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Purpose: To develop an efficient algorithm for multi‐component analysis of 
magnetic resonance fingerprinting (MRF) data without making a priori assumptions 
about the exact number of tissues or their relaxation properties.
Methods: Different tissues or components within a voxel are potentially separable 
in MRF because of their distinct signal evolutions. The observed signal evolution in 
each voxel can be described as a linear combination of the signals for each component 
with a non‐negative weight. An assumption that only a small number of components 
are present in the measured field of view is usually imposed in the interpretation of 
multi‐component data. In this work, a joint sparsity constraint is introduced to utilize 
this additional prior knowledge in the multi‐component analysis of MRF data. A new 
algorithm combining joint sparsity and non‐negativity constraints is proposed and 
compared to state‐of‐the‐art multi‐component MRF approaches in simulations and 
brain MRF scans of 11 healthy volunteers.
Results: Simulations and in vivo measurements show reduced noise in the esti-
mated tissue fraction maps compared to previously proposed methods. Applying the 
proposed algorithm to the brain data resulted in 4 or 5 components, which could 
be attributed to different brain structures, consistent with previous multi‐component 
MRF publications.
Conclusions: The proposed algorithm is faster than previously proposed methods for 
multi‐component MRF and the simulations suggest improved accuracy and precision 
of the estimated weights. The results are easier to interpret compared to voxel‐wise 
methods, which combined with the improved speed is an important step toward clini-
cal evaluation of multi‐component MRF.
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1 |  INTRODUCTION

Magnetic resonance fingerprinting (MRF)1 is a novel 
technique for simultaneous mapping of multiple quanti-
tative parameters. MRF has been mainly applied for single‐
component matching of a set of system and tissue parameters, 
e.g. T1, T2, and B1, to each voxel. The standard method 
matches the measured signal to a pre‐calculated dictionary 
with a pattern recognition algorithm based on the inner prod-
uct similarity measure. However, single‐component matching 
only considers the average signal produced by multiple tissues 
in a voxel. Multiple tissues can be present in a voxel either in 
the boundary region between 2 tissues or simply as a mix-
ture of multiple components because of the complex structure 
of tissue. In the brain, the first effect occurs in the boundary 
region between white and gray matter, the second example is 
the case for myelin in the white matter. This partial volume 
effect2 can lead to blurring artifacts or averaged tissue param-
eters in the maps obtained by single component matching.

Multi‐component analysis takes into account that a voxel 
can consist of several tissues and assumes that the measured 
signal is composed of a weighted sum of signals correspond-
ing to the individual tissues present in the voxel. Multi‐com-
ponent analysis can be performed for standard relaxometry 
scans like multi‐echo spin echo (MESE) T2 mapping by a 
multi‐exponential fit. The standard method for multi‐com-
ponent analysis is the T2 Non‐Negative Least Squares 
(T2NNLS) algorithm introduced by Whittall and MacKay,3 
based on the Non‐Negative Least Squares (NNLS) algorithm 
by Lawson and Hanson.4 With this algorithm a smooth T2 
spectrum is obtained and the Myelin Water Fraction (MWF) 
is determined by integrating over all weights in the spectrum 
with T2 < 40 ms. Besides myelin water, another peak can be 
recognized which belongs to intra‐extracellular water.5

Multi‐component analysis applied to MRF has the 
potential to distinguish more tissues than multi‐exponential 
T2 methods because multiple tissue parameters are taken 
into account. A first approach to Multi‐Component MRF 
(MC‐MRF), where each voxel is modeled as a composition 
of only 3 possible tissues with predefined relaxation times, 
was proposed in the supplemental material of the original 
MRF publication.1 A dictionary containing only 3 T1, T2 
combinations was used with a least‐squares algorithm to 
determine the weights for the 3 possible components. This 
approach imposes a very strong constraint, namely that the 
number and relaxation times of the individual components 
are known. This may not always be the case and the resulting 
solution is very sensitive to the choice of tissue parameters. 
Deshmane et al6 expanded this approach by estimating the 
main tissues based on the single component matching com-
bined with k‐means clustering, where the number of com-
ponents is selected on forehand. This partial volume model 
assumes that most voxels contain a single component and 

partial volume effects are only present at the boundaries of 
tissues (See Supporting Information Figure S1). A first MC‐
MRF method using a large dictionary of T1 and T2 combi-
nations was proposed by McGivney et al7 which applies a 
Bayesian estimation method to obtain a MC‐MRF matching. 
This method considers each voxel independently and is able 
to distinguish different components within a voxel without 
explicitly including prior knowledge about the number of 
components or their corresponding relaxation times. This 
approach applies a sparsity constraint, but the coefficient 
weights are complex and the absolute value of the complex 
weights is returned as the final solution. Computation times 
of 12 s per voxel were reported in this work, corresponding 
to several days for the processing of a single slice. Another 
voxel‐wise approach was recently proposed by Tang et al8 
which applies both sparsity and non‐negativity constraints to 
the component weights within an iteratively reweighted �1‐
norm regularized least squares algorithm. Computation times 
between 0.1 s and 1 s for a single voxel are reported for this 
algorithm when executed on a computer cluster.

