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Microbial growth and division are fundamental processes relevant
to many areas of life science. Of particular interest are homeostasis
mechanisms, which buffer growth and division from accumulating
fluctuations over multiple cycles. These mechanisms operate within
single cells, possibly extending over several division cycles. However,
all experimental studies to date have relied onmeasurements pooled
from many distinct cells. Here, we disentangle long-term measured
traces of individual cells from one another, revealing subtle
differences between temporal and pooled statistics. By analyzing
correlations along up to hundreds of generations, we find that the
parameter describing effective cell size homeostasis strength varies
significantly among cells. At the same time, we find an invariant cell
size, which acts as an attractor to all individual traces, albeit with
different effective attractive forces. Despite the common attractor,
each cell maintains a distinct average size over its finite lifetime
with suppressed temporal fluctuations around it, and equilibration
to the global average size is surprisingly slow (>150 cell cycles). To
show a possible source of variable homeostasis strength, we con-
struct a mathematical model relying on intracellular interactions,
which integrates measured properties of cell size with those of
highly expressed proteins. Effective homeostasis strength is then
influenced by interactions and by noise levels and generally varies
among cells. A predictable and measurable consequence of variable
homeostasis strength appears as distinct oscillatory patterns in cell
size and protein content over many generations. We discuss impli-
cations of our results to understanding mechanisms controlling di-
vision in single cells and their characteristic timescales.
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The processes of growth and division in proliferating cells have
been of interest for decades, with microorganisms providing

model systems for both experimental and theoretical studies.
Recently, with the development of experimental methods (1),
new light was shed on this problem. Large samples of cells can be
continuously tracked as they grow and divide for multiple cycles
at high spatial and temporal resolution. Such measurements
provide ample new information about these processes. As an
important quantitative result of single-cell tracking, it was shown
that individual yeast cells (2) as well as different bacterial cells
(3–6) grow exponentially in time to a good approximation be-
tween consecutive divisions. This result sharpens the problem
of cell size homeostasis, since successive cycles of exponential
growth and division can be unstable to fluctuations (7–11).
Negative correlations can, in principle, prevent the instability
and divergence caused by independent fluctuations. Indeed, us-
ing large samples of growth and division cycles pooled from
single-cell measurements, a negative correlation was found be-
tween the size change over the cell cycle and the initial size (i.e.,
cell size at the start of the cell cycle) (12–17). The observed
correlations, if interpreted as regulation of cell division, rule out
two previously studied models of division control, namely a
constant fold change over the cell cycle and a fixed size threshold
for division. However, despite these new data and insights, a

clear mechanism linking cell size to division has not yet been
identified (18).
From a theoretical modeling perspective, the experimentally

observed correlations provide the basis for a phenomenological
approach without reference to any specific underlying mecha-
nism (7, 8, 19–21). Such an approach can be formulated math-
ematically in several essentially equivalent ways (20), all of which
incorporate the exponential accumulation and its above-mentioned
negative correlation with the initial cell size. Although this corre-
lation does not necessarily imply a causal relation, it is convenient to
envision it as a restraining force that counteracts the fluctuating
exponentials, attracting them to the bottom of an effective potential
well (20, 21). In this picture, a cell born too large will accumulate a
smaller fold change over the growth cycle and vice versa, preventing
fluctuations from accumulating in the long run.
Several experiments in Escherichia coli and Saccharomyces

cerevisiae were found to be consistent with a specific value of the
effective force constant. This particular value corresponds, in a
linear approximation, to a fixed volume added on average at
each cycle and was hence termed the “adder” model (8, 13, 14,
22). Closer inspection of the data, however, reveals that the
correlation plots are very noisy, despite the large samples and
high accuracy of the experiments. Moreover, some experiments
showed force constants different from the one corresponding to
the adder model. Investigation of E. coli and mycobacteria in dif-
ferent environments, for example, resulted in a range of different
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measured values (15, 16). Experiments in the Caulobacter crescentus
revealed two phases in the cell cycle, each characterized by a
different restraining force strength (17).
All of these previous studies have used measurements pooled

from many single cells to increase statistics. Such pooled data
can provide information on cell cycle parameters averaged over
the entire ensemble of cells; however, mechanisms that regulate
and control division operate at the level of the single cell, and
their individual properties might be masked by such pooling. In
this study, we measure and analyze dynamics of growth and di-
vision in individual bacteria tracked over extended times: up to
∼ 250 cell cycles each. Making the distinction between statistics
over time in individual cells and the corresponding statistics
averaged over many cells requires, first, that long enough stable
individual traces be acquired without confounding effects, such
as filamentation or contamination, and second, that statistical
properties be analyzed from separate traces and compared with
those averaged over many traces. Our previous work carried out
such a comparison for protein distributions and found a uni-
versality of distribution shape in both ensembles (12). To make a
similar comparison for cell size homeostasis, which is a dynamic
process, longer traces and more statistics are required. Here, we
present data that enable this comparison.
Our results show that individual cells exhibit different values

of the effective restraining force constant, which is maintained
distinct for many cell cycles. At the same time, an invariant is
revealed in the form of an ensemble average cell size, acting as
an attractor to the dynamics over long times. Despite this com-
mon attractor, we find significant differences in temporally av-
eraged size between traces over the finite lifetime of each cell.
This is related to deviations of temporally averaged division ratio
and fold change from their global average values of 1/2 and 2,
respectively. Such deviations are persistent over dozens of di-
vision cycles, and equilibration to the global averages appears
only in the longest traces: those over 150 cycles long.
Integrating cell size data with measurements of protein con-

tent in the same cells, we propose that a possible origin of var-
iable homeostasis strength stems from underlying interactions
between global cellular variables. We present an illustrative
mathematical model of these interactions, which reproduces
several nontrivial aspects of the entire dataset. As a consequence
of the individuality in the homeostasis parameter (restraining
force constant), we provide a theoretical explanation for oscil-
latory autocorrelations in cell size and in protein content,
which have been previously reported (15). We discuss the im-
plications of our results to the quest for the mechanisms un-
derlying cellular growth and division homeostasis and point to
future research directions.

