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Abstract. Two recently identified collagen molecules, 
termed twelve-like A and twelve-like B (TL-A and 
TL-B) have properties similar to type XII collagen. 
These molecules have been localized in human and 
calf tissues by immunoelectron microscopy. The obser- 
vations strongly suggest that both molecules are located 
along the surface of banded collagen fibers. The epi- 
topes recognized by the antibodies are contained in 
large, nontriple-helical domains at one end of the col- 
lagen helix. The epitopes are visualized at a distance 
from the surface of the banded fibers roughly equal to 
the length of the nonhelical domains, suggesting that 
the nonhelical domains extend from the fibril, while 
the triple-helical domains are likely to bind directly to 
the fibril surface. Occasionally, both TL-A and TL-B 

demonstrate periodic distribution along the fibril sur- 
face. The period corresponds to the primary interband 
distance of the banded fibrils. Not all fibrils in a fiber 
bundle are labeled, nor is the labeling continuous along 
the length of labeled fibrils. Simultaneous labeling of 
TL-A and type VI collagen only rarely shows colocali- 
zation, suggesting that TL-A and TL-B do not mediate 
interactions between the type VI collagen beaded fila- 
ments and banded collagen fibrils. Also, interfibrillar 
distances are approximately equivalent in the presence 
and absence of these type XII-like molecules. While the 
results do not directly indicate a specific function for 
these molecules, the localization at the fibril surface 
suggests that they mediate interactions between the fi- 
brils and other matrix macromolecules or with cells. 

T 
HE Structure of the banded collagen fiber has been 
found to be far more complicated than previously 
recognized. When the multiplicity of collagen types 

was first recognized, it was generally believed that each of 
the collagens formed separate structures. This concept was 
supported by in vitro fibrillogenesis studies that indicated 
that fibers could be independently reconstituted from type I, 
II, or HI collagen molecules that demonstrated the major fea- 
tures of the in vivo fiber. It is now believed that most, if not 
all, fibers contain two or more collagen types. The fibers of 
chick cornea have been shown to contain types I and V col- 
lagens, where the type V is present in the fibril interior but 
is not found on the fibril surface (Birk et al., 1988). In car- 
tilage, type XI collagen is located in the interior of the 
banded fibers (Mender et al., 1989). In human skin, tendon, 
and ligament, and in other tissues as well, type HI colla- 
gen is present in all fibers, regardless of the fiber diameter 
(Keene et al., 1987). Recently, it has been suggested that 
type III collagen is present predominantly on the surface of 
the fiber in skin (Fleischmajer et al., 1990). The isolated 
triple-helical domains of these banded fiber-forming colla- 
gens are capable of self assembly into the quarter-staggered 
array characteristic of collagen fibers. This ability is con- 
ferred by the uniform length and uninterrupted Gly-X-Y trip- 
let repeat common to the triple-helix of all these molecules 
(Kuhn, 1987). 

Previous work has demonstrated that type IX collagen is 
present on the cartilage fiber surface (Vaughan et al., 1988). 
However, the structure of type IX collagen differs signifi- 
cantly from the typical fiber-forming collagens. The triple 
helical domain of type IX is only ,x,60 % the length of the 
analogous type I collagen domain. Furthermore, this short 
domain is discontinuous: the triple helix is divided into three 
regions (COL1, COL2, and COL3) by two nonhelix-forming 
sequences (NC2 and NC3). A chain of chondroitin sulfate 
of variable length is attached to ot2(IX) chain at the NC3 do- 
main (Vaughan et al., 1985). The al(IX) chain is consider- 
ably longer than either the ot2(IX) or ct3(IX) and forms a 
globular domain (NC4) at the NH2-terminus of the mole- 
cule that appears as a globule by rotary shadowing imaging 
(Muller-Glausner et al., 1986; Vaughan et al., 1988). Type 
IX collagen appears to adhere to the banded cartilage fibril 
by interactions of the COL1 and COL2 domains with the sur- 
face of the fibril. This interaction is stabilized by a crosslink 
between the COL2 domain and type II in the fibril (Eyre et 
al., 1987; van der Rest and Mayne, 1988; Shimokomaki 
et al., 1990). 