Besides the long processing times reported in these 
approaches, another difficulty is the interpretation and visu-
alization of the results. When the complete MRF measure-
ment is considered, the matched components in each voxel 
can correspond to different relaxation times, and need further 
processing to visualize the results. This can be done with a 
simple grouping based on T1 or T2 ranges as done for the 
MWF from T2NNLS or with a more sophisticated method, 
e.g. Bayesian grouping strategies.9 This interpretation step 
requires additional assumptions about the tissues present in 
the region of interest (ROI), the number of components or 
voxels in which a pure tissue can be found.

Two works are currently published in arXiv, in which the 
multi‐component analysis includes dependencies between 
different voxels. The greedy‐approximate projection algo-
rithm (GAP‐MRF)10 approximates the main tissues present in 
the ROI and determines MC‐MRF maps based on these com-
ponents. This method results in 5‐6 components in the brain, 
assuming that most voxels contain single tissue. Relaxation‐
Relaxation Correlation Spectroscopic Imaging (RR‐CSI)11 
is a related approach, which uses an inversion recovery 
multi‐echo spin‐echo (IR‐MESE) acquisition sequence 
simultaneously encoding T1 and T2 relaxation times. The 
corresponding multi‐component analysis assumes smooth-
ness in the T1, T2 parameter space and spatial smoothness 
to determine T1, T2 distributions for all voxels. This method 
can be seen as an extension on T2NNLS methods where 
spatial smoothness is applied12-14 and multiple relaxation 
parameters are simultaneously encoded. Six main peaks are 
detected in the reconstructed spectrum, which are interpreted 
as 6 different components. This algorithm was not demon-
strated on MRF‐data, but is related because it performs multi‐
component analysis from a sequence simultaneously encoding  
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T1 and T2 relaxation times. Another work by the same authors 
proposes a set of greedy algorithms for non‐negativity con-
straining simultaneous sparse recovery,15 related to the GAP‐
MRF algorithm.10

In this study, we investigate different approaches for MC‐
MRF with the aim to obtain an accurate and robust result in a 
shorter time than the previously proposed MC‐MRF approaches. 
Several different approaches were implemented and compared, 
including the NNLS algorithm as used for T2NNLS, the fixed 
3 component approach presented in the original MRF publica-
tion,1 the Bayesian algorithm7 and reweighted‐�1‐norm regu-
larized algorithm.8 Furthermore, we propose a new algorithm 
that applies joint sparsity and non‐negativity constraints for the 
component weights, which can reduce the noise amplification 
in MC‐MRF keeping the reconstruction time tractable. The 
main premise of this approach is that only a small number of 
“basis” tissues is present throughout the ROI and the tissue in 
each voxel is a mixture of these basis tissues. The method is 
theoretically described and compared with the previously men-
tioned methods. The evaluation was performed in numerical 
simulations and in brain data of 11 healthy volunteers.

2 |  METHODS

2.1 | Theory

2.1.1 | Voxel‐wise problem setting
In a multi‐component signal model, the MRF signal xj of a 
voxel j  ∈  {1, 2, … J}, where J is the number of voxels, can 
be written as 

where D is the MRF dictionary, cj the vector containing the 
weights for the different components and ej the noise term. 
The measured MRF signal is generally complex, however, if 
the phase is known, the signal can be rotated to the real axis 
resulting in a real vector xj ∈ ℝ

M of length M, where M is the 
number of time points of the fingerprinting sequence or the 
length of the signal after SVD compression.16

The dictionary D ∈ ℝ
M ×N contains the signal evolutions 

for N different components. The measured signal is mod-
eled as a non‐negative linear combination of the dictionary 
signals. The weights of these different components are con-
tained in the vector cj ∈ ℝ

N
≥0

. Besides the non‐negativity con-
straint, it can be assumed that the weight vector cj is sparse, 
thus the measured signal can be represented by a small num-
ber of components, representing a small number of tissue 
types. The weights for each component in Equation (1) can 
be obtained by least squares minimization. When we include 
the requirement that c is non‐negative, we obtain the follow-
ing NNLS problem for each voxel j: 

For a dictionary with a large number of components, this 
problem is highly under‐determined and has infinitely many 
solutions. This formulation is very similar to a compressed 
sensing problem. Therefore, if the solution vector is sparse, 
there are some theoretical guarantees that it can be recov-
ered using a sparsity constraint. However, due to the high 
coherence of MRF dictionaries a unique solution only exists 
for very sparse solutions. One sparsity promoting approach 
to solve this problem is the active set NNLS algorithm as 
proposed by Lawson and Hanson4 [Chapter 23]. The NNLS 
algorithm shows similarities to the orthogonal matching 
pursuit (OMP) algorithm17 with its active set principle and 
results in sparse solutions.

Another approach to restrict the solution is in the form 
of regularization. A typical choice for sparsity promoting 
regularization is the �1‐norm. The non‐negativity constraint 
makes it possible to use the �2

1
‐non‐negative regularization 

instead, which can be used with computationally more effi-
cient algorithms18: 

where λ > 0 is the regularization parameter. This problem can 
be recast to the equivalent non‐negative least squares prob-
lem of the form 

where D̄ ∈ ℝ
M+1×N and x̄j ∈ ℝ

M+1 are given by: 

which can still be solved using the NNLS algorithm from.4 
In this setting, an independent (sparse) solution is obtained 
for each voxel.

