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There are contrasting data in the literature about antituberculosis plasma drug concentrations in HIV-1-coinfected patients. We
report the pharmacokinetics of rifampin, isoniazid, and pyrazinamide in a cohort of patients being treated for active tuberculo-
sis, the majority of whom were coinfected with HIV-1 and had commenced antiretroviral therapy within 2 months of starting
antituberculosis treatment. We also examined the association between antituberculosis drug concentrations and reported drug
side effects at the 2-month clinical review. One hundred patients with pulmonary tuberculosis (65% coinfected with HIV-1) were
intensively sampled to determine rifampin, isoniazid, and pyrazinamide plasma concentrations after 7 to 8 weeks of a daily qua-
druple-therapy regimen dosed according to World Health Organization (WHO) weight bands. Pharmacokinetic parameters
were determined for each patient by using nonlinear mixed-effects models. HIV-1-coinfected patients had lower clearance rates
for rifampin (21% decrease) and isoniazid (23% decrease) than HIV-1-uninfected patients, with resulting higher areas under the
concentration-time curve from 0 to 24 h (AUC0 –24) and maximum concentrations of drug in serum (Cmax). Antiretroviral ther-
apy (ART) that included double-standard-dose lopinavir/ritonavir further lowered rifampin clearance, by 46%, and increased
the AUC0 –24. The current uniform dosing (per kilogram of body weight) across WHO weight bands was associated with a trend
of decreased pharmacokinetic exposures for the lowest weight band. Use of fat-free mass as opposed to total body weight for al-
lometric scaling of clearance significantly improved the model. Ambulant HIV-1-coinfected patients, the majority of whom were
coprescribed ART, did not have reduced antituberculosis drug concentrations compared to HIV-1-uninfected patients.

Despite global initiatives prioritizing reductions of the inci-
dence and mortality attributable to tuberculosis (TB), in

2014 there were an estimated 9.6 million new TB cases (12% of
patients were coinfected with HIV-1) and 1.5 million deaths (27%
of patients were coinfected with HIV-1) (1). In the case of rifam-
pin-susceptible pulmonary tuberculosis, World Health Organiza-
tion (WHO) guidelines advocate a daily regimen of 2 months of
intensive-phase therapy with the first-line drugs rifampin, isoni-
azid, pyrazinamide, and ethambutol followed by 4 months of con-
tinuation-phase therapy with rifampin and isoniazid. Fixed-dose
combination formulation (FDC) tablets are widely used to deliver
standardized doses according to weight (2).

There are multiple causes leading to significant interindividual
pharmacokinetic (PK) variability, including pharmacogenomics
(3, 4), sex (5, 6), weight (6), and comorbidities, such as diabetes
mellitus (5, 7–9). There have been contrasting findings published
regarding the effect of HIV-1 coinfection on anti-TB drug phar-
macokinetics, with some studies showing reduced drug exposures
(10–12) and others showing no significant difference between
HIV-1-coinfected and -uninfected patients (5, 13–15). Of note,
the cohorts studied had various degrees of nutritional deprivation
and immunosuppression and various proportions of patients
concurrently taking antiretroviral therapy (ART). As other studies
have shown contradictory findings on the role of plasma drug
concentrations of anti-TB drugs, we thus wished to further ad-
dress this in a contemporary cohort with good access to ART,
resulting in many patients on ART and in HIV-1-coinfected pa-
tients generally being less advanced in terms of immunosuppres-
sion than the case in historical reports.

We hypothesized that there would be lower plasma drug concen-

trations of anti-TB drugs in HIV-1-coinfected patients than in HIV-
1-uninfected patients. We aimed to assess pharmacokinetic parame-
ters of rifampin, isoniazid, and pyrazinamide in a cohort with an
adequate sample size by utilizing strong pharmacokinetic analysis
methods to allow relatively accurate delineation and attribution of PK
variability. Due to budgetary constraints, we focused on the three
drugs with foremost importance in the anti-TB regimen (16).

The relationship between drug concentrations of standard-dose
first-line anti-TB drugs and drug side effect profiles is unclear. Serious
adverse drug reactions (common terminology criteria for adverse
events [CTCAE] [17] grade 3 and above), such as drug-induced hep-
atotoxicity, are well documented and can sometimes be attributed to
a specific anti-TB drug based upon temporality, cessation, and se-
quential drug rechallenge (18). Mild to moderate drug side effects of
CTCAE grades 1 and 2 are common (19–21). Although these may be
difficult to attribute to a specific anti-TB drug with any certainty, they
are likely to contribute to suboptimal adherence (22) and may ad-
versely affect treatment outcomes (19).
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We also aimed to determine whether plasma drug concentra-
tions were associated with reported drug side effects at 2 months.