Recently, type XII collagen has been identified (Gordon et 
al., 1987; Dublet and van der Rest, 1987). This molecule is 
composed of three identical chains that form a molecule with 
five subdomains (Dublet et al., 1989; Gordon et al., 1989). 
The triple-helical domain is only one-quarter that of type I 
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collagen and is divided into two distinct regions (COL1 and 
COL2) by a nonhelical interruption (NC2). Another small 
nonhelical domain, NC-1, is present at the COOH-terminus 
of COL1. The large NH2-terminal NC3 region of each 
chain forms an independent domain that by rotary shadowing 
appears as three thickened arms, each ,x,60 nm in length. 
The COL1 region of chick type XII is 50 % identical in amino 
acid and nucleotide sequence to chick or(IX) COL1 (Gordon 
et al., 1989). The COL2 domains of or(IX) and (xl(XII) are 
dissimilar, however, a portion of the od(XII) NC3 domain 
shares 46% nucleotide identity with the NC4 domain of 
od(IX). The type IX NC3 domain that contains the chondroi- 
tin sulfate attachment site and the site of crosslinking to the 
banded cartilage fibril does not exist in type XII collagen. 
The striking homologies between regions of type IX and type 
XII have led to the speculation that, like type IX, type XII 
binds to the banded fibril surface through the COL1 domain, 
but does not become crosslinked to the fibril (Gordon et al., 
1990). An mAb directed against a synthetic peptide pre- 
dicted from sequences in the NC-1 domain indicates that 
chicken type XII is present in tendon, ligament, periostea, 
and perichondria, but not in cartilage and bone (Sugrue et 
al., 1989). A type XII collagen homologue has also been ob- 
served in bovine skin (Dublet and van der Rest, 1990). 

We have reported (Lunstrum et al., 1991) the identification 
of two collagen molecules, termed twelve-like A and twelve- 
like B (TL-A and TL-B), in bovine skin that share many 
characteristics with type XII molecule but have a broader tis- 
sue distribution than that reported for chicken type XII 
(Sugrue et al., 1989). In this study we examine the ultra- 
structural localization of these two molecules in several tis- 
sues. In all cases, both molecules appear to be located on the 
surface of the banded fibrils. 

Materials and Methods 

lected from an 80-y-old within 24 h after death. Fetal calf tissues, obtained 
within 30 h after death, included cornea and skin. 

En bloc immunolocalization of antigens was performed as previously de- 
scribed (Sakai et al., 1986) with some modification. Briefly, tissues were 
washed for '~2 h in PBS, pH 7.4 at 4"C, incubated in primary antibody 
diluted 1:5 in PBS overnight at 4"C, rinsed in several changes of PBS over 
'~6 h, incubated in 5- or 15-nm gold-conjugated secondary antibody (Jam- 
sen Life Sciences Products) diluted 1:3 in BSA (20 mM Tris-HCl, 0.9% 
NaCI, 1 mg/ml BSA, 20 mM NAN3), pH 8.0, overnight at 4"C, and then 
washed as above. Control antibodies included those recognizing type III 
(Keene et al., 1987), collagen type VI (Keene et al., 1988), and collagen 
type VII (Sakai et al., 1986). Tissues were then fixed in 1.5% gtutaralde- 
hyde, 1.5% paraformaldehyde followed by 1% OsO4, dehydrated in a 
graded series of ethanol dilutions, exposed to propylene oxide, and embed- 
deal in Spurts epoxy. Tissues immunolabeled with antibody directly con- 
jugated to gold particles were treated similarly, except that incubation in 
secondary gold conjugate was omitted. Some tissues were prefixed for 30 
min in ice-cold acetone (calf skin, 11 and 80 year human tendon) or in 0.1% 
glutaraldahyde, 0.1% paraformaldehyde (calf skin) and rinsed in buffer be- 
fore incubation in primary antibody. Those tissues initially fixed in acetone 
were also dehydrated in acetone before embedding. One sample of im- 
munolabeled calf skin was not exposed to any solvent dehydrant during 
preparation, and was embedded in nanoplast water soluble resin (Bio-Rad 
Laboratories, Cambridge, MA). Cornea obtained from fetal calf was fixed 
in ice-cold acetone and immunolabeled and fixed as described above, except 
that the aldehyde was modified to contain 0.15% Ruthenium red and the 
wash buffer and OsO4 contained 0.04% Ruthenium red. A sample of 30 
week human fetal rib bone was obtained at autopsy and stirred in 0.2 M 
EDTA in 50 mM tris-HCI for several months at 4°C with several buffer 
changes. After decalcification, bone samples were rinsed in PBS and im- 
munolabeled en bloc without prefixation as described above. 