2.1.2 | Joint sparsity constraint
The voxel‐wise approach can lead to different components 
for each voxel, even for a small region of interest that has 
uniform intensity in a contrast weighted image. This is 
most likely due to noise and not due to actual large vari-
ability in the tissue composition. The main premise in this 
work is that the tissue in the measured volume is composed 
of a small number of “basis tissues,” or components, which 

(1)xj =Dcj+ej,

(2)min
cj∈ℝ

N
≥0

||xj−Dcj||22.

(3)min
cj∈ℝ

N
≥0

||xj−Dcj||22+λ2||cj||21,

(4)min
cj∈ℝ

N
≥0

||x̄j− D̄cj||22,

(5)D̄=

[
D

λ … λ

]
and x̄j =

[
xj

0

]
,
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are shared for all voxels in the region of interest. In other 
words, we assume that there is a small number of diction-
ary signals (atoms), which form a basis for the measured 
MRF signal for the whole region of interest. The measured 
MRF signals can be represented by a linear combination 
of this shared set of dictionary signals. This assumption 
is similar to the fixed basis approach,1 however, we don’t 
assume that the number of components and their T1 and 
T2 values are known in advance. To include this require-
ment in the reconstruction, we introduce the joint sparsity 
constraint.

The joint forward model can be written as 

where X = [x1, … xJ] ∈ ℝ
M × J contains the measured sig-

nals and C= [c1, … cJ] ∈ ℝ
N × J contains the weights for all 

the voxels and E contains the noise terms. Each row ci of 
the weight matrix contains the weights of a single com-
ponent i for all voxels in the region of interest. The joint 
inverse problem can be written as a NNLS minimization 
problem: 

where || ⋅ ||F denotes the Frobenius norm.
The requirement that the measured signals can be rep-

resented by a small number of shared signals, can be sum-
marized as the constraint that 

∑N

i= 1
��ci��0 must be small. 

This joint sparsity constraint has been considered with 
different names and in different problem settings19-23 and 
has only been combined with a non‐negativity constraint 
in a Greedy algorithm.15 The non‐negativity and joint 
sparsity constraints can be combined in the minimization  
problem 

where μ is a regularization parameter that balances sparsity 
and reconstruction error.

2.1.3 | Sparsity promoting iterative 
joint non‐negative least squares 
(SPIJN) algorithm
To solve the optimization problem 8, we propose a new 
iteratively reweighted non‐negative least squares algorithm, 
called Sparsity Promoting Iterative Joint NNLS (SPIJN), 
which is summarized in Algorithm 1 to which we will 
refer in the rest of this section. In the spirit of reproducible 
research, the source code of the proposed algorithm includ-
ing the later discussed numerical phantom is available at 

https ://github.com/MNagt egaal/ SPIJN . The algorithm uses 
the NNLS algorithm to solve the joint NNLS problem, with 
a reweighting in each iteration. The weights promote a jointly 
sparse solution, finding a small number of atoms that serve as a 
common basis for all voxels. Both the measured signals X and 
the dictionary D are normalized such that ||x||2 = ||d||2 = 1. 
The normalization of the dictionary prevents a bias caused by 
high signal intensity, the normalization of the signals makes 
sure that all voxels have an equal influence on the joint sparsity.

The core of the algorithm is formed by lines 9‐14. In each 
iteration, the NNLS algorithm is used to solve the reweighted 
problem in line 13. The weights 

are used, where ε is a small parameter to improve the 
stability. To make the reweighting more effective, the �2

1
 

regularization from Equation (5) is used in lines 11 and 
12 of the algorithm. The regularization parameter λ is 
scaled with log10 J, to make the values of the regulariza-
tion parameter less sensitive to the number of voxels. The 
scaled regularization parameter λ̄ determines the sparsity 
of the solution, similar to μ in Equation (8). The algo-
rithm is stopped after T iterations or when convergence is 
reached, according to 

where δ is the convergence threshold, as calculated in line 15.
Most of the dictionary elements are not used after a small 

number of iterations and remain unused for the rest of the 
process. These dictionary elements can therefore be removed 
from the dictionary (line 7) to speed up the computations. 
This pruning is performed in iteration p, where rows with an 
�1 norm smaller than 𝛿 ⋅J are pruned. In the final solution, 
the weights corresponding to the pruned dictionary atoms are 
set to 0.

2.2 | Experiments

2.2.1 | Simulated data
To test the proposed method, simulations were performed 
with a fully sampled numerical phantom containing 3 dif-
ferent components. The relaxation times for the simulated 
components were chosen according to a 3 tissue brain model, 
where the measured MR signal is a combination of myelin 
water (MW), intra‐ and extracellular water (IEW) and free 
water (FW). The first component is in the range of MW with 
relaxation times (T1 = 67 ms and T2 = 13) ms,24 the second 

(6)X=DC+E,

(7)min
C∈ℝN×J

≥0

||X−DC||2
F

,

(8)min
C∈ℝN×J

≥0

[
||X−DC||2

F
+�

N∑

i

||ci||0

]
,

(9)wk+1, i ← ||ci
k
||2+�, ∀i∈{1, … , N}

(10)||Ck+1−Ck||F
||Ck||F

<𝛿,

https://github.com/MNagtegaal/SPIJN
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component in the range IEW (T1 = 1000 ms and T2 = 100 ms)  
and the third component in the range of FW (T1 = 2000 ms 
and T2 = 500 ms).25 multi‐component compositions were 
simulated, the first component had a weight of 10% in each 
composition, the other 2 components vary from 0% to 90%. 
For each combination, the signal evolution was calculated 
and Gaussian noise was added, resulting in a total of 10 × 10 

simulated voxels with a signal to noise ratio of 50. A gra-
dient‐spoiled MRF sequence26 of 200 time points was used 
for the simulations. The sequence had a flip angle variation 
as shown in Figure 1 (Sequence 1) and a constant repetition 
time of TR = 15 ms.

