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Abstract

New viruses are continuously emerging and recently there have been many

great concerns on severe acute respiratory syndrome coronavirus (SARS-CoV-2).

Nanographene oxide (nanoGO) has receivedmuch attention and is widely investigated

to be utilised in therapy for infectious diseases by viruses. Thus, antiviral activity of

nanoGO was evaluated using the porcine epidemic diarrhoea virus (PEDV), bovine

coronavirus (BCoV), and SARS-CoV-2, which are all Alpha- and Beta-coronavirus. In a

virus inhibition assay, the three viruseswere inhibited by nanoGO in a dose-dependent

manner, including attempts in the presence of high serum solutionwhich partiallymim-

icked biological fluid.
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1 INTRODUCTION

Vaccines are widely accepted as an effective tool for responding to

infectious diseases caused by viruses. However, they have limited
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effects against certain viruses, and the process for vaccine develop-

ment usually begins after a new virus emerges and takes a long time

to be commercialised. Recently, the coronavirus disease (COVID-19)

causedby SARS-CoV-2, a novel beta-coronavirus originating frombats,
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hasbeen inducing a global pandemic situation and severely threatening

public health and global economy (Zhou et al., 2020). Several species

belonging to Alphacoronavirus and Betacoronavirus, like PEDV or BCoV,

have also been causing serious economic losses in livestock production

(Luo et al., 2020). Thus, novel antiviral substances to broadly and effec-

tively control virus infections are being largely demanded.

Up to date, there are several kinds of agents that are known to have

antiviral activities (Chen& Liang, 2020). Graphene oxide (GO), an ultra-

thin carbonmaterial, is oneof theseagents that hasbeendemonstrated

with the functionofbroad-spectrumantiviral activity (Songet al., 2015;

Yeet al., 2015).GOhas alsobeen regardedas anexcellent candidate for

anti-inflammatory and -microbial therapy (Lee et al., 2020).

NanoGO, a graphene oxide with nanoscale lateral dimension

(Sanchez et al., 2012), displays antiviral activity which was demon-

strated in previous studies. In brief, GO in combination with silver

nanoparticles can inhibit the infectivity of FeCoV, IBDV and PRRSV

(Chen et al., 2016; Du et al., 2018). Additionally, label-free GO possibly

captures and changes the structure of surface protein of Enterovirus

A71 and avian influenza virus serotype H9N2 (Song et al., 2015). Ian-

nazzo et al. (2018) constructed graphene quantum dots (GQDs) based

systems that highly inhibited HIV replication in vitro. The biological

characterisations of nanoGOvary based on its own physical properties

like size, oxidative level, as well as those of its additional groups.

However, the biological properties of nanoGOmight be affected in the

presence of serum (Song et al., 2020) and the cytotoxic effects of GO

is size-dependent (Zhao et al., 2016), thus its application in therapy

has been limited so far. Faced with the serious pandemic of COVID-19,

nanoGO and its deliveries were considered as a great virucidal mate-

rial to be applied in antiviral surfaces and coatings (Palmieri & Papi,

2020; Seifi & Reza Kamali, 2021; Srivastava et al., 2020). Based on the

great potential antiviral activity of this substance mentioned above,

this studywas carried out to test the antiviral properties of GO against

coronaviruses (PEDV, BCoV and SARS-CoV-2) in the presence of high

organic materials (5% FBS).

2 MATERIALS AND METHODS

In this study, nanoGO was evaluated for antiviral activity in a solution

partially mimicking biological fluid with the use of serum. The active

ingredient, 1% nanoGO solution (3 mg/mL), was prepared according to

the previous publication (Lee et al., 2020). The morphology of nanoGO

was observed by FE-SEM: XL30 (Philips), HR-TEM: JEM-ARM200F

(Cold FEG, JEOL Ltd, Japan) and AFM: SPM-9700HT (Shimadzu). The

size of particles was analysed by CPS DC24000 particle analyser (CPS

instrument, USA). Other characteristics of nanoGO were identify by

Raman Spectroscopy NRS-3300 (Japan), FT-IR (TENSOR27, Bruker,

Germany), XRD (SmartLab, Rigaku, Japan) and XPS (AXIS SUPRA,

Kratos, UK)

Steps in testing the antiviral activity of nanoGO are summarised as

follows. The original solution of nanoGOwas diluted in DMEM supple-

mented with 5% FBS. Each dilution was mixed with an equal volume

of virus solution with known titre or with suitable cell culture medium

for control of nanoGO toxicity. The mixtures of virus-nanoGO and

nanoGO control were incubated at a defined temperature for 60 min-

utes. Subsequently, viral titrations of each mixture were performed on

a susceptible cell line.

More specifically, for antiviral activity against PEDV/BCoV, nanoGO

was diluted 50- to 800-fold inDMEMsupplementedwith 5%FBS. Each

dilution was mixed with equal volume of either PEDV (DR13 strain)

or BCoV (BC94 strain) having a titre of 107 TCID50/mL. The incu-

bation time at room temperature was 60 minutes. PEDV and BCoV

after treatment with nanoGO were titrated on Vero cells using the

methods described previously (Hansa et al., 2013; Song et al., 2003).

