including exon-intron
boundaries regions of the candidate genes from genomic DNA
(the sequences of all primers used in this study are
summarized in Table 2). Screening for mutations was initially
performed in two affected and two unaffected individuals. The
PCRs were performed using Taq DNA polymerase and the
products were sequenced directly with a dye-terminator cycle-
sequencing system by ABI Prism 3700 DNA sequencer after
purified by exonuclease I (Epicenter, Madison, WI) and
shrimp alkaline phosphatase (USB, Cleveland, OH). The
resulting sequences were compared with the corresponding

wild-type sequences using Autoassembler software (version
2.0; Perkin Elmer). When a sequence variant was detected,
the exon was amplified from the genomic DNA extracted from
the other individuals to determine whether the base variant
was specific to the patients. The NCBI SNP database was also
referenced to determine whether the sequence variant was a
polymorphism.

RESULTS
A large, multigenerational, Chinese family with autosomal
dominant high myopia was recruited and characterized
(Figure 1). DNA was extracted from 29 blood samples of the
family members (10 affected). The average age at diagnosis
of myopia in the affected individuals was 6.9 years (range, 4
to 11 years). The average spherical component refractive error
for the affected individuals was −11.59±5.26 D (range, −6.5
to −26 D). The mean axial lengths were 29.17±1.50 mm
(range, 26.80 mm to 31.42 mm) and 23.59±1.04 mm (range,
22.03 mm to 25.72mm) for highly myopic and non-highly
myopic subjects, respectively. Individual III:7 had the highest
refractive error of −24.00 D for the right eye and −26.00 D for
the left eye (Table 1).

Ophthalmological examination excluded known ocular
diseases associated with myopia, including keratoconus,
spherophakia, ectopia lentis, retinal dystrophy, and optic
atrophy. Males and females in this family were equally
affected.

All known syndromic myopia loci were excluded in this
family. The LOD scores at θ=0.00 were as follows: D15S117
(Marfan syndrome), −2.43; D1S218 (juvenile glaucoma),
−2.5; D12S85 (Stickler syndrome type 1), −6.44; D1S206
(Stickler syndrome type 2), −10.77; and D6S276 (Stickler
syndrome type 3), −4.15. Linkage to all of the known loci for
non-syndromic autosomal dominant high myopia showed no
statistically significant or suggestive evidence of linkage in
this family (data not shown). Through subsequent genome-
wide screening, a two-point LOD score of 3.02 (θ=0.00) was
initially obtained with the microsatellite marker D5S419,
suggesting that the causative locus for the family with high
myopia was mapped to a region adjacent to D5S419 on
chromosome 5. For fine mapping, an additional 13 closely
flanking microsatellite markers were tested, and the linkage
analysis resulted in a significant LOD score at 5p13.3-p15.1.
Seven microsatellite markers displayed positive LOD scores,
with D5S502 having the highest LOD score, 3.71 at θ=0.00
(Table 3).

Haplotype analysis of the affected individuals revealed
recombination events that narrowed the region containing the
gene, as shown in Figure 1. Through haplotype analysis, it was
discovered that in addition to the ten affected individuals, two
unaffected siblings (III:15 and III:19) also inherited the
putative disease allele. At the time of examination, III:15 and
III:19 were 41 and 58 years of age, respectively, and it was
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not likely that they would develop high myopia. Interestingly,
III:15 had only read for 5 years in primary school and III:19
had never attended school: both of them had spent less time
reading.

The critical region was found to be between the markers
D5S2096 and D5S1986. A telomeric recombinant event
occurred between markers D5S2096 and D5S2074 in the
affected individual III:17, which defined the distal limit of the
region to marker D5S2096. Affected individual IV:9
displayed evidence of a centromeric recombinant event
between markers D5S1986 and D5S1470. Another
centromeric recombination event was observed between
markers D5S819 and D5S1986 in two affected individuals,
III:7 and III:11. These defined the proximal limit of the region
to marker D5S1986. Ultimately, we mapped high myopia to
a locus on chromosome 5p13.3-p15.1, covering an
approximately 11.69 cM (14.14 Mb) region between
D5S2096 and D5S1986.

Within the linkage region, the six genes cadherin 6, type
II (CDH6), cadherin 10, type II (CDH10), cadherin 12, type
II (CDH12), PDZ domain-containing protein 2 (PDZD2),
Golgi phosphoprotein 3 (GOLPH3), zinc finger RNA binding

protein (ZFR) were selected as candidate genes on the basis
of their function: cell adhesion, intracellular signal
transduction, protein trafficking, and DNA/RNA binding
activities, which we thought were the functions most likely to
be associated with myopia. A description of these genes was
provided in Table 4. However, mutation analysis did not
reveal any disease-causing mutation.