100 
U 

" 80 
0 

-~ 60 < 

E 40 -,m 

E 
X 
m 20 Antibody Production and Characterization 

mAbs to bovine TL-A and TL-B collagens have been previously described 
(Lanstrum et al., 1991). The CU antibody reacts with both bovine and hu- 
man TL-A collagen, while the 1011G antibody does not crossreact with hu- 
man TL-B collagen (data not shown). Hybridomas were grown in media 
containing 5% fetal bovine serum which had been depleted of endogenous 
IgG by affinity chromatography on protein G-Sepharose (Pharmacia LKB • 100 
Inc., Piscataway, N J). mAbs were then purified from clarified hybridoma ,-° 
media on protein G-Sepharose. Polycional antiserum to human TL-A, m .a 80 
pTL-A, was raised in rabbits to an electrophoretic gel band derived from 
WISH cell culture medium. The uppermost electrophoretic band described '~ 
by Lunstrum et al. (1986) in Fig. 1 A, lane 2 of that publication was excised ~ 60 
for antibody production as described there. Polyclonal antibodies were I:: 
purified from rabbit serum by chromatography on protein G-Sepharose. = 40 
Antibodies were tested for cross-reactivity by ELISA (see Fig. 1) as previ- .E 
ously described (Sakai et al., 1986). The rnAb 5C6, recognizing type VI x m 20 
collagen, has been previously described (Engvall et al., 1986). Direct gold "5 
conjugation of antibodies was performed using 15-nm colloidal gold accord- ~t 0 
ing to the manufacturer's instructions (Janssen Life Sciences Products, Pis- 
cataway, N J). 

Immunoelectron Microscopy 
Human tissue sources included neonate foreskin collected shortly after cir- 
cumcision, 30 wk fetal skin and femur collected within 8 h after death, ten- 
don collected from an 11-y-old individual during surgery, and tendon col- 

l. Abbreviations used in this paper: TL-A and TL-B, twelve-like A and B, 
respectively. 
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Figure 1. Compar ison of  antigen specificity for various antibodies. 
ELISA plates were coated with either TL-A (A) or TL-B (B),  
0.6 ng/well,  purified as descr ibed previously (Lunstrum et al. ,  
1991). Monoclonal  and polyclonal antibodies, 1 mg/ml,  were 
tested at the indicated dilutions, pTL-A (circles); CU (squares); 
1011G (triangles). 
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Figure 2. Localization of TL-A in calf skin and fetal human skin. (a) TL-A was localized to the region of banded collagen fibers (cf) 
in the papillary dermis using mAb CLI after acetone prefixation. Microfibrils (mr) are not labeled. (b) mAb ClJ against TL-A was localized 
to the surface of banded collagen fibers in human fetal skin using a 5-nm colloidal gold-conjugated second antibody. The gold appears 
to demonstrate a period of '~56 nm (arrows). Bars, 200 nm. 

For routine TEM examination, 60-90-rim thick sections were cut on a 
Reichert ultramicrotome using diamond knives and examined using a 
Philips 410 LS operated at 60 KV after contrasting in uranyl acetate and 
Reynolds lead citrate (Reynolds, 1963). For stereo pair microscopy, sec- 
tions were cut at 0.5 ~,rn and observed either with a Philips 410 LS operated 
at 100 KV or with the JEM 1000 located at the High Voltage Facility at 
the University of Colorado, operated at 1 MEV. Tilt angles for stereo pairs 
differed by 10 ° . 

Results 
We have described the partial characterization of two type 
XlI-like collagens, TL-A and TL-B, isolated from fetal bo- 
vine skin (Lunstrum et al., 1991). In previous work, in 
which we reported that type VII procollagen is synthesized 
by a human epithelium-derived cell line (Lunstrum et al., 

1986), twv additional high molecular weight (Mr > 350,000), 
collagenase-sensitive peptides were observed. Polyclonal 
antibodies (pTL-A) produced against the larger of these two 
peptides recognize bovine TL-A collagen. The pTL-A an- 
tisera and mAbs, CIJ and 1011(3, were tested for cross-reac- 
tivity using bovine TL-A and TL-B as substrates (Fig. 1). As 
shown, these antibodies are specific in their reaction with the 
large globular domain of TL-A or TL-B collagen. 