MATERIALS AND METHODS
Patients. Patients with GeneXpert MTB/RIF-confirmed rifampin-sus-
ceptible pulmonary TB were recruited at the Ubuntu HIV/TB Clinic, Site
B, Khayelitsha, South Africa, as part of a prospective cohort study (Hu-
man Research Ethics Committee approval 568/2012) assessing the fre-
quency and determinants of acquired drug resistance in a programmatic
setting. A subcohort was invited to participate in a nested pharmacoki-
netic study between July 2013 and April 2014. All patients provided writ-
ten consent prior to participation. Detailed sociodemographic data, past
TB treatment history, and comorbidity data were collected. Participants

underwent HIV testing (Abbott Architect HIV Ag/Ab Combo test), a CD4
lymphocyte count, and HIV-1 viral load quantification at baseline. An-
ti-TB drugs were delivered in a 4-drug FDC supplied by the National
Tuberculosis Control Programme (Rifafour e-275 [Sanofi-Aventis] or
Ritib [Aspen, South Africa]). Each tablet contained rifampin at 150 mg,
isoniazid at 75 mg, pyrazinamide at 400 mg, and ethambutol at 275 mg.
Weight band-based dosing was used in line with WHO guidelines (2).
Patients weighing 38 to 55 kg, �55 to 70 kg, and �70 kg were given doses
of 3, 4, and 5 tablets, respectively. Anti-TB drugs were administered 7
days/week, along with 25 mg pyridoxine. Clinical care remained the re-
sponsibility of the Site B TB clinic.

Characterization of side effects. Patients were interviewed at the
2-month clinical review by use of a systems-based symptom questionnaire

TABLE 1 Clinical characteristics of the cohort, stratified by HIV-1 serostatus

Clinical characteristica

Value

Whole PK cohort
(n � 100)

HIV-1-infected patients
(n � 65)

HIV-1-uninfected patients
(n � 35)

Male (no. [%]) 57 (57) 30 (46) 27 (77)
Xhosa ethnicity (no. [%]) 98 (98) 63 (97) 35 (100)
Median (IQR) age (yr) 33 (29–40) 34 (30–40) 32 (27–38)

No. (%) of patients with smoking history
Current 24 (24) 9 (14) 15 (43)
Previous 27 (27) 19 (29) 8 (23)
Never 49 (49) 37 (57) 12 (34)

No. (%) of patients with characteristic
Alcohol consumption 37 (37) 16 (25) 17 (49)
Recreational drug use 5 (5) 3 (5) 2 (6)
Previously in prison 14 (14) 10 (15) 4 (11)
Previous mining history 5 (5) 1 (1) 4 (11)
Retreatment 39 (39) 29 (45) 10 (29)
Type 2 diabetes mellitus 4 (4) 3 (5) 1 (3)

Median (IQR) BMI at baseline (kg/m2) 21 (19–23) 21 (20–23) 20 (19–23)
Median (IQR) BMI at PK study (kg/m2) 21.5 (20–23) 22 (20–23) 20.5 (19–23)
Median (IQR) FFM at PK study (kg) 45 (38–49) 40.5 (36–47) 49 (46–51)
Median (IQR) CD4 count (cells/mm3) 233 (106–386)
No. (%) with viral load of �40 copies/ml at baseline 17 (26)
Median (IQR) albumin concn at PK study (g/liter) 38 (34–40) 36 (34–39) 38 (40–43)
Median (IQR) total protein concn at PK study (g/liter) 86 (79–92) 88 (82–93) 82 (75–86)
Median (IQR) time on ART at time of PK study (mo) 1.32 (0–15.5)

No. (%) of patients with smear grade at baseline
3� 24 (24) 14 (21.5) 10 (29)
2� 22 (22) 11 (17) 11 (31)
1� 20 (20) 14 (21.5) 6 (17)
Scanty/negative 34 (34) 26 (40) 8 (23)

Median (IQR) baseline time to culture positivity (days) 10 (7–14) 12 (7–15) 8 (6.5–12.5)
No. (%) of patients with extensive radiological disease at baseline 71 (71) 41 (63) 30 (86)
No. (%) of patients with cavities at baseline 52 (52) 32 (49) 20 (57)