Results
Cell Size Homeostasis: Single-Cell vs. Ensemble Average Behavior.
Continuous measurements of cell size over time reveal smooth,
exponential-like accumulation throughout each cell cycle inter-
rupted by abrupt drops at division. Fig. 1A shows a small portion
of such a measurement. Cell length is taken as an attribute of cell
size, as the rod-like E. coli bacteria grow in one dimension along
their length, while their width is maintained constant (Methods)
(3, 12). Over the nth cycle of growth and division, cell size xnðtÞ
can be described accurately as

xnðtÞ= xnð0Þeαnt,   0< t<Tn

xn+1ð0Þ= fnxnðTnÞ,

where αn is the exponential accumulation rate during cell cycle n;
Tn is its duration, and fn is the division fraction at its end (black
fitting line in Fig. 1A). The cell size at the start of the nth cell

cycle xnð0Þ, which we denote simply as xn, is linked across gener-
ations by the mapping

    xn+1 = fnxneϕn , [1]

with the total accumulation exponent defined as ϕn = αnTn (7). In
this discrete mapping, each step represents a complete cell cycle
and is characterized by two variables: a total increase in cell size
by a factor eϕn from the beginning to the end of the cycle and a
decrease by a factor of fn at division. The definition of these
parameters is illustrated in Fig. 1A. Both increase and decrease
are subject to fluctuations from one cell cycle to the next (SI
Appendix, Fig. S1-1 shows their distributions); cell size homeo-
stasis requires their product to average to one over long times.
Pooling together a large sample of cell cycles from many indi-
vidual traces shows that, on average, this is indeed the case (SI
Appendix, Fig. S1-1). However, while this requirement is neces-
sary, it is insufficient for homeostasis: the process described by
Eq. 1 is unstable against fluctuations in fn and eϕn over long
times, even if, on average, their product is one; independent
fluctuations accumulate, and the variance increases with time.
Fig. 1B shows that the exponential accumulation of size during
a cell cycle, ϕn, is negatively correlated with initial cell size. Such
state-dependent changes can control fluctuations and induce a
stable size distribution over multiple generations (7, 8). Addi-
tional empirical correlations are presented in SI Appendix,
Fig. S1-2.
To show the effect of state-dependent changes on long-term

dynamics, we present in Fig. 1C a comparison between two se-
quences of cell sizes xn: the first (Fig. 1C, blue) is an actual mea-
surement of a single cell for over 200 generations, while the second

A B

C

Fig. 1. Correlations in cycles of exponential accumulation and division. (A)
A portion of a trace measuring the size of a trapped bacterium along time,
illustrating the exponential accumulation within cycle n, eϕn , and the division
fraction, fn. These two variables connect the initial cell size xn with that at
the next cycle xn+1 (Eq. 1); both fluctuate from one cycle to the next. (B)
Exponential accumulation ϕn is negatively correlated with ln xn (best fit slope
for Eq. 2: β=0.49± 0.02). Taking x* to be the average cell size, x*= 2.7  μm,
we find ϕ* = 0.69± 0.2. (C) The blue line indicates a long sequence of initial cell
sizes xn from one trace as a function of cycle number (generation). The gray
line indicates a shuffled process created from the measured pairs ðeϕn , fnÞ by
applying them as fold changes to the initial condition of the trace in random
order, thus discarding the correlation between fold change and initial cell size.
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(Fig. 1C, gray) is created artificially by randomly shuffling the order
of the pairs ðϕn,   fnÞ in the same trace. Such a permutation retains
the average of the products eϕn fn at one but loses the correlations
displayed in Fig. 1B. Clearly, these correlations contribute to the
stabilization of cell size, limiting it to a small range.
One may account for the negative correlations in Fig. 1B in the

mapping (Eq. 1) by postulating a relation between xn and the fold
change eϕn (7, 8). Consistent with the data, we may use a linear
approximation in logarithmic coordinates:

ϕn =ϕp − β ln
xn
xp
+ ξn   , [2]

where β represents the slope of the fit in Fig. 1B. We term this
the homeostasis parameter. The noise, ξn, has zero mean and is
approximately Gaussian. Here, the typical size xp sets the units in
which cell size is measured. This scaling size xp is chosen to be the
average cell size at the start of the cell cycle over the entire
dataset or the “ensemble average” cell size. We find that the
best linear fit is obtained with ϕp ≈ ln 2, corresponding to a mean
fold change of 2, as expected, when averaging over many cells
with a mean division ratio of 1/2 (SI Appendix, Fig. S1-1).
We next consider the same analysis of correlations between

cell cycle variables applied to individual traces separately; a
similar picture may be expected but with some degree of vari-
ability among individual cells. This variability could be due to
noise, in which case they will have similar linear correlation
parameters up to errors resulting from measurement noise and
finite sampling. However, significant variability in the correla-
tions could reflect true individuality of cells. We write the analog
of Eq. 2 for the kth individual trace,

ϕðkÞ
n =ϕpðkÞ − βðkÞ ln

xðkÞn

xp
+ ξðkÞn , [3]

with cell size still measured in units of the ensemble average xp.
Variability can be reflected as significant differences in any one
of the parameters ϕpðkÞ   or  βðkÞ or the properties of the noise ξðkÞn .
In graphical terms, the pooled scatterplot of Fig. 1B could be

composed of single-cell plots that differ in their properties in
several alternative ways; however, they could also exhibit in-
variant features common to all traces (illustrations are in Fig. 2).
Identifying those properties that are conserved among all cells
may point to their importance as control variables.
Fig. 3A highlights two individual measured traces in color (Fig.