A logarithmically spaced dictionary with 3240 atoms con-
sisting of 80 T1 values from 10 ms to 5 s and 80 T2 values 
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from 10 ms to 5 s with the restriction T2 ≤ T1 was computed 
with the extended phase graph algorithm (EPG).27

2.2.2 | In vivo data
To demonstrate the feasibility of the proposed method in vivo, 
fully sampled MRF brain data were acquired for 11 healthy 
volunteers with informed consent obtained. The scans were 
performed with different MRF sequences on 2 different field 
strengths in order to test the approach in different settings. The 
measured signals were corrected with a phase term to obtain 
real‐valued vectors. In a pre‐processing step, the lipid tissue and 
skin were removed to keep only the region containing the brain.

One volunteer scan was performed on a 1.5 T Philips 
Achieva scanner with Sequence 1 as given in Figure 1 using 
an 8 channel head coil and a spiral acquisition pattern, a FOV 
of 240 × 240 mm2, 1 × 1 mm2 in plane resolution and 5 mm 
slice thickness. Three slices were acquired with an acquisi-
tion time of 359 s. A logarithmically spaced dictionary was 
computed with T1 ranging from 10 ms to 4 s in 100 steps and 
T2 from 4 ms to 2 s in 80 steps, with the restriction T2 ≤T1, 
consisting of 4974 dictionary atoms.

Ten volunteers were scanned on a 3.0 T Philips Ingenia 
scanner with Sequence 2 as given in Figure 1 with a Cartesian 
sampling pattern, a FOV of 240 × 240 mm2, in plane reso-
lution of 1.25 × 1.25 mm2 and 10 mm slice thickness. The 
acquisition time for 1 slice was 337 s. For the dictionary the 
same T1 and T2 combinations were used as in the numerical 
experiments and included different relative B1‐inhomogene-
ity values, ranging from 0.75 to 1.26 with step size 0.003, 
leading to a dictionary size of 845580.

2.2.3 | Comparison to other algorithms
The proposed SPIJN algorithm was compared in simulations 
to 3 voxel‐wise algorithms, the NNLS algorithm,4 the MC‐
MRF reweighted‐�1‐norm regularized algorithm8 and the 

MC‐MRF Bayesian approach.7 The NNLS forms the basis of 
our algorithm and a comparison is included in order to esti-
mate the effects of the joint sparsity constraint. The 1.5 T 
measurement was used to compare the SPIJN algorithm to 
the 3 voxel‐wise algorithms and MC‐MRF analysis using 2 
different subdictionaries containing only 3 fixed components. 
The first set (set A) of components of the subdictionaries is 
based on literature values from a work applying this approach 
for MC‐MRF28 and the (T1, T2) values are (127 ms, 21 ms), 
(1267 ms, 127 ms) and (2056 ms, 485 ms). The second set B 
is based on components as matched by SPIJN with (T1, T2) 
relaxation times (10 ms, 10 ms), (781 ms, 58 ms) and (1821 
ms, 842 ms). The comparison with the 2 different sets of 
fixed components was performed to evaluate the sensitivity 
to the choice of the components. The normalized root mean 
squared error (NRMSE) is used to evaluate the data consist-
ency between the estimated signal from the multi‐component 
matching and the measured signal. The NRMSE is calculated 
as ||X−DC||F

||X||F
.

For the Bayesian algorithm 3 parameters had to be cho-
sen, for the shape parameters α = 2 and β = 0.1 were used. 
Regularization parameter μ  =  6 was used for the in vivo 
measurement and μ  =  0.01 for the simulations. For the 
reweighted‐�1‐norm regularized algorithm λ  =  0.01 was 
used for the in vivo data and λ = 0.001 for the simulations.  
For the SPIJN algorithm λ = 3.5 was used for the 1.5 T in 
vivo measurements and λ = 0.03 in the simulations.

All algorithms were implemented in Python. SVD 
compression16 to a dimension of 25 was used for all the 
measurements and simulations. The NNLS algorithm uses the 
FORTRAN implementation as included in the SciPy pack-
age. For the subdictionaries the NNLS algorithm was used 
to find the corresponding weights for the fixed components.