Median (range) dose at PK study (mg/kg)
Rifampin 10 (7–11.5) 10 (7–11.5) 10 (7–11.5)
Isoniazid 5 (3.5–6) 5 (4–6) 5 (3.5–6)
Pyrazinamide 26 (19–31) 26 (20–31) 25.5 (19–31)

No. (%) of patients with side effects of TB treatment 35 (35) 25 (38) 10 (29)
No. (%) of poorly adherent patients per pill counts/self-reports

at 2-month review
10 (10) 8 (12) 2 (6)

a Characteristics are reported for the time of diagnosis (baseline) unless otherwise specified (at PK visit or 2-month visit). Abbreviations: BMI, body mass index; FFM, fat-free mass;
ART, antiretroviral therapy; PK, pharmacokinetics.
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that included the categories central nervous/neuropsychiatric, peripheral
nervous, gastrointestinal, musculoskeletal, skin, and other. Attribution of
causality to the anti-TB regimen was made in the “probable”/“possible”
categories per the WHO-Uppsala Monitoring Center system (18).

Pharmacokinetics. Pharmacokinetic sampling was carried out for ri-
fampin, isoniazid, and pyrazinamide after 7 to 8 weeks of anti-TB drugs.
This time point was chosen to maximize applicability to a programmatic
setting, i.e., a point of routine evaluation prior to switching from inten-
sive-phase to continuation-phase therapy. In addition, this time point
ensured that a majority of HIV-1-coinfected patients were prescribed
ART and that rifampin autoinduction would be complete. Patients fasted
for 8 h on the day of pharmacokinetic study and consumed standardized
meals at 2 h and 4 to 5 h postdose. Blood samples were obtained imme-
diately before (predose) and 1, 2, 3, 4, 6, and 8 h after drug ingestion. They
were immediately placed on ice, and plasma was separated by centrifuga-
tion within 30 min before storage at �80°C until analysis. The storage
tubes containing the plasma samples were transferred on dry ice to the
Pharmacology Laboratory at the University of Cape Town, where drug
concentrations were determined using validated liquid chromatography-

tandem mass spectrometry (LC-MS/MS) methods. The methods were
validated over the following concentration ranges: 0.0977 to 26.0 �g/ml
for isoniazid, 0.117 to 30.0 �g/ml for rifampin, and 0.200 to 80.0 �g/ml
for pyrazinamide (23). The % nominal concentration (accuracy) values
were 99.2%, 98.1%, and 99.4% for rifampin, 100.5%, 100.1%, and 99.4%
for isoniazid, and 100.8%, 103.7%, and 102.1% for pyrazinamide at the
low, medium, and high quality control levels, respectively, during inter-
day sample analysis. The precision (% coefficient of variation [% CV])
was less than 3% at the low, medium, and high quality control levels.
Concentrations of rifampin, isoniazid, and pyrazinamide below the vali-
dation range of the assay were reported as “below the limit of quantifica-
tion” (BLQ).

Plasma concentration-time data from all subjects were simultaneously
analyzed by a nonlinear mixed-effects model by utilizing Monolix (ver-
sion 4.3.3; Lixoft). Previously published structural models were selected
and optimized with the current data (24–26). The structural models tested
included one- and two-compartment dispositions with first-order elimi-
nation and first-order absorption, with the presence of an absorption lag
time or a delay modeled via a chain of transit compartments. Interocca-

TABLE 2 Parameter values estimated by the final pharmacokinetic model for rifampina

Parameter Estimated typical value (95% CI)

% variability (95% CI), shrinkageb

Interoccasional Interindividual

Bioavailability (F) 1 (fixed) 29.1 (24.2–34.0), 20
Absorption lag time (h) 0.691 (0.590–0.791) 76.2 (62.0–89.9), 24
Absorption constant (h�1) 1.21 (1.03–1.38) 63.2 (49.0–77.5), 26

CL/F (liters/h)c

HIV-1-uninfected patients 25.1 (21.8–28.4) 34.3 (28.8–39.8), 10
HIV-1-infected patients not on LPV/r 19.9 (17.8–21.8) 34.3 (28.8–39.8), 10
HIV-1-infected patients on LPV/r 10.8 (7.08–14.5) 34.3 (28.8–39.8), 10

Vol of distribution (liters)c 56.4 (53.7–59.1)
Additive error (mg/liter) 0.196 (0.174–0.218)
Proportional error (%) 15.0 (13.2–16.8)
a Abbreviations: F, bioavailability; LPV/r, lopinavir/ritonavir; 95% CI, 95% confidence interval.
b Interindividual and -occasional variabilities were assumed to be lognormally distributed and are reported here as approximate % CV. For interoccasional variability terms, the
shrinkage is reported only for the occasion with intensive sampling (not the predose).
c Clearance and volume of distribution were allometrically scaled using individual values for fat-free mass (FFM), so the typical values reported here refer to the median value for
FFM in the cohort, i.e., 45 kg (e.g., a 1.7-m tall man weighing 51 kg).