3A, green and red) on the background of the entire ensemble in
gray, suggesting that they have distinct values of the homeostasis

parameter. Fig. 3B shows the estimated slopes βðkÞ for all traces
as a function of trace length in number of generations. The error
bars, representing the uncertainty in the slope, are significantly
smaller than the differences between slopes for traces of length
<150 generations; these differences decrease for the extremely
long traces of length 150–250 generations. To quantify the dif-
ference between traces, two methods of statistical analysis were
applied, showing that the apparent difference is statistically sig-
nificant beyond the noise and the finite sampling (SI Appendix).
Fig. 3C shows the best linear fits for all individual traces. Each

black line was obtained as a fit similar to the colored lines in Fig.
3A taken from a single individual trace along time. This figure
reveals an invariant in the form of a pivot point where all lines
cross. The coordinates of this point coincide with the ensemble
average (green circle in Fig. 3C), implying a common intercept
ϕpðkÞ =ϕp = ln 2 for all traces. This leaves one parameter, the
homeostatic parameter or correlation slope βðkÞ, which is distinct
to each trace.
The pivot point, common to all individual traces, suggests a

dynamic attractor for cell size over multiple cycles. In this pic-
ture, if the cell divides to a size that considerably deviates from
xp, the exponential accumulation during the following cell cycle
would be compensated to effectively “pull” the cell back to this
common attractor, with a force strength variable among cells.
This picture is supported by Fig. 3D, in which a flow map com-
puted as an average over all cycles in the dataset is presented.
Similar dynamics are also found in other experimental conditions
(for example, a different nutrient composition) (SI Appendix,
Fig. S4). We note that, while ϕp = ln 2 for all conditions tested,
the ensemble average cell size at the start of the cell cycle, xp,
depends on growth medium and temperature.

Differences Between Time-Averaged Cell Sizes of Individual Traces.

Do the distinct values of βðkÞ result in different cell sizes when
averaged over the lifetime of the cell? We use the mapping
model for individual traces to answer this question: combining
Eqs. 1 and 3, the mapping can be written as

ln
xðkÞn+1

xp
=
�
1− βðkÞ

�
ln
xðkÞn

xp
+ ln f ðkÞn +ϕp +   ξðkÞn , [4]

linking the logarithm of cell size in consecutive cell cycle starts.
Here, we have incorporated the empirical observations that
homeostasis parameters are distinct, whereas the intercept ϕp is
common to all traces. Denoting temporal averaging over a trace

A B C

Fig. 2. Possible patterns of variability and invariants in single-cell trace correlations. (A) Single-cell traces could exhibit the same slope of correlation, in-
dicating that the effective restraining force strength is a relevant control variable. (B) Alternatively, they could exhibit an invariant intersection point,
pointing to a preferred common cell size. (C) Traces could also be variable in both properties without conserving any global invariant. In all panels, gray dots
are measurement data. Black dots result from simulating the mapping model (Eqs. 1 and 2) with different slopes and intercepts ðβ,ϕ*Þ for the correlation of
Eq. 2. In all cases, the average division ratio is 1/2, and the average fold change over the trace is 2.
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by overbars, we compute from Eq. 4 the time-averaged logarithm
of initial cell size

ln  xðkÞn = ln  xp +
ϕp + ln  f ðkÞn

βðkÞ
, [5]

where we have used the empirical result ξðkÞn ≈ 0. If ln f ðkÞn = ln1=2,
the right term vanishes: ϕp + ln f ðkÞn = ln 2+ ln1=2= 0; then, dis-
tinct values of βðkÞ may affect the rate of relaxation toward the
attractor but not the steady state itself. However, when we ex-
amine experimentally measured sequences of consecutive initial
cell sizes xn, we find that their averages are distinct. Fig. 4A
displays such sequences for two long and stable traces, with hor-
izontal lines depicting their temporal averages. The distribution
of values along the trace is plotted in Fig. 4A, Right for each trace
with its corresponding color.
To understand the origin of these differences, we simulated

two traces using the model, Eq. 4, with homeostasis parame-
ters βðkÞ   ðk= 1,   2Þ taken from the two traces in Fig. 4A and
with ϕp = ln 2. Both ξn and fn were simulated as random var-
iables drawn independently at each step, with statistical prop-
erties matching those of the ensemble (i.e., ξn = 0 and
hln fni= ln1=2). Fig. 4B shows the two simulated traces. In com-
parison, the measured traces in Fig. 4A exhibit suppressed
temporal fluctuations, each around a different mean value, far-
ther removed from one another than the model predicts. These
effects can be quantified by computing the SD “internal” to an