TL-A and TL-B collagens are easily extractable from fetal 
calf skin with 0.2 M NaC1 (Lunstrum et al., 1991), indicat- 
ing that neither molecule is covalently fixed in the matrix of 
the fetal calf. Similar results have been obtained for both 
molecules isolated from human tissues. Therefore, in order 
to localize these molecules, within tissues by immunoelec- 
tron microscopy, we felt it was important to perform these 
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Figure 3. Stereo-pair visualiza- 
tion of TL-A in human skin and 
tendon. (a) In unfixed human 
skin, TL-A appears to surround a 
portion of the banded fibers. The 
CIJ antibody was used, followed 
by a 5-rim gold-conjugated sec- 
ondary antibody. (b) TL-A, 
localized in human tendon from 
an l l-y-old individual after ace- 
tone fixation occasionally shows 
bridging of two fibers by TL-A 
collagen. The pTL-A antibody 
was used, followed by a 5-rim 
gold-conjugated secondary anti- 
body. (c) Simultaneous localiza- 
tion of polyclonai pTL-A (15 urn) 
and type VI collagen (5 nm) in 
acetone-prefixed human tendon 
from an 80-y-old individual. Al- 
though some colocalization is ob- 
served, most often the two colla- 
gens localize independently. Bar, 
200 nm. 

studies under a variety of fixation conditions. The stability 
of  the epitope to fixation was determined by immunofluo- 
rescent assay of prefixed tissues (data not shown). Of  the 
conditions tested, the epitope was stable after fixation with 

acetone and with 0.1% glutaraldehyde and 0.1% paraformal- 
dehyde. In all cases, by EM colloidal gold deposition di- 
rected by anti-TL-A collagen antibodies is seen closely asso- 
ciated with collagen fibrils as shown in Fig. 2 a,  after mild 

The Journal of Cell Biology, Volume 113, 1991 974 



Figure 4. Localization of TL-B in fetal calf skin. (a) mAb 1011G was used to localize TL-B at the junction of the papillary and reticular 
dermis in acetone-prefixed calf skin. As seen with TL-A, the 5-nm secondary antibody localizes to the surface of the banded collagen 
fibers. (b) TL-A and TL-B were simultaneously localized in calf skin after 0.1% glutaraldehyde, 0.1% paraformaldehyde prefixation using 
polyclonal PTL-A and mAb 1011G. The patterns shown by TL-A (15 rim) and TL-B (5 rim) are very similar, but the two collagens distribute 
independently along the fiber surface (/arge arrows indicate clusters of TL-A). Infrequently, mixed clusters of TL-A and TL-B are seen 
(circled), where the two antigens are not likely to have been bound to adjacent fibers. In some micrographs, a 56-nm periodic localization 
of TL-B is also detected (small arrowheads), as was observed for TL-A. Bar, 200 nm. 

acetone fixation. This association is independent of the meth- 
od of sample preparation, although labeling is less extensive 
in nonfixed tissues (not shown). Antibody-directed gold la- 
beling within the papillary dermis (Fig. 2 a) can be seen 
along collagen fibrils, but not along the nearby microfibrils. 
The gold deposits are not continuous along single fibrils. In 
the reticular dermis, TL-A labeling is far less frequent, and 
the gold often appears in larger clusters (not shown), but 
again, these clusters appear randomly distributed along the 
fibrils, and only a portion of the fibrils contained within the 
field are labeled. 

In fetal human skin (Fig. 2 b) the distribution of TL-A 
resembles that seen in calf. Infrequently, gold particles ap- 

pear to show a measured periodicity approximating 56 nm 
(arrows), very near the value of the D-period of the collagen 
fibril after preparation of EM using the cited procedures. 
When directly compared to the collagen interband distance 
in the micrographs, the period of the gold labeling is nearly 
identical to the collagen period. In many micrographs the 
gold appears to surround a given fibril in a helical pattern 
continuous along the fibrils for a considerable length. This 
is particularly apparent when the labeling is visualized by 
stereo pair analysis (Fig. 3 a). 

Like TL-A, in fetal calf skin TL-B also localizes along and 
between collagen fibrils (Fig. 4 a). In agreement with the im- 
munofluorescent localization results (Lunstrum et al., 1991), 
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sparse labeling was seen with TL-B in the papillary dermis 
(not shown), but labeling of the reticular dermis was exten- 
sive. Some periodicity of the gold deposits is occasionally 
seen along the fibrils (Fig. 4 b, solid arrowheads) as was ob- 
served with TL-A, again with a repeat distance near that of 
the collagen fibrillar D-period. These observations suggest 
that both TL-B and TL-A associate with the banded fibrils 
by a similar mechanism. At the interface of the papillary 
dermis and reticular dermis, TL-A and TL-B localize to the 
same fibril bundles. As seen in Fig. 4 b, TL-A and TL-B do 
not often appear in the same clusters, although the distribu- 
tion of both species along the fibrils is similar. Rarely, TL-A 
and TL-B localize to the same area (circled in Fig. 4 b). 