DISCUSSION
In this study, a locus for autosomal dominant high myopia in
a large Chinese family was identified. Genome screening and
linkage analysis located a critical region for high myopia on
chromosome 5p13.3-p15.1 between D5S2096 and D5S1986,
within an 11.69 cM interval. Linkage to the candidate gene
regions for the Stickler syndromes, Marfan syndrome, and
juvenile glaucoma was excluded, ensuring that this family did
not exhibit a mild phenotypic expression of these conditions.
Similarly, linkage was excluded from known autosomal
myopia loci. This study has provided additional evidence for
the genetic heterogeneity of autosomal dominant high
myopia.

TABLE 3. TWO-POINT LINKAGE ANALYSIS BETWEEN HIGH MYOPIA AND MARKERS ON CHROMOSOME 5P13.3-P15.1.

   LOD score at θ=  

Marker Marshfield
map (cM)

Physical Map
(Mb)

0.00 0.01 0.05 0.10 0.20 0.30 0.40 Zmax θmax

D5S416 28.76 16.74 −2.58 −1.72 −0.72 −0.17 0.27 0.33 0.21 0.33 0.30
D5S486 31.78 17.20 −3.60 −1.91 −0.61 0.00 0.44 0.46 0.28 0.46 0.30

D5S2096 33.04 17.47 −1.33 −1.13 −0.59 −0.22 0.10 0.14 0.05 0.14 0.30
D5S2074 36.25 21.15 2.00 2.02 2.01 1.92 1.57 1.07 0.46 2.02 0.01
D5S813 37.32 23.48 2.86 2.81 2.60 2.35 1.83 1.22 0.53 2.86 0.00
D5S502 39.46 25.57 3.71 3.67 3.48 3.20 2.53 1.73 0.80 3.71 0.00
D5S419 39.99 26.54 3.02 2.99 2.84 2.61 2.05 1.37 0.60 3.02 0.00
D5S385 39.99 27.34 1.92 1.87 1.68 1.45 0.99 0.52 0.12 1.92 0.00

D5S2061 41.06 29.86 1.69 1.66 1.52 1.34 0.99 0.58 0.21 1.69 0.00
D5S819 41.06 30.75 2.23 2.22 2.05 1.83 1.36 0.86 0.37 2.23 0.00

D5S1986 44.73 31.61 −5.03 −1.53 −0.14 0.36 0.61 0.50 0.25 0.61 0.20
D5S1470 45.34 32.37 −1.41 −0.83 0.27 0.66 0.80 0.62 0.29 0.80 0.20
D5S674 47.09 33.42 −3.43 −1.77 −0.99 −0.60 −0.18 0.01 0.07 0.07 0.40
D5S426 51.99 34.64 −6.00 −5.06 −3.16 −1.99 −0.82 −0.28 −0.04 −0.04 0.40

        Fine mapping demonstrated strong evidence of a suggestive linkage for a locus between D5S2096 and D5S1986 on chromosome
        5p13.3-p15.1. LOD scores were generated using a dominant mode of inheritance with 90% penetrance and with a disease-gene
        allele frequency of 0.01.

TABLE 4. DESCRIPTION OF CANDIDATE GENES LOCATED IN THE LINKAGE INTERVAL OF 5P13.3-P15.1.

Symbol Full name Function Cellular component
CDH6 Cadherin 6, type II (K- cadherin) Cell adhesion, development, neuron adhesion Cytoplasm

CDH10 Cadherin 10, type II (T2-cadherin) Cell adhesion, development, neuron adhesion Cytoplasm
CDH12 Cadherin 12, type II (Br- cadherin) Cell adhesion, development, neuron adhesion Cytoplasm
PDZD2 PDZ domain-containing protein 2 Intracellular signal transduction, Control plasticity of

synapses
Cytoplasm

GOLPH3 Golgi phosphoprotein 3 Regulate protein trafficking Cytoplasm
ZFR Zinc finger RNA binding protein DNA and RNA binding, DNA repairing activity Nucleus; Cytoplasm
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Myopia is thought to be multifactorial, caused by a
variety of environmental and genetic factors as well as their
interactions. Compared to the remarkable progress in
identifying the genes for retinal degeneration, genes causing
non-syndromic myopia (common or high) have proven
difficult to identify. The likely explanation for this difficulty
is that the gene-environment interplay affects even Mendelian
patterns of myopia [1,12,13]. The underlying pattern of
genetic and/or environmental factors in myopic subjects is
highly variable and incomplete penetrance is common in high
myopia, as reported in other high myopia families [26,32]. It
was noted that all patients with high myopia in this family
carried the putative disease haplotype; but two individuals,
III:15 and III:19, both of whom inherited the putative disease
allele from their mother, did not have high myopia. At the time
of examination, III:15 and III:19 were 41 and 58 years of age,
respectively, and it was not likely that they would develop
high myopia. Interestingly, III:15 had only read for 5 years in
primary school and III:19 had never entered school, so these
two siblings had spent less time reading. These suggested that
the variability in the phenotype might be mostly attributable

to the interplay of genetic and environmental factors, leading
to incomplete penetrance of the disease.