individual trace, σinðlnðx=xpÞÞ, estimated over time (width of
distributions in Fig. 4 A, Right and B, Right). We find that, on
average over all measured traces, hσinðlnðx=xpÞÞi= 0.26± 0.06,
while for a corresponding collection of simulated traces, we find
0.43± 0.05. However, fluctuations of the measured traces are
centered around temporal averages, which are significantly
different from one another. This can be quantified by the
“external” SD of time-averaged sizes, lnðx=xpÞ, across all traces:
we find that hσexðlnðx=xpÞÞi= 0.14 for experimental data and
0.06 for the model simulation results (details are in Methods).
This analysis provides statistical support to the effect apparent
in Fig. 4A, namely that cell size fluctuations along time are
strongly suppressed in each trace around a distinct time-
averaged value.
The discrepancy between individual traces and the model

prediction suggests a distinct behavior of the division ratio in
each trace: in the model, this was taken as a random variable
common to all traces and drawn from a Gaussian distribution
around 1/2. However, each cell undergoes a limited number
of growth and division cycles before it dies. Therefore, if divi-
sion ratios maintain a bias that deviates on average from 1/2
along many cycles, the effective feedback in the exponential
accumulation ϕn—which ensures balanced growth—induces a
corresponding deviation of the average fold increase from 2.
Consequently, the range of values sampled in the ðln xn,ϕnÞ
plane by an individual trace over its finite lifetime may be bi-
ased and may not provide a good sample of the range attained
by the entire ensemble.
This signature of slow dynamics manifests as a distinct clus-

tering of the points making up each trace as illustrated in Fig. 4C.
The clusters corresponding to the two individual traces, indeed,

A

D

C

B

Fig. 4. Individuality and slow dynamics in cell size traces. (A, Left) Two
measured individual traces (colors) showing cell size in consecutive cell cycle
starts, xn (three-point smoothed) as a function of generation number [gen].
Horizontal lines indicate time averages of each trace. (A, Right) Probability
density functions (pdfs) of cell size values for the two plotted traces (cor-
responding colors). Each cell maintains fluctuations around a distinct mean
value, with internal SD hσinðln  xÞi= 0.26 averaged over all traces. The SD of
temporal averages among traces is 0.14. (B) The same as in A for two sim-
ulated traces (Eq. 4), with parameters matching those in A. The internal SD
of simulated traces, hσinðln  xÞi= 0.43, is larger for model traces. The SD of the

temporal average across traces is hσexðln  xÞi= 0.06. (C) Two measured traces
exhibit distinct clustering in the ðln xn,ϕnÞ plane (colors). As a conse-
quence, each cell maintains a distinct average size (large circles) over its
lifetime. (D) Temporal averages of division ratio and accumulation expo-
nents in all measured traces. The solid line indicates ϕn + ln  fn =0. The two
traces shown in C are highlighted in color.

C

B

D

A

Fig. 3. Individual (A and B) and common (C and D) aspects of cell size ho-
meostasis in bacterial traces. (A) The same data as in Fig. 1B are plotted in
gray for the entire ensemble of traces. Points from two individual traces are
highlighted in color with their respective best linear fits, displaying a dif-
ferent slope for each and thus, a different homeostasis parameter β. (B)
Estimated slopes β for all individual traces as a function of their length in
number of generations [gen], with error bars denoting the SE in the esti-
mate (Methods). (C) Best linear fits for all individual traces intersect at a
common pivot point. The green circle indicates ensemble average of the two
axes. (D) A flow map is estimated in the 2D phase space ðln xn=x*,ϕnÞ. The
flow direction is indicated by arrows; its amplitude is encoded in the un-
derlying heat map [contours have a uniform spacing of 0.1 and range from
0 (black) to 2 (white)]. The pivot point of C (gray circle) is an attractor on this
projection of the dynamics.
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are not overlapping, and each trace samples a slightly different
portion of the space. Large colored circles in Fig. 4C depict the
average of the colored points corresponding to two individual
traces and illustrate how the distinct clusters result in distinct
average sizes. The time-averaged division ratios and the corre-
sponding time-averaged exponential accumulations are pre-
sented for all traces in Fig. 4D, showing the extent of biases
spanned by individual traces and the tight compensation between
them induced by homeostasis. This explanation of distinct time-
averaged sizes in terms of division ratio bias agrees reasonably
well with the data as detailed in SI Appendix, Fig. S5.

Possible Origin of Variation in Homeostasis Parameters. Why do
individual cells exhibit distinct values of the homeostasis pa-
rameter, βðkÞ? Recall that this parameter quantifies an empirical
negative correlation between initial cell size and exponential size
accumulation during the cell cycle. Mechanistically, little is
known about underlying processes that may induce such a neg-
ative correlation. One might imagine that some molecular circuit
implements a feedback loop from accumulated cell size to di-
vision; experiments have suggested different molecules to be
implicated in such a process, but a specific mechanism has not
yet been identified (18). Recently, several researchers have put
forward the possibility that size homeostasis is not implemented
at the molecular level but may represent a global systems-level
property of the cell (18, 23–25).
In line with this idea, we consider the dynamics of accumu-

lation and division from a global cellular perspective. A key
observation is that the copy number of highly expressed proteins,
which also accumulates exponentially and divides over multiple
cell cycles, exhibits an apparent “protein homeostasis,” reflected
in negative correlations similar to cell size; namely, one may
associate a nonzero value of β with highly expressed proteins in
the cell (7). These values, which are generally smaller than those
corresponding to cell size, span a wide range for different pro-
teins, conditions, and individual cells (SI Appendix, Fig. S6).
Previous work has shown that traces of highly expressed pro-