TABLE 3 Parameter values estimated by the final pharmacokinetic model for isoniazid

Parameter Estimated mean population value (95% CI)

% variability (95% CI), shrinkagea

Interoccasional Interindividual

Bioavailability (F) 1 (fixed) 32.3 (27.2–37.4), 12
Mean transit time (h) 0.32 (0.12–0.51) 92.7 (65.3–120), 35
No. of absorption transit compartments 2.04 (1.55–2.53)
Absorption constant (h�1) 1.20 (1.03–1.36) 17.7 (11.8–23.6), 60

CL/F (liters/h)b

HIV-1-uninfected patients 26.0 (21.1–30.9) 54.8 (46.9–62.6), 3
HIV-1-infected patients 20.02 (12.9–25.2) 54.8 (46.9–62.6), 3

Vol of distribution of central compartment (liters)b 31.9 (30.8–36.2)
Intercompartmental CL/F (liters/h)b 12.6 (6.13–19.07)
Vol of distribution of peripheral compartment (liters)b 21.4 (18.5–24.4)
Additive error (mg/liter) 0.0146 (0.003–0.03)
Proportional error (%) 13.1 (11.9–14.3)
a Interindividual and -occasional variabilities were assumed to be lognormally distributed and are reported here as approximate % CV. For interoccasional variability terms, the
shrinkage is reported only for the occasion with intensive sampling (not the predose).
b All clearance and volume parameters were allometrically scaled using individual values for fat-free mass (FFM), so the typical values reported here refer to the median value for
FFM in the cohort, i.e., 45 kg (e.g., a 1.7-m tall man weighing 51 kg).
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sional variability (IOV) was included by treating the drug concentration
measured prior to the observed dose administration (predose concentra-
tion) as a separate pharmacokinetic occasion. Random interindividual
variability (IIV) and IOV values were assumed to be lognormally distrib-
uted, and correlations between the random effects were tested. A mixture
model was evaluated to explore the multimodal distribution of isoniazid
clearance (CL) due to the polymorphic N-acetyltransferase-2 (NAT2)
gene. Data points which were BLQ were treated as censored and han-
dled with the Monolix implementation of the M3 method (27). Allo-
metric scaling with either total body weight or fat-free mass (FFM)
(28) was applied to CL and the volume of distribution (V) as suggested
by Anderson and Holford (29). Fat-free mass was calculated using the
empirical model developed by Janmahasatian et al. (30), as follows:
FFM � (WHSmax � ht2 � wt)/(ht2 � WHS50 � wt), where “wt” de-
notes body weight in kilograms, “ht” denotes height in meters, and the
constants WHSmax and WHS50 have values of 42.92 and 30.93, respec-
tively, for men and 37.99 and 35.98, respectively, for women.

Other covariates tested included the effects of sex, age, serum albumin,
total protein, HIV serostatus, CD4 lymphocyte count (as a binary vari-
able, i.e., above or below 200 cells/mm3), type of ART (none versus non-
nucleoside reverse transcriptase inhibitor [NNRTI]-based ART versus
protease inhibitor [PI]-based ART), total dose, and dose (doses in milli-
grams per kilogram of body weight). Model development and selection
were based on optimization of the objective function value (OFV), inspec-
tion of goodness-of-fit plots, including visual predictive checks (n � 500),
and biological plausibility. Stepwise covariate selection was performed
using a drop in OFV of �3.84 (corresponding to a significance level of
5%) as the cutoff for inclusion and an increase of �6.63 OFV points as a
cutoff for the backward elimination step. The OFV was obtained using
importance sampling (n � 20,000), and the precision of the parameter
estimates was obtained using a stochastic approximation based on the
Fisher information matrix.

Finally, model-based individual pharmacokinetic parameter values
referring to the pharmacokinetic profile after the observed dose were used
in the R package Simulx (31) to simulate steady-state individual profiles
and to calculate the peak concentration (Cmax) and the area under the
concentration-time curve from 0 to 24 h (AUC0 –24).