Six candidate genes CDH6, CDH10, CDH12, PDZD2,
GOLPH3, and ZFR at this high myopia locus were selected
on the basis of their function to screen for gene mutations by
re-sequencing. The classical cadherins mediate homophilic
cell–cell adhesion and are key regulators of many
morphogenetic processes [33].

Loss-of-function studies demonstrate that the classical
cadherins play a crucial role in vertebrate retinogenesis. They
have multiple morphoregulatory functions in retinal
proliferation, migration, differentiation, and layer formation,
as well as axonal outgrowth, pathfinding, target recognition,
and synaptogenesis [34,35]. CDH6 regulates the
differentiation of retinal ganglion cells, amacrine cells, and
photoreceptors in Zebrafish [36]. CDH10 and CDH12 were
detected in the mouse eye during the first postnatal week when
several developmental processes, such as cell migration and
formation of synaptic connections, occur simultaneously
[37]. PDZD2 is a ubiquitously expressed multi-PDZ-domain
protein [38]. PDZ domain scaffolds have been shown by
genetic, electrophysiological, and morphological studies to be

Figure 2. The position relationship
between the locus and MYP16
(5p15.33–15.2) on the short arm of
chromosome 5. The upper three markers
were identified in MYP16 locus
5p15.33–15.2: D5S2505 was the marker
with the peak two-point LOD score
4.81. D5S1987 was the marker close to
centromeric with positive LOD score
while D5S817 was the next marker
displaying negative LOD score. The
lower three markers were identified in
the present study (bold text): D5S502
was the marker with the highest two-
point LOD score 3.71. D5S2074 was the
first telomeric marker having positive
LOD score. The physical distance
between D5S2505 and D5S502 was
approximately 19.7Mb and the physical
distance between D5S1987 and
D5S2074 was 9.71Mb. In addition, the
physical distance of the nearest two
markers displaying negative linkage to
high myopia in these two studies
(D5S817 and D5S2096) was 5.83Mb.
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essential for controlling the structure, strength, and plasticity
of synapses, which may play a role in the process of vision
formation [39]. GOLPH3 is a peripheral membrane protein of
the Golgi stack. It is required for trafficking from the Golgi to
the plasma membrane and for the normal extended Golgi
ribbon. Depletion of GOLPH3 alters the Golgi ribbon,
changing its normal appearance of extending partially around
the nucleus, to condensing at one end of the nucleus [40].
ZFR contains three widely spaced zinc finger domains. Zinc
finger proteins with a similar pattern of zinc finger motifs are
known to bind RNA, DNA, and DNA/RNA hybrids [41].
ZFR can be involved in DNA repair and chromosome
organization [42]. Analyses of ZFR knockout mice indicate
that ZFR is essential for at least some developmental
pathways, as embryonic death occurs at 8–9 days gestation in
these mice. In homozygotes, genetic ablation of ZFR causes
increased embryonic cell death and/or decreased cell
proliferation rates [43]. In the current study, PCR and
sequencing primers were synthesized for the exons and
peripheral intron regions of these candidate genes, and direct
sequencing analysis was performed. However, no disease
mutation was identified.

A previous study revealed an autosomal dominant high
myopia locus mapped to chromosome 5p15.33-p15.2 with an
interval of 17.45 cM between D5S1970 and D5S1987 in three
Chinese pedigrees originating from Hong Kong (HK) [27]. In
our study, the locus for high myopia of the pedigree was
mapped to the critical region between D5S2096 and D5S1986
on chromosome 5p13.3-p15.1. The physical distance of the
two markers yielding the peak two-point LOD score
(D5S2505 in HK families and D5S502 in Zhejiang family) is
approximately 19.7 Mb. The physical distance of the nearest
two markers displaying a strong linkage to high myopia in
these two studies (D5S1987 and D5S2074) was 9.71 Mb.
However, the linkage regions with high myopia on the short
arm of chromosome 5 identified in these two studies did not
show any overlap (Figure 2). The fact that the two causative
loci identified in these Chinese families with inherited high
myopia did not overlap, but were adjacent, suggested that
there may be disease gene(s) for high myopia on the short arm
of chromosome 5 in the Chinese population. Although no
mutation has yet been identified for the putative candidate
genes, a more refined mutation screen is needed to identify
the causative gene(s).

In summary, we have mapped a genetic locus for
autosomal dominant high myopia in a large Chinese family.
Myopia is the most common eye disease. Identification of the
mutant gene(s) for myopia potentially would advance the
understanding of the causes of this common eye disorder, and
may thus lead to methods for preventing or slowing its
progression.
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