The distribution of TL-A in human tendon parallels its lo- 
cation in skin. Antibody-directed gold is closely associated 
with the fibril surface, even in regions where considerable 
separation between fibrils is evident (not shown). In some 
micrographs, gold clusters appear to span two separated 
fibrils (Fig. 3 b). Neither TL-B nor TL-A appear to form a 
fibril system entirely independent from the banded fibrils. 

The distribution of TL-A and TL-B in skin and in tendon 
suggest that they may provide an interaction interface be- 
tween banded fibrils and type VI collagen filaments. How- 
ever, double-labeling studies (Fig. 3 c; TL-A = 15 nm; type 
VI = 5 nm) do not support this hypothesis. While in some 
cases TL-A is present near where a type VI filament ap- 
proaches a banded fibril, more often it is absent, or may also 
be present along the banded fibril in the absence of type VI 
filaments. 

Unlike chicken type XII collagen, TL-A and TL-B are 
present in cartilage and bone as well as periosteum and 
perichondreum (Lunstrum et al., 1991). The location of 
TL-A in periosteum (not shown) is identical to that observed 
in tendon and in skin. In bone, the label shows the same dis- 
tribution along the fibrils (not shown), but is much less abun- 
dant than seen in other tissues. The relative paucity of TL-A 
in bone is likely to be a function of the need to decalcify this 
tissue before ultrastructural examination. We have previ- 
ously reported that the type VI and fibrillin networks in bone 
appear to be disrupted by the extensive decalcification in 
EDTA (Keene et al., 1991). Because of the solubility of 
TL-A, it is likely that only a part of the TL-A initially present 
in bone remains after decalcification. In cornea TL-A label- 
ing is similar to that seen in other tissues (not shown). The 
addition of Ruthenium red to the preparatory procedure does 
not reveal a significant change in the appearance of the im- 
muno-complex as compared to samples not treated with 
Ruthenium red, suggesting that the immunolabeled sites are 
not particularly rich in glycosaminoglycans. 

In the micrographs presented thus far, antibody-directed 
gold is sometimes visualized at variable distances from the 
banded collagen fibers. To better assess the distance of the 

epitopes from the fibril surface, 15 nm gold particles were 
directly conjugated to monoclonal anti-TL-A antibodies and 
utilized for electron microscopic localization (Fig. 5, a-c). 
These results show the same general distribution as seen be- 
fore using a secondary antibody conjugate, but the gold par- 
ticles are now very close to the fibril surface. This observa- 
tion is consistent with the proposed association of the 
triple-helical domain of TL-A being associated with the fibril 
surface and the arms, which are •50 nm in length (Lun- 
strum et al., 1991), projecting into the interfibrillar spaces. 

After en bloc immunolabeling, if tissues are embedded in 
water-soluble media without exposure to solvent dehydra- 
tion, it is our impression that although the general staining 
pattern remains unchanged from that described above, the 
gold particles seem more tightly packed within clusters as- 
sociated with fibrils (Fig. 5 d). The periodicity of collagen 
fibrils is also greater after embedding by this technique, indi- 
cating less tissue shrinkage. 

D i s c u s s i o n  

Readily solubilized antigens are problematic for localization 
studies such as those reported here. In an attempt to circum- 
vent the potential problem of antigen rearrangement or 
precipitation during processing, we have examined the local- 
ization patterns under a variety of mild fixation conditions. 
In each case, the localization pattern observed is invariant, 
although labeling is less intense under conditions lacking a 
fixative. We cannot exclude the possibility that bivalent anti- 
body causes some unknown degree of clustering of the long 
nonhelical arms of TL-A and TL-B. Immunoblotting studies 
indicate that these arms contain the epitopes localized in 
these studies. 