tein content are not only qualitatively similar to those of cell size
but also, statistically correlated with them on a cycle by cycle
basis (12). To further characterize this relationship, we measured
the copy numbers of two fluorescent proteins simultaneously
in single E. coli cells along cycles of growth and division. One was
expressed under the control of the lac promoter in a lactose-rich
medium and thus, represents a metabolically relevant protein.
The second was expressed under the control of the constitutive
λ-phage pR promoter (λ-pR), which is foreign to the cell and does
not contribute to cellular metabolism (details are in Methods).
Examples of three simultaneously measured traces can be seen in
Fig. 5A. A strong correlation between the three exponential rates
measured in the same cell cycle is seen in Fig. 5B.
Given these similarities and quantitative correlations, one may

argue that the copy number of protein is simply proportional to
cell size. This would imply a constant (or narrowly distributed)
protein density per unit volume. However, Fig. 5C shows that
protein density spans a broad range, approximately fivefold in
concentration, suggesting that the relationship between protein
and cell size is not a simple proportion. Furthermore, a model of
several phenotype components that are “enslaved” to cell size,
accumulating with the same exponential rates and dividing at the
same times controlled by cell size, is found to be unstable to
fluctuations and cannot induce homeostasis on the entire mul-
tidimensional system (SI Appendix, Fig. S7-2).
If protein content is not enslaved to cell size and is not directly

implicated in cell division control, why then does it have nonzero
effective restraining force strength β? Taking a holistic view on
cellular homeostasis, we consider the possibility that effective
interactions between various measurable cellular characteristics

(cell size, protein content, etc.) give rise to an effective homeo-
stasis parameter for protein content. We shall see that such a
model also explains the variation among cells in the homeostasis
parameter corresponding to cell size.
As a concrete implementation of this principle, we consider a

set of D cellular components, which we denote by a vector~x. To
describe the effective interactions, we go beyond the mapping
model, which only relates discrete time points in consecutive
generations, and also include dynamics of components within
the cell cycle. Building on previous models of linear interac-
tions, which give rise to indirectly autocatalytic dynamics of all
variables (26, 27), we write the equation of motion within cell
cycle n as

d
dt

xn
!ðtÞ=Kxn

!ðtÞ, 0< t<Tn, [6]

where xn
!ðtÞ now describes the continuous evolution of all D

components. The effective interaction matrix K is randomly cho-
sen and describes intracellular metabolism fixed along cycles.
Cell division distributes fractions fj,n and ð1− fj,nÞ of component
j to each daughter cell,

xj,n+1ð0Þ= fj,n · xj,nðTnÞ, [7]

with fj,n randomly distributed around 1/2. The model description
is completed by designating component 1 as controlling cell di-
vision through the relation in Eq. 2 (other control strategies are
in SI Appendix). Fig. 6A shows traces of three components in the
same cell resulting from numerically simulating the model. It

A

B C

Fig. 5. Relationship between cell size and content of highly expressed
proteins. (A) Traces of cell size (Top) and two highly expressed proteins
[fluorescent proteins expressed from the lac promoter (Middle) and the λ-pR

promoter (Bottom)]. All three components exhibit cycles of exponential ac-
cumulation and division. (B) Exponential accumulation rates of cell size (αS),
lac expression (αL), and λ-pR expression (αλ) are strongly correlated across
cycles. Each dot in the 3D space represents the three exponential rates
corresponding to one cell cycle. (C) Protein density in three individual cells
(different colors), each collected over multiple cycles of growth and division,
displays a broad distribution. pdf, probability density function.
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shows that exponential-like accumulation and division persist
stably over many generations in all components. The resulting
picture is qualitatively insensitive to the number of components
and to many properties of the interaction matrix K (SI Appendix
has more details and conditions on the model).
The interactions within cell cycles induce effective negative

correlations with apparent homeostasis parameters for all com-
ponents, thereby stabilizing long-term accumulation and division
against fluctuations. As expected, phenotype component 1 exhibits
a strong correlation between its accumulated exponent and its
value at the start of the cell cycle (Fig. 6B), since it actually im-
plements the control of cell division. Perhaps more surprisingly,

effective correlations ~β
ðkÞ
j emerge between accumulated exponents

and initial values for all other components (Fig. 6C). This effective
parameter varies among components j of the simulation [here, ðkÞ
labels the individual trace as before]: if interactions are strong
enough (large off-diagonal matrix elements of K), it can be as
strong or even stronger than that of the controlling component.
Furthermore, even for the controlling component itself, the in-
teractions can modify the empirically measured effective correla-
tion parameter, such that it differs from the one originally

assigned to it in division control ½  ~βðkÞ1 ≠ βðkÞ1 �. The effective ~βðkÞj are
found to vary as a function of the interaction strengths specified by
K; for fixed interactions, they vary on different realizations of
noise at division (SI Appendix, Fig. S7-1C). When averaged over
realizations, our model predicts its dependence on the noise
properties. Cells with sloppy division (large σf , SD of division
fraction) but a sharp division condition (small σξ, SD of division

control) have larger effective ~β
ðkÞ
1 and vice versa (Fig. 6D).

To test these nontrivial model predictions, we return to the

data and consider the dependence of the estimated ~β
ðkÞ
j of indi-

vidual traces on the noise level, with j= 1,2 corresponding to cell
size and protein content. Our entire collection of traces spans a
range of noise levels in their effective homeostatic correlation; in

Fig. 6E, we show the values of ~β
ðkÞ
j estimated for traces of both

cell size (Fig. 6E, red) and protein content (Fig. 6E, green) as a
function of σξ. The dependence is qualitatively in agreement with
the model predictions depicted by the black line in Fig. 6E
(horizontal projection in Fig. 6D). No systematic dependence
was found as a function of noise in division σf , possibly due to the
small variability in this parameter among individual traces.
The multicomponent model with coupled dynamics repro-

duces many of the statistical properties of the experimental data
described above at the level of individual traces as well as the
entire collection of traces (details are in SI Appendix, Fig. S7-1).
Importantly, it provides a potential explanation for the emer-
gence of a range of effective homeostasis parameters for dif-
ferent components and for the variability among individual cells
in the measured cell size homeostasis parameter.