A maximum dilution factor, in which the virus titre was reduced by

at least 4 log10, was determined to be an effective dilution factor

(Agriculture-Forestry and Livestock Quarantine Headquarters, 2018).

Antiviral effect of nanoGO was expressed by % inhibition, which was

calculated as follows: [log10 (TCID50/mL of virus) – log10 (TCID50/mL

of treatment)]/ (log10 (TCID50/mL of virus) × 100% (Chen et al., 2016).

Additionally, immunofluorescence assays (IFA) were performed to

detect the replication of living virus post-treatment more precisely.

An IFA was performed 24 hours post-inoculation using the PEDV

IFA kit (MEDIAN Diagnostics, South Korea) and BCoV 1st antibody

(provided by MEDIAN Diagnositic). Statistical analysis was performed

using GraphPad Prism version 8.0.2.

For antiviral activities against SARS-CoV-2, theneutralising testwas

conducted using the previous method (Manenti et al., 2020) with mod-

ifications. The nanoGO solutionwas serially diluted two-fold in DMEM

supplemented with 5% FBS. Subsequently, the SARS-CoV-2 (Beta-

CoV/Korea/KCDC03/2020)of25TCID50/mLwasmixedwithequal vol-

ume of the diluted nanoGO. Themixtureswere incubated for 60min at

37◦C. After incubation, 0.1 mL of each nanoGO mixture was infected

to a monolayer of Vero E6 cells. The presence/absence of cytopathic

effect (CPE) was monitored daily for 5 days. The neutralising titres

were expressed as the reciprocal of the highest dilution,which resulted

in the inhibition of CPE. All experiments related to SARS-CoV-2 were

performed in BL3 facility.

3 RESULTS

In this study, using improved Hummer’s method described before, we

obtained the nanoGO material sharing similar size with that of the

study conducted by Lee et al. (2020). In brief, FE-SEM results indicated

that the lateral size of nanoGOparticleswas less than50nmwith irreg-

ular shapes. Particle analysis results indicated thatmost of thematerial

were less than30nm in sizewith the average size of 20nm (Figure S1a).

HR-TEM had previously been applied to observe the layer structure of

nano-particles (Çelik et al., 2017; Gonçalves et al., 2014; Yang et al.,

2014). Therefore, we applied this method in combination with image

analysis to determine the diameter of particles. The results revealed

that most of nanoGO particles contained 1 to 3 layers (Figure S1b).

AFM results also indicated that the height of nanoGO particles were

around 1–2 nm (Figure S1c), supporting the HR-TEM result. Raman

spectra analysis exhibited the D peak of approximately 1350 cm−1 and
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F IGURE 1 Antiviral activity of nanoGO against PEDV and BCoV in
different dilution factors. The denoted letters indicate the statistically
significant differences among dilution factors in each group (p< 0.05).
The asterisk demonstrated the significant differences among groups
(*p< 0.05; **p< 0.01)

a G band at 1600 cm−1, which are known peaks specific to GO (Fig-

ure S1d). Functional groups and oxidative state of nanoGO were mea-

sured by the Fourier-transform infrared spectroscopy (FT-IR), X-ray

photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). GQD’s

FT-IR spectrum analysis revealed the major peaks of O–H (around

3420 cm−1), C–H (2928 and 2850 cm−1), COOH (1730 cm−1), C = O

(1630cm−1), CH2 (1465cm
−1) andC–O(1044cm−1) (FigureS2a). XRD

analysis clearly showed a peak at a low diffraction angle (2θ = 10.32◦

with an interlayer spacing about 8.57 A◦) which represents a high

oxidative level of this material (Figure S2b). In XPS analysis, the bind-

ing energy of C–C (284.50 eV), C–O (286.68 eV) and C=O (288.36 eV)

weremeasured (Figure S2c).

The toxicological effect is the highest criteria for consideration

before applying nanomaterial in reality. In this study, cytotoxicity of

nanoGO, which was represented as the presence of CPE, was not

observed in Vero cell at the lowest dilution of 1/50 (Table S2). Addi-

tionally, CPEwas not observed at the dilution factor of½whenwe per-

formedneutralisation test against SARS-CoV-2 (Figure 3). Therefore, it

is reasonable to conclude that there was no cytotoxicity of nanoGO at

the investigated concentration.