The single‐voxel algorithms require grouping to relate 
similar components found in different voxels to each 
other and to known tissue types. Components in the range 
T1 ≤ 200 ms and T2 ≤ 40 ms are considered to belong to 
the MW component, in the range 200 ms ≤ T1 ≤ 1800 ms 
and 30 ms ≤ T2 ≤ 200 ms to the IEW and in the range 
T1 ≥ 850 ms and T2 ≥ 200 ms to the FW. Components out-
side these ranges are considered as outliers and not grouped 
to any of the 3 water types. These ranges are based on a com-
bination of the following; relaxation times as expected from 
literature,29 ranges as used for T2 relaxometry MWF mapping 
and the visually distinguishable clusters in the MC‐MRF 
decompositions from the different algorithms.

2.2.4 | Repeatability of the SPIJN algorithm
The 10 MRF measurements at 3 T were used to evaluate 
the repeatability of the multi‐component matching from the 
SPIJN algorithm on multiple healthy volunteers with the same  
MRF sequence. Single component matching was first 

F I G U R E  1  The 2 flip angle (FA) sequences used in this work. 
Both sequences have a repetition time of 15 ms. Sequence 1 has a TE = 4 
ms and repetition delay of 500 ms. Sequence 2 has a TE = 5 ms and 
repetition delay of 3 s. The maximal flip angle in both sequences is 60
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used to obtain the B1 map. Then for each voxel the corre-
sponding subdictionary with fixed B1, was selected for the 
MC‐MRF analysis. The SPIJN algorithm was then used 
to obtain a decomposition for each of the measurements.  
The regularization parameter was selected in a way that the 
number of components was as small as possible but without 
increasing the NRMSE compared to regularized voxel‐wise 
methods. This resulted in λ values of either 12 or 15 for these 
measurements. From these decompositions, the components 
corresponding to white and gray matter were selected for the 
evaluation.

The relaxation times matched to the white and gray mat-
ter are determined as an indication of the repeatability of the 
SPIJN decomposition over multiple scans. An overview of 
relaxation times for white and gray matter at 3 T from differ-
ent studies25,29 is given in Table 1 as a reference.

3 |  RESULTS

3.1 | Comparison to other algorithms

3.1.1 | Simulated data
The results of the multi‐component analysis for the simu-
lated data are shown in Figures 2 and 3. Figure 2 shows 
the ground truth of the 3 different components and the 
component weights obtained by the 4 different algorithms.  
The root mean squared error (RMSE) is given above each of 
the grouped components. The results of the NNLS and the 
reweighted‐�1‐norm‐regularized algorithm are very similar, 
while the Bayesian approach results in larger errors than the 
other 2 voxel‐wise methods. The SPIJN algorithm results in 
a smaller error and less variance in the solution.

Figure 3 shows the distribution of the T1 and T2 values 
of the matched components for the different algorithms, the 
grouping boxes and the true relaxation times of the simulated 
components. The matched components are spread around the 
true relaxation times and for all the algorithms the component 
with the shortest T1 and T2 is the most difficult to estimate. 
Although the T1 and T2 values of the shortest component are 
biased, the corresponding component weights are still accurate.

The reweighted‐�1‐norm regularized algorithm shows a 
smaller spread in the relaxation times of the matched com-
ponents compared to the other voxel‐wise methods, but the 
differences with the NNLS algorithm are small. The SPIJN 
algorithm matches 3 components with T1, T2 relaxation times 
(52.17 ms, 10.00 ms), (1036.78 ms, 105.91 ms) and (1945.36 
ms, 510.75 ms). The computations for 100 voxels took 0.935 
s for the NNLS algorithm, 56.49 s for the �1 algorithm, 82.60 
s for the Bayesian method and 1.658 s for the SPIJN algo-
rithm. The computations were performed on a standard lap-
top (IntelCore i5‐6300U CPU @2.40GHz 2 cores, 4 threads).

3.1.2 | In vivo data
The 1.5 T measurement was used for in vivo comparison of the 
SPIJN algorithm to previously proposed MC‐MRF methods. 
Figure 4 shows the T1 and T2 values of the matched compo-
nents for the different algorithms and how they are grouped 
to a MW component, IEW and free water. Figure 5 shows 
the component weights for the different methods, grouped 
in the same manner as for the simulated data, including the 
NRMSE values. The processing time for the NNLS algorithm 
was 123 s, for the reweighted‐�1‐norm regularized algorithm 
169 min, for the Bayesian algorithm 89 min and for the SPIJN 
algorithm 171 s. The matrix size was 240 × 240, of which a 
ROI consisting of 32% of the voxels with signal above the 
noise threshold was selected, resulting in 18546 voxels.

The results of the NNLS and the reweighted‐�1‐norm reg-
ularized algorithm are very similar just as for the simulations, 
but visibly differ from the results of the Bayesian approach. 
The SPIJN algorithm shows similar structures for the IEW 
and FW components, but the estimated weights are less noisy 
compared to the voxel‐wise methods. Although the NRMSE 
of the NNLS, reweighted‐�1‐norm regularized and SPIJN 
algorithm are similar, the introduction of the joint sparsity 
constraint results in less noise and more clear anatomical 
structures in the estimated weights.

The results of the 2 MC‐MRF decompositions with 3 
fixed components are very different, depending on the chosen 
combination of relaxation times. Just as the SPIJN algorithm, 
they show less noise in the estimated weights compared to the 

T A B L E  1  An overview of relaxation times (ms) from25,29 for white and gray matter at 3 T

Average (ms) Std (ms) Min (ms) Max (ms) # Studies

T
1

Gray matter 1459 192.3 968 1815 20

White matter 974 210 728 1735 26

T2

Gray matter 92.6 16.9 65 110 5

White matter 60.8 13.1 49.5 79.6 4

The tables include the number of studies resulting in the list of literature values used to determine the average values, standard deviations, and minimal and maximal 
values.