Consequence of Variable Homeostasis Parameter. Recent work has
shown that traces of cell size and protein content in single bac-
terial cells exhibit damped oscillations in their autocorrelation
functions (ACFs) (15). These oscillations were linked through
numerical simulations to a homeostatic mapping between con-
secutive generations, similar to the model used here. Fig. 7 dis-
plays the ACFs for several traces of cell size (Fig. 7A) and
protein (Fig. 7B) showing these oscillations. Using the mapping

B C

DA

E

Fig. 6. Model of interacting cellular components. (A) Traces of 3 components of 50 that interact linearly within the cell cycle according to a random in-
teraction matrix. One component (Top) controls cell division through Eq. 2 with β1 = 0.5, while the other components follow and segregate their content
randomly at division time (Middle and Bottom). Accumulations within the cell cycle reflect global dynamics of all components and are given by a combination
of exponentials, which can be described to an excellent approximation by an effective exponent (SI Appendix, Fig. S7-1A). Both the controlling component (B)
and the noncontrolling components (one example shown in C) exhibit effective homeostasis, namely a negative correlation between the component at cell
cycle start and its exponential accumulation along that cycle (150 traces simulated, each consisting of 30− 250 division cycles). (D) Effective homeostasis
depends on model parameters: heat map of the empirically estimated homeostasis parameter for the controlling component, ~β1, averaged over 100 model
realizations as a function of noise parameters. The interaction matrix, division control, and system size are kept fixed across realizations. (E) Experimental
values of homeostasis parameters ~βj estimated from all traces are plotted in color (red, cell size; green, protein content) as a function of the noise level σξ (Eq.
2 and Methods). Model prediction with σf fixed at 0.2 (horizontal projection of D) is depicted by a black line.
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model, we now show that the structure of these correlations is

the predictable outcome of variable values of ~β
ðkÞ
j in individual

cells and in different phenotype components (cell size, protein).
For any given β, computing the ACF via Eq. 4 by averaging

over the ensemble from which noise is drawn, one finds an ex-
ponential with a time constant of ≈ lnð1− βÞ (in number of
generations). This is in line with the smooth form that ap-
pears after averaging over all traces, where β is some typical
value in the ensemble (Fig. 7 A and B, black lines). In a single
trace, however, one cannot directly calculate the ACF from the
model. However, the probability of oscillatory patterns being
generated at random across time and their period may be esti-
mated (28) (SI Appendix). This probability depends on the trace-
specific value of β and therefore, will be reflected in distinct
oscillatory patterns.
Fig. 7C shows this theoretical prediction (black solid line in

Fig. 7C) together with the corresponding quantities computed
from our experimental traces (dots in Fig. 7C). Although the
individual traces show a large scatter, binning them by value of
~β
ðkÞ
j agrees well with the theory (large circles in Fig. 7C). The

scatter is expected, since the theory is probabilistic and predicts
an average over realizations; it becomes a better predictor of
model simulations as trace length increases (SI Appendix, Fig.
S8). We see that the oscillatory patterns of the ACF arise from
purely stochastic effects in combination with the inherent dis-
creteness of cell division and that the individuality of the ho-
meostasis parameter echoes in their distinct periods. This
agreement of the theoretical prediction with the data provides an

independent verification of the variability in ~β
ðkÞ
j , specifically in

the cell size homeostasis parameter, among individual traces.

Discussion
The process of cellular growth and division is subject to many
sources of noise, which can accumulate and lead to divergence
over time if left unrestrained. In an effort to understand the
restraining forces that maintain cell size homeostasis in bacteria,
we have analyzed the size dynamics of many individual cells
measured for up to hundreds of generations. Such dynamics can
be described by a phenomenological model, with an effective
feedback linking the exponential size accumulation during each
cell cycle, ϕn, to the initial size in that cycle, xn. This feedback,
which is a negative correlation inferred directly from the data,
acts as a restraining force for maintaining cell size from diverging
over time. It has often been interpreted as a mode of division
regulation, where specific restraining force strengths correspond
to previously described regulation modes (e.g., adder, sizer, etc.).
Different modes display different slopes of the correlation in the
ðln xn,ϕnÞ phase space.

Cell Size Homeostasis: Pooled Cycles Vs. Individual Traces. When
analyzing the data after pooling cycles from many individual
traces, the correlation is consistent with a slope of 1/2, corre-
sponding to the previously studied adder model. However, ex-
amining the data for each cell separately reveals that the
correlation slopes vary from cell to cell. This variation is statis-
tically significant beyond the noise in the measurements. Ex-
amining the entire collection of traces in our dataset, we find that
the best linear fits cross at a common point, corresponding to the
average cell size and the average exponential accumulation of
ln 2. The fact that all individual lines cross at one point is a
nontrivial result; in principle, they could have varied in other
ways that would remain consistent with the observed ensemble
scatterplot (Fig. 2). This result points to a physiologically in-
variant cell size acting as a common attractor of the dynamics.
Thus, in individual cells, homeostasis pulls against fluctuations
toward a common cell size, albeit with different force strength.
The actual value of the cell size at this attractor depends on
experimental conditions.
Despite the common attractor, our measurements reveal that