Theantiviral activity of nanoGOwas initially demonstrated for coro-

naviruses (PEDV, BCoV) inducing diseases of animals. It was observed

that increasing the dilution of nanoGO (1/50 to 1/800) increased the

titres of PEDV/ BCoV from 0.0 to 6.3/6.4 log10 TCID50, gradually

approaching the titres in themock-treated groups (bothwere 6.6 log10

TCID50). The results implied that nanoGO exerted in vitro antivirus

activity against PEDV/BCoV in a dose-dependentmanner. In detail, the

highest antiviral activities of nanoGO against PEDV and BCoV were

achieved at 72.1% and 61.9%, respectively. However, there was little

to no antiviral effect of nanoGO obtained for PEDV and BCoV when

the nanoGO solutionwas dissolved to the concentrations of 0.00125%

and 0.2% (p > 0.05) (Figure 1). Furthermore, at up to 1/300 dilution,

nanoGO revealed themore effective antiviral agent against PEDV than

against BCoV (p < 0.01) (Figure 1). At 100 times diluted, nanoGO

blocked more efficiently the replication of viruses (columns 2 and 3,

Table S1). The virucidal activity of nanoGO was also confirmed by IFA

staining (Figure 2). The infected cells (green fluorescence) were not

observed at low dilution (1/50) of nanoGO (Figure 2a, f). However, the

active agent at a dilution of 1/100 or higher (Figure 2b, c, g and h) was

unable to completely inactivate the viruses.

The antiviral activity of nanoGOwas also detected for another coro-

navirus, SARS-CoV-2 which is the causative agent of the COVID-19

pandemic (Zhou et al., 2020). As shown in Figure 3, nanoGO in the

range of 1/2–1/8 dilution inhibited the replication of SARS-CoV-2 (no

cytopathic effects were observed). From the 1/16 dilution, nanoGO

failed to inactivate the replication of the virus. However, the level of

SARS-CoV-2 inhibition was not determined in this study. Combining

the results presented in Table S1 and Figures 1–3, it was inferred that

nanoGOwas a broad-spectrum antiviral agent against different coron-

aviruses causing diseases in animals and humans.

4 DISCUSSION

In literature, graphene oxide (GO) is known to be a biocompatible sub-

stance with no indication for causing any harmful effects in exper-

imental animals (Lee et al., 2020) and with low cytotoxicity to cell

lines (Kuo et al., 2017; Sametband et al., 2014; Ye et al., 2015). Previ-

ous studies indicated that the bactericidal and cytotoxic activities of

nanoGO depended on its size (Liu et al., 2012; Zhao et al., 2016). In

brief, nanoGO with lateral dimensions larger than 50 nm significantly

reduced the viability of Escherichia coli and macrophage cells. In this

study, we used nanoGO with the average size of 20 nm, which caused

no harmful effects on Vero cells. Additionally, this type of nanoGOwas

also demonstrated as safe in in vivomodels (Lee et al., 2020).

NanoGO is known for its inhibition property against a wide range of

viruses, both non-enveloped and enveloped (Chen et al., 2016), DNA

and RNA viruses (Ye et al., 2015). NanoGO could trigger the cytokine

response that might inhibit the viral replication process in the host

cell (Lategan et al., 2018). The anti-microbial effects of nanoGO highly

depend on several factors like exposed time, concentration, and lat-

eral size. Furthermore, virucidal activities of nanoGO are also varied

against different viruses. NanoGO and its deliveries significantly inac-

tivated PRV and PEDV at the concentration of 6 μg/mL after 1 hour

by destroying viral morphology (Ye et al., 2015). Chen et al. (2016)

applied graphene oxide alone or in combination with nano-silver to

inhibit different types of viruses. The results indicated that only GO–

Ag showed the effective antiviral activities against low titre of FCoV

and IBDV at 0.125 mg/mL while GO only inhibited the infection of

FeCoV after a 1-hour treatment. However, the authors using another

method for preparing GO resulted in a difference of oxidised carbon

material (Marcano et al., 2010). Antiviral activity of GO against Alpha-

coronavirus and Betacoronavirus was demonstrated in this study with

an expansion to the emerging SARS-CoV-2 (Figures 1–3). Our results

were highly supported by a recent study that confirmed the trapping

effect of nanoGOagainst SARS-CoV-2 (Maioet al., 2020).However, our

study also demonstrated other virucidal aspects of GO by finding that

its viral inhibition remained to a certain extent in the presence of high
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F IGURE 2 IFA assay demonstrating the replication of PEDV and BCoV post nanoGO incubation. Cells with fluorescent signals (arrows) were
virally infected. The higher number of fluorescent cells, the higher the amount of viral replication

F IGURE 3 The cytopathic effects (CPE) induced by SARS-CoV-2 under different concentrations of nanoGO. It was observed that nanoGO at a
dilution higher than 1/8 failed to completely inhibit the replication of the virus (CPE positive)

organic material (5% FBS). This fact should be further investigated due

to a significant difference in dose- response of nanoGO against PEDV/

BCoV (Figures 1 and 2) and SARS-CoV-2 (Figure 3).

Overall, this study demonstrated the antiviral activity of nanoGO in

a setting that partially mimicked biological fluid. This results also sug-

gest that the antiviral activity of nanoGO could be achieved without

causing harm to the cell. The concentration dependent fashion of viral

inhibition was observed for all enveloped viruses of PEDV, BCoV and

SARS-CoV-2. However, since antiviral activity on non-enveloped virus

was not evaluated, further study is required.
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