528 |   NAGTEGAAL ET AL.

voxel‐wise methods. The results of the first set are consistent 
with the results from,28 but the higher NRMSE indicates a 
lower consistency with the measured data. The second set of 
fixed components was based on the results from the SPIJN 
algorithm and the resulting weights are very similar to the 
results from the SPIJN algorithm.

The SPIJN algorithm resulted in 5 components, which 
are shown in Figure 6. These components were grouped to 
3 components in Figure 5, which was necessary in order to 
compare the results of SPIJN to the voxel‐wise algorithms.

3.2 | Repeatability of the SPIJN multi‐
component analysis
The 10 3 T measurements are used to test the repeatability 
over multiple healthy volunteers. The estimated T1 and T2 
relaxation times for the components related to white and gray 
matter are listed in Table 2. The results for the different meas-
urements are similar and in general within 1 or 2 steps of the 
dictionary resolution away from the mean value. Except for 
the T2 relaxation time of the gray matter, the matched values 
are consistent with literature values25 as tabulated in Table 1. 
While a single component is reconstructed for white matter 
with our decomposition, the voxels corresponding to gray 
matter also had a contribution from a component with longer 
relaxation times.

F I G U R E  2  The results of the simulations with 3 components comparing the 4 different MC‐MRF algorithms. Sequence 1 as shown in Figure 1  
was used in the simulation. A numerical phantom containing 3 different components was simulated with an SNR of 50. The numerical phantom 
consists of 100 pixels, the first component is present in each pixel with 10% and the other two components vary in the horizontal direction from 0 
to 90% in 10 steps. The first column shows the ground truth for the distribution of the weights for the different components and the other columns 
show the retrieved component weights with the different algorithms and the corresponding root mean squared error (RMSE) to the ground truth

FIGURE 3 The distribution of the matched components for the 
numerical phantom with the different algorithms. The boxes indicate how 
the components are grouped. The blue box is the short component, the 
green box the middle component and the red box the long component. 
The size of the circles corresponds to the relative abundance of the 
components. The 3 crosses give the locations of the true components

(A) (B)

(D)(C)
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Only 4 components were matched by the SPIJN algorithm 
in the 3 T brain measurements. These estimated component 
weights are shown for 1 volunteer in Figure 7. Component a and b  
are assumed to be related to white and gray matter respectively, 
whereas the other 2 components can be attributed to CSF.

4 |  DISCUSSION

A new algorithm with joint sparsity constraint was proposed 
to perform a MC‐MRF analysis. The SPIJN algorithm was 
theoretically described and its basic feasibility was demon-
strated in simulations and in vivo brain measurements. The 
proposed algorithm was compared to other recently proposed 
algorithms for MC‐MRF analysis as well as to the NNLS 
algorithm, and the repeatability of the results was demon-
strated in 10 healthy volunteers.

A first, general observation from the performed experi-
ments is that the NNLS and the reweighted‐�1‐norm regu-
larized algorithm give very similar results. Both algorithms 
try to solve the same mathematical problem, but the NNLS 

algorithm is much faster without the need for regularization. 
Second, the results from the Bayesian approach were signifi-
cantly different compared to the other algorithms. This can 
be explained by the absence of the non‐negativity constraint 
during the iterations of the algorithm.

To compare the voxel‐wise algorithms to the SPIJN 
algorithm, the results were grouped based on T1, T2 
ranges. Using larger grouping regions enables including all 
matched components, generally leading to smoother frac-
tion maps, but the grouped relaxation times are less related. 
When using smaller regions, it is more likely to miss com-
ponents, leading to noisier tissue fraction maps. Thus, the 
visualization of voxel‐wise methods is a difficult problem 
and the provided visualization may not be optimal for each 
of the individual algorithms, but nevertheless provides 
some basis of comparison between the results of different 
algorithms.

The numerical simulations showed that the proposed SPIJN 
algorithm can separate 3 components with improved accuracy 
and precision compared to voxel‐by‐voxel MC‐MRF approaches, 
with a FOV of 100 voxels and 10 voxels per component weight 

F I G U R E  4  The distribution of the matched components for the 1.5 T in vivo measurement from the 4 different algorithms and an approach 
with 2 different subdictionaries. The blue box is the short component (myelin water), the green box the middle component (white and gray matter) 
and the red box the long component (CSF). The size of the circles corresponds to the relative abundance of the components. The subdictionaries 
contain pre‐fixed components, set A is based on,28 set B on results from the SPIJN algorithm
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(D) (E) (F)
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combination. This indicates that the joint sparsity constraint can 
improve the stability of the ill‐posed inverse problem of MC‐
MRF already with a small number of voxels. Therefore, a patch‐
based approach, in which the joint sparsity is applied on small 

local neighborhoods is feasible, and could be an alternative to 
the global joint sparsity investigated in this work.