time-averaged cell sizes remain distinct among traces over doz-
ens of generations. The difference between temporal averages of
individual traces reflects slow dynamics that extend over this
timescale. In particular, the exponential accumulation and di-
vision ratio do not always converge to the ensemble averages
of 2 and 1/2, respectively, over the lifetime of the cell. This
may seem to be a surprising result; however, in principle, the
existence of an effective feedback allows each trace to remain
centered around a distinct steady-state value without losing
homeostasis. The mapping model can empirically predict these
deviations reasonably well as stemming from slow dynamics of
division ratios with temporal averages that can deviate from
1/2 over many generations. Additional work is required to un-
derstand how long-term deviations in a mother cell are recon-
ciled with the behavior of its daughter cells and how eventually
the lineages make up a population with symmetric division on
average (29). These are topics for future research.

Homeostasis of Multiple Cellular Components. To better understand
homeostasis in individual cells, we examined the dynamics of not
only their size but also, highly expressed proteins across many
cycles of growth and division. Most proteins in bacteria are
highly expressed, with a relatively small effect of number fluc-
tuations (30) and with degradation negligible over the timescale
of a cell cycle (31, 32). These properties result in protein content
being a global cellular variable, buffered from many microscopic
noise sources. Its global nature results in a universal distribution
shape, insensitive to many control parameters (33). Previous
work has shown that the long-term dynamics of protein accu-
mulates exponentially within the cell cycle and exhibits effective
homeostasis similar to cell size; thus, it can be described by the

A B C

Fig. 7. ACFs of individual traces. (A) ACFs as a function of generation lag [gen.], several cell size traces (colors). Black indicates the average over all traces.
(B) ACFs for traces of fluorescent protein expressed from the λ-pR promoter. Black indicates the average over all traces. (C ) Mean peak-to-peak distance
MðβÞ in number of generations [gen.] computed from all individual traces of cell size and λ-pR expression. Binned data are shown as large circles. The black
curve indicates the prediction from theory (28) (SI Appendix).
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same mapping model applied to cell size (7, 12). This analogy
suggests a strong coupling between cell size and protein.
To further characterize this coupling, we have measured cell

size simultaneously with two highly expressed proteins (meta-
bolically relevant and irrelevant) in the same cell and analyzed
how these components of the phenotype coevolve over multiple
generations. All components accumulate exponentially, exhibit-
ing a strong positive correlation between the accumulation rates
on a cycle by cycle basis. Nevertheless, the measured relation
between them is inconsistent with a simple proportion or a
dominance of one component (e.g., cell size) that determines all
others up to some noise. These results suggest treating proteins
and cell size as coupled components of a multidimensional
interacting system. Therefore, we studied such models with dif-
ferent coupling schemes between the components and compared
them with the integrated set of experimental results.
At the level of mapping between generations with effective

feedback, it is difficult to achieve homeostasis of multiple com-
ponents that exponentially accumulate and divide when one
variable controls division. Perhaps surprisingly, this is true even if
their exponential accumulation rates are identical up to a rea-
sonable noise level. We found that a simple way to induce such
homeostasis is by including the dynamic coupling between
components during the cell cycle. Random linear interactions
were sufficient to produce effective autocatalytic dynamics dur-
ing the cell cycle (26, 27); we have used this simple model, de-
spite the known nonlinearity inherent to metabolic reactions.
Cell division control was described by an effective restraining
force. The finite duration of cell cycle, the small dynamic range
of exponential accumulation (∼ × 2), and the imperfect nature of
division cause reshuffling of the different phenotype components
at division. As a consequence, rather than a pure exponential
accumulation, all components accumulate with effective expo-
nents, which vary over cycles and between components, while
maintaining a positive correlation among them.
This model induces simultaneous homeostasis on all cellular

components, although only one may actually affect cell division.
Moreover, it results in all components exhibiting negatively
correlated accumulation and initial value. This correlation is
manifested as an effective restraining force with specific value
that can vary depending on interactions and levels of noise.
Consequently, different individual cells may have variable em-
pirically measured values of this homeostasis parameter, in-
cluding those measured for cell size.

Predicted Consequence of Variable Homeostasis: An Independent
Verification. The variable value of the homeostasis parameter is
reflected in the structure of the ACF for cell size and protein
content. While averaging over the noise ensemble smooths out
such oscillations, the period of individual traces can be predicted
by a theory applied to the mapping model across generations

(28). This prediction depends explicitly on eβðkÞ and agrees with
the data, providing additional independent support for our

finding of effective homeostasis parameters eβðkÞ, which vary
across traces ðkÞ of individual cells.
Implications to Division Regulation. Our results taken together
highlight several gaps in the current understanding of cellular
homeostasis in bacteria. Why are homeostasis parameters dif-
ferent among cells? We have provided an illustrative model
consistent with the results, where one variable controls division,
and measurable correlations are indirectly induced or modulated
by intracellular interactions and noise. However, there could be
other sources; for example, the microenvironment in the trap
could affect processes in the cell that would result in such vari-
ability. Our analysis highlights the elusive nature of the homeo-
stasis parameter β, the difficulty in identifying what it represents

in terms of intracellular processes, and in particular, its relation to
cell division regulation. One possibility is that division regulation is
an emergent property of the cell, which arises dynamically from
complex interactions. Such dynamic feedback has been suggested
as an organizing principle for mesoscopic-scale systems (25).
Supporting this notion is our observation that cell size is con-
trolled to a narrow region around distinct values for each trace
and the possible role of division fraction in homeostasis, which has
not been investigated so far. A combination of cell size accumu-
lation and division fraction as relevant control variables would
certainly imply a global and integrated mechanism. It is also
possible that some composite variables influence division more
than any one of those currently measurable (34). These specula-
tive possibilities remain to be investigated in future work.