The simplest interpretation of the localization results is 
that both TL-A and TL-B associate with the surface of the 
banded collagen fibers. In tissue regions where the fibrils ap- 
pear well separated, the label remains within 50 nm of the 
fibrils using directly conjugated primary antibody, and does 
not appear as an independent network between fibrils as has 
been shown for type VI collagen. This result might be 
predicted if clusters of TL-A or TL-B were present between 
fibrils or surrounding fibril bundles and were precipitated 
upon the fibrils by dehydration. However, two observations 
argue against this possibility. First, if TL-A and TL-B were 
randomly precipitated upon fibrous tissue elements, then 
one would predict that localization upon elastic microfibrils 
or type VI microfilaments would be observed, at least when 
they are adjacent to labeled banded fibril bundles, and this 
is not the case. Secondly, a periodic labeling of both TL-A 
and TL-B is occasionally seen along the fibrils that closely 
approximates the collagen D-period. This strongly suggests 
that there is a specific association of TL-A and TL-B with 

Figure 5. En bloc localization of TL-A using monoclonal anti-TL-A directly conjugated with 15-rim colloidal gold, or with secondary gold 
conjugates in tissues embedded in water soluble embedding media. The direct conjugate was used for TL-A localization in calf skin within 
the papillary (a) and reticular dermis (b and c). The gold particles lie closer to the banded fiber surface than when a secondary antibody 
was employed. All samples were acetone prefixed before localization. (d) Unfixed calf skin was immunolabeled en bloc with polyclonal 
pTL-A antibody followed by 5-nm secondary gold conjugate, and then embedded in Nanoplast water soluble resin without exposure to 
solvent dehydration. The pattern of antibody-directed gold label is generally the same as that following solvent dehydration, although 
clusters of gold label are more tightly packed. Bar, 200 nm. 
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the fibril surface at least in some instances. The suggested 
direct association of TL-A and TL-B with the fibril surface 
is also consistent with the striking structural similarity of 
TL-B and TL-A to type XII collagen (Lunstrum et al., 1991). 
Type XII has been shown to contain a portion of the triple- 
helical domain homologous to the region of type IX collagen 
which lies along the surface of cartilage banded collagen 
fibrils. Therefore, the results reported here are consistent 
with the published hypothesis that collagenous molecules 
with the structural characteristics of type IX and type XII, 
which are shared by TL-A and TL-B, associate with the sur- 
face of banded collagen fibrils through the triple-helical do- 
main, and the nontriple-helicai arms occupy the interfibrillar 
space (Olsen, 1989). The results also suggest that the COL1 
domains of both type XII collagen and of TL-A and TL-B 
are sufficient to allow attachment of these collagen to banded 
fibers, since type XII lacks a region equivalent to the COL2 
region of type IX. 

In some fields (for example, Fig. 3 a), TL-A shows a heli- 
cal distribution around the collagen fibrils, suggesting an as- 
sociation of the nonhelical arms of the molecules. These in- 
teractions could be direct associations of the nonhelical arms 
of these molecules, or could be mediated by an unidentified 
ligand. In some cases, the molecules appear to bridge adja- 
cent fibrils (for example, Fig. 3 b). These results suggest that 
the interactions of the nonhelical arms may in some cases su- 
persede the interactions of the triple-helical portion of the 
molecules with the fibril surface, forming a network some- 
what independent of the direct interactions with the fibrils. 
While both types of interactions are observed, arrays entwin- 
ing the fibrils or bridging them are relatively rare observa- 
tions. 

The functions of TL-A and TL-B are not obvious from 
these localization studies. It would be reasonable to predict 
that a fibril-associated molecule might either cross-link and 
separate collagen fibrils, thus, determining or maintaining 
interfibrillar distances. This function appears unlikely in the 
case of TL-A or TL-B, since one would predict they should 
be present uniformly along all or most fibrils. Such mole- 
cules might also be predicted to secure the collagen fibril to 
the elastic network or the type VI collagen network. While 
interactions of TL-A and TL-B with type VI collagen are not 
excluded by these studies, there is neither obvious coinci- 
dence of TL-A with type VI where it directly contacts the 
banded fibrils, nor concentration of TL-A or TL-B between 
the banded fibril bundles and the elastic fibers. Although not 
obvious in the micrographs included in this report, it is our 
definite impression that both TL-A and TL-B are more con- 
centrated on the fibril bundles near cells. By en bloc technol- 
ogy, intense labeling of intracellular compartments contain- 
ing electron-dense contents is often observed where cells 
have ruptured during processing. Together with the apparent 
lack of covalent attachment of TL-A and TL-B to the fibrils, 
this observation suggests that these molecules may in some 
way be involved with the interaction of cells with the fibrils. 
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