The results from the in vivo data in Figure 5 show that the 
SPIJN algorithm finds a small number of components that 

F I G U R E  5  The results of different MC‐MRF algorithms for a brain MRF measurement at 1.5 T. The rows correspond to the different 
grouped components and the columns to the different algorithms. The last 2 columns contain the results using dictionaries using only 3 
components. The color indicates the relative weight of the (grouped) component in each voxel. The first row has a different color scale than the 
lower 2 rows

(A) (B) (C) (D) (E) (F)

(L)(K)(J)(I)(H)(G)

(M) (N) (O) (P) (Q) (R)

F I G U R E  6  The 5 components matched by the SPIJN algorithm for a measurement at 1.5 T. The color indicates the relative weight of the 
component in each voxel. The relaxation times for the different components are given. To indicate the grid spacing at a certain point the symbol ⇕ 
is used, indicating the average distance to the next lower and next higher relaxation time for the matched T1, T2 combination. The relaxation times 
of component a are related to myelin water, the relaxation times of component b to white mater, the relaxation times of component c to gray matter 
and the relaxation times of components d and e to CSF

(A) (B) (C)

(E)(D)
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form a common basis for the measured MRF signal of the 
entire ROI, without significantly increasing the representa-
tion error compared to voxel‐by‐voxel MC‐MRF approaches. 
The relaxation times of these components are centered within 
clusters formed by the relaxation times obtained by the voxel‐
by‐voxel algorithms on the (T1‐T2) plane. The SPIJN algo-
rithm results in a similar noise level in the component weights 
as the approach with 3 fixed, a priori chosen components, 
but it additionally has the freedom to better adapt the chosen 

components to the data. The components obtained by the 
SPIJN algorithm can be interpreted as basis tissues that com-
pose the tissue within each voxel and form the mixed signal 
measured in MRF. These components are recovered merely 
with the assumption of sparsity and don’t necessarily need 
to correspond to known physical tissues. Depending on the 
coherence of the dictionary and the selected regularization 
parameters, it is possible that multiple components would be 
recovered as a single mixed component or a single compo-
nent is split into multiple in the decomposition. While the  
ability of the algorithm to accurately separate multiple com-
ponents was confirmed in simulations, in‐vivo validation is 
more difficult since the number of components is unknown.

Nevertheless, in the performed experiments, the resulting 
MC‐MRF decompositions showed similarities to decompo-
sitions presented in previous works9-11 and can be related to 
known anatomical structures. With the proposed algorithm, 
5 components were observed for the 1.5 T measurement: 
one component that could be related to a MW component, 
2 components related to white matter and gray matter that 
were grouped to IEW for the comparison, and 2 more com-
ponents can be interpreted as free water. The weight of the 
MW component of 5% is lower than the MWF as known from 
T2 relaxation measurements (typically 10%). Although the 
results were much noisier, all algorithms were able to recover 
the MW component in the simulations, and the NNLS and 
reweighted‐�1‐norm regularized algorithm also resulted in a 
MW component of about 5% in the in vivo data. For the 3 T 
measurements, using a different MRF sequence, 4 compo-
nents were recovered. These are similar to the last 4 com-
ponents found in the 1.5 T experiment and can be related to 
white matter, gray matter and CSF, for which 2 components 
were found. Similar to,7,10 no short T2 component that can be 
attributed to MW was recovered for these data.

These results suggest that the number of components and 
the corresponding weights depend on the MRF sequence. 
Different sequences may have different sensitivity to short 

T A B L E  2  The matched relaxation times for the white matter and gray matter component for measurements at 10 volunteers at 3T

White matter T
1
 (mean 898.1 ms) Gray matter T

1
 (mean 1241.0 ms)

Relaxation time 
(ms)

829.26 881.00 935.96 994.35 1056.39 1192.32 1266.70 1345.73

Grid step size 
(ms)

50.22 53.35 56.68 60.21 63.97 72.20 76.71 81.49

Count 1 6 2 1 2 1 4 3

White matter T
2
 (mean 53.2 ms) Gray matter T

2
 (mean 58.8 ms)

Relaxation time 
(ms)

49.58 53.64 58.03 49.58 53.64 58.03 62.78 67.92

Grid step size 
(ms)

3.90 4.22 4.57 3.90 4.22 4.57 4.94 5.35

Count 4 4 2 1 1 5 2 1

F I G U R E  7  The 4 components matched by the SPIJN algorithm 
for a measurement at 3.0 T. The color indicates the relative weight of 
the component in each voxel. The relaxation times for the different 
components are given. To indicate the grid spacing at a certain point 
the symbol ⇕ is used, indicating the average distance to the next lower 
and next higher relaxation time for the matched T1, T2 combination. 
The relaxation times of component a are related to white mater, the 
relaxation times of component b to gray matter and the relaxation 
times of components c and d to CSF

(A) (B)

(C) (D)
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T2 components. Differences in the estimated MWF were also 
reported between DESPOT and MESE measurements, sup-
porting the dependence on the acquisition method. By show-
ing these different results for the 2 similar sequences we want 
to stress the influence of the sequence on the recovered com-
ponents and the relevance f this as a topic of future research.