Methods
Experimental Procedure and Data Processing. Wild-type MG1655 E. coli bac-
teria were used in all experiments. Protein content was measured through
the fluorescence intensity of GFP or red fluorescent protein (tdTomato)
inserted into the bacteria on a high- or medium-copy number plasmid and
expressed under the control of the promoter of interest. For measuring the
expression level of a metabolically relevant protein, GFP was expressed from
the medium copy number plasmid pZA (35) under the control of the lac
promoter. For a metabolically irrelevant protein, GFP was expressed from
the same plasmid pZA but under the control of the viral λ-pR promoter. For
simultaneous measurement of the expression of two proteins, GFP was
expressed from the high-copy number plasmid pUC19 under the control of
the lac promoter, while tdTomato was expressed from the pZA plasmid
under the control of the λ-pR promoter.

Cultures were grown overnight at 30 °C in LB medium (most cell size data in
the text and protein expressed from λ-pR promoter) or in M9 minimal medium
supplemented with 1 g/L casamino acids and 4 g/L lactose (M9CL) (protein
expressed from the lac promoter and simultaneous measurements of cell size
and expression from both promoters in Fig. 5, and cell size data presented in SI
Appendix, Fig. S4). The following day, cells were diluted in the same medium
and regrown to early exponential phase (OD between 0.1 and 0.2). When
reaching the desired OD, cells were concentrated 10 times into fresh medium
and loaded into a microfluidic trapping device (SI Appendix, Fig. S9-1). After
trapping, fresh medium was flown continuously through it to supply nutrients.

Cells were allowed to grow in the device for dozens of generations while
maintaining the temperature fixed using a made-in-house incubator. Images
of the channels were acquired every 3–6 min in phase contrast and fluo-
rescence modes using a Zeiss Axio Observer microscope with a 100× objective.
The size and fluorescence of the tracked mother cell were measured from
these images using the image analysis software microbeTracker (36). These
data were then used to generate traces, such as those presented in Fig. 1A (SI
Appendix, Fig. S2-2). Growth stability of cells in the microfluidic device was
verified by comparing the average division time in the first and second halves
of the trace. No trend was detected in any of the experiments (SI Appendix,
Fig. S9-2).

Data Analysis. Single-cell traces were analyzed using homemade MATLAB
programs. Trace ACFs and linear curve fitting were calculated by their
implementations in MATLAB toolboxes. Homeostasis parameters β (both for
cell size and for protein) were estimated as the slope of the best linear fit to
scatterplots such as in Fig. 1B: namely, exponential accumulation as a
function of log cell size (or protein) at the start of each cycle. Using this fit, ξn
was estimated as the difference between the data and the line. The SE of the

slope in the linear fit for a single trace was estimated as σ2inðβ̂Þ= σ2ðξnÞ=S2,
where S2 =

PN
n=1ðln xn − ln xÞ2, N is the number of cycles in the trace, and the

trace index ðkÞ is omitted here for clarity. Data measured at the Jun labo-
ratory were extracted from the webpage accompanying ref. 3 and analyzed
in the same way as our data (SI Appendix, Fig. S10).

The temporal average over a particular trace k is represented by an

overbar [e.g., ln xðkÞ = 1=Nk
PNk

n=1ln  x
ðkÞ
n , where Nk is the number of cycles in

the trace and xðkÞn are measurements in that trace]. The internal variance over

the trace is computed as σ2inðln xðkÞÞ= 1=Nk
PNk

n=1ðln xðkÞn − ln xðkÞÞ2. The corre-

sponding SD σinðln xðkÞÞ is the square root of this quantity. To characterize
the entire set of traces, the average across traces is denoted by brackets:

Æσinðln xÞæ= 1=M
PM

k=1σinðln xðkÞÞ, with M being the number of traces.
The external variance quantifies the spread of temporal averages among

traces and is computed as σ2exðln xÞ= 1=M
PM

k=1ðln xðkÞ − Æln xæÞ2. We note that
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the difference between averaging the logarithm and taking the log of av-
erage quantities was not significant in our data. For initial cell size, this
amounted to a 2.5% discrepancy, while for division fraction, it was less than
1%. For the analysis of Fig. 4, the mapping model for individual traces (Eq. 4)
was simulated with parameters mimicking the measured data: number of
traces, number of cycles in each trace, etc. Internal and external variances
were computed similarly for measured and simulated traces.

Model Simulation.We simulated the multicomponent phenotype model (Eqs.
6 and 7) for a vector of dimension D= 50 components. Interactions Kij were

independently drawn from a Gaussian distribution with mean 1=
ffiffiffiffi
D

p
and SD

1=
ffiffiffiffi
D

p
. This matrix was kept fixed over the entire ensemble of simulated

traces, each with a number of cycles drawn uniformly between 30 and 250.

The “nominal” homeostasis parameter was taken to be β=0.5, similar to the
value of the ensemble average of the experimental data. The common pivot
point coordinates are taken as x* =3 and ϕ* = ln 2. The end of each cell cycle
n is determined by Eq. 2 applied to the first component x1,n. At division, each
component j is multiplied by an independent Gaussian variable fj,n with
mean 0.5 and SD σf =0.1 truncated to (0,1). The noise in division control, ξn,
is a zero mean Gaussian variable with SD σξ = 0.2.
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