In addition, data inconsistencies due to an incomplete model 
used for the computation of the dictionary may bias the estima-
tion of the component weights. B1 compensation was included 
for the 3 T data, however, further effects like diffusion or magne-
tization transfer that were not considered may introduce potential 
bias. It would be interesting to investigate how more parameters 
can be efficiently included in the multi‐component analysis and 
their effect on the component estimation.

The proposed algorithm gives consistent results over 
repeated measurement in 10 volunteers as shown in Table 2. 
Direct comparison with literature values is difficult, since 
these studies do not take in to account the multi‐component 
effects. Furthermore the literature values from different stud-
ies are not very consistent (see Table 1), probably because of 
differences in the parameter mapping sequences and fitting 
procedures, different segmentation tools, and potentially cer-
tain natural variation between volunteers. However, even a 
rough comparison can be useful in order to better understand 
the results from the multi‐component analysis. Performing 
such a comparison, we see that most relaxation times are in 
the range of ffkiliterature values, only the T2 of gray matter 
(mean 58.8 ms) is slightly shorter than the shortest value (65 
ms) reported in literature, which was from an Gradient‐spoiled 
MRF measurement,26 but within the uncertainty range. Most 
parts of the gray matter are not matched as 1 component, but 
as a combination of component b and d (see Figure 7), where 
the latter has long relaxation times, which will lead to longer 
relaxation times for single component matching.

As already reported in,8,10 MC‐MRF is more sensitive to 
noise and the signal perturbations from undersampling can 
cause significant noise amplification in the estimated weights. 
One can use very long sequences with few thousand time 
points in order to gain back the SNR lost by undersampling. 
In this work, we chose to use a relatively short fully sampled 
MRF sequence instead, in order to ensure practical processing 
times for the computationally demanding approaches7,8 used 
in the comparisons. It is known that advanced reconstruction 
methods30-33 can be applied to reconstruct artifact free image 
series from the undersampled MRF data, which enables the 
application of multi‐component analysis on undersampled 
data with short MRF sequences (see Supporting Information 
Figure S2). The optimal choice of the MRF sequence and the 
reconstruction method are out of the scope of this study, but 
will be interesting topics for future research.

In this study, the regularization parameter was selected such 
that it minimizes the number of components without increas-
ing the NRMSE compared to regularized voxel‐wise methods, 

which was used as quality measure of the fit. Alternatively, the 
regularization parameter can be chosen in a way that specific 
number of components are recovered, or estimated with meth-
ods similar to the �2 misfit used for T2NNLS.3

A requirement from the non‐negativity constraint is that 
the signal and dictionary are real valued. For the FISP MRF 
sequence with constant TE it is possible to make this required 
transformation from a complex to a real signal, since the 
phase is constant for all time points. When a different MRF 
acquisition is used, resulting in temporal phase evolution, the 
phase difference between dictionary and signal may be more 
challenging to determine. When this phase is determined, the 
real and imaginary part of the signal can be concatenated to a 
real signal to perform the MC‐MRF analysis.

This initial technical feasibility study was performed on 
healthy volunteers only. The ability to capture different tis-
sues or pathology depends on the sensitivity of the used MRF 
sequence for the tissue of interest. Based on the results from 
Badve et al34 we think brain tumors would result in 1 or 2 
extra components. Investigating the proposed algorithm, the 
effects of the regularization parameter and influence of the 
MRF sequence for MC‐MRF in patients would be an import-
ant step toward the validation of the approach.

5 |  CONCLUSION

The sparsity promoting iterative joint NNLS (SPIJN) algo-
rithm was proposed to solve the multi‐component MRF prob-
lem through the introduction of a joint sparsity constraint. 
The introduction of the joint sparsity constraint leads to a 
higher robustness to noise compared to existing methods and 
results in a small number of components matched throughout 
the ROI. This makes the results directly interpretable with-
out further assumptions or complex regrouping strategies.  
The proposed algorithm finds a small number of components 
in MRF brain measurements,that can be attributed to known 
anatomical structures and requires a minimum of further 
processing of the results. The proposed algorithm is over 
10 times faster than previously proposed algorithms for multi‐
component MR fingerprinting analysis, which facilitates the 
potential application of the method in a clinical setting.
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SUPPORTING INFORMATION

Additional supporting information may be found online in 
the Supporting Information section at the end of the article.

FIGURE S1 Results from partial volume estimation based 
on k‐means clustering as proposed by Deshmane et al6 
applied to the 1.5T MC‐MRF measurement as used for 
Figure 6. MRF‐mapped relaxation times from a single com-
ponent matching are used for a k‐means clustering method 
to determine the k = 3 main tissue components. The NNLS 
algorithm is used to find a multi‐component solution with the 
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subdictionary containing these 3 components. The k‐means 
clustering method, with a fixed number of components, 
results in pure tissues in most of the voxels, in contrast to the 
SPIJN algorithm
FIGURE S2 The effect of undersampling on the MC‐MRF 
decomposition using the SPIJN algorithm. Fully sampled 
data from an MRF acquisition using Sequence 1 was retro-
spectively undersampled with an undersampling factor of 
12. This dataset was iteratively reconstructed with matrix‐
completion.32 Figure S1A shows the results of the SPIJN 
algorithm for fully sampled data, Figure S1B shows the 

results for the iteratively reconstructed undersampled data. 
The matched components are at most one grid step apart and 
the resulting fraction maps are almost identical
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