Statistical analyses. The Wilcoxon-Mann-Whitney test was used to
compare PK exposures as those with side effects and those without. Lo-
gistic regression analyses were used to calculate odds ratios (ORs) for side
effects at different drug exposure quartiles, and the ORs were adjusted for
potential confounders. Stata, version 13.1 (College Station, TX), and
GraphPad Prism 6.0 (La Jolla, CA) were used for all analyses.

RESULTS
Patient demographics. Of the 100 study participants, 57% were
male and 65% were coinfected with HIV-1, with a median CD4

lymphocyte count of 233 cells/mm3 (interquartile range [IQR],
106 to 386 cells/mm3). Among HIV-1-coinfected patients, the
proportion on ART increased from 27/65 (42%) patients at base-
line to 50/65 (77%) patients at the time of pharmacokinetic study,
with 45/50 (90%) patients on NNRTI-based (96% on efavirenz
and 5% on nevirapine) regimens and 5/50 (10%) patients on PI-
based (lopinavir/ritonavir [LPV/r]) regimens.

The median (IQR) body mass index (BMI) and age were 21
kg/m2 (19 to 23 kg/m2) and 33 years (29 to 40 years), respectively.
Table 1 provides the clinical characteristics of the pharmacoki-
netic cohort, stratified by HIV-1 serostatus.

Patient pharmacokinetic parameters. The final population
pharmacokinetic parameter estimates for rifampin, isoniazid, and
pyrazinamide are shown in Tables 2 to 4, including the precision
of parameter estimates and shrinkage values for the random ef-
fects (32). Visual predictive checks are provided in Fig. 1.

The optimized structural model for rifampin was a one-com-
partment model with first-order elimination and first-order ab-
sorption, with an absorption lag time. A two-compartment model
with first-order elimination and absorption through a series of
transit compartments was optimal for isoniazid. Finally, a one-
compartment model with first-order elimination and transit com-
partment absorption was used for pyrazinamide. FFM was found
to be the most suitable body size descriptor for allometric scaling
of all CL and V parameters, and it improved the OFV by 20, 34,
and 64 points for rifampin, isoniazid, and pyrazinamide, respec-
tively.

Since HIV-1 serostatus (infected versus not infected) and
ART status (on ART versus not on ART) are colinear, the ef-
fects of the covariates HIV-1 status and ART status on the
pharmacokinetic parameters were tested separately. HIV-1 sta-
tus as a covariate caused improvement in the model to a greater
extent than ART status did (7-point versus 4-point drop in
OFV), and diagnostic plots were better for the model including
HIV-1 status; hence, this was selected in the final model rather
than ART status. The models found that HIV-1 coinfection
significantly decreased the CL of rifampin (21% decrease; OFV
drop of 7.00 points; P � 0.01) (Table 2) and isoniazid (23%
decrease; OFV drop of 8.63 points; P � 0.01) (Table 3). Inclu-
sion of HIV-1 coinfection in the covariate model did not sig-
nificantly improve the model fit for pyrazinamide. Although
HIV-1-infected participants had lower FFM than HIV-1-unin-

TABLE 4 Parameter values estimated by the final pharmacokinetic model for pyrazinamide

Parameter Estimated population value (95% CI)

% variability (95% CI), shrinkagea

Interoccasional Interindividual

Bioavailability (F) 1 (fixed) 13.1 (10.2–16), 31
Mean transit time (h) 0.74 (0.65–0.84) 54.5 (45.1–63.9), 19
No. of absorption transit compartments 2.06 (1.59–2.53)
Absorption rate constant (h�1) 50.0 (fixed)c

Vol of distribution (liters)b 41.9 (40.4–43.4)
CL/F (liters/h)b 4.17 (3.90–4.44) 29.6 (24.7–34.5), 8
Additive error (mg/liter) 1.95 (1.77–2.13)
Proportional error (%) 10.7 (9.60–11.80)
a Interindividual and -occasional variabilities were assumed to be lognormally distributed and are reported here as approximate % CV. For interoccasional variability terms, the
shrinkage is reported only for the occasion with intensive sampling (not the predose).
b All clearance and volume parameters were allometrically scaled using individual values for fat-free mass (FFM), so the typical values reported here refer to the median value for
FFM in the cohort, i.e., 45 kg (e.g., a 1.7-m tall man weighing 51 kg).
c The model estimated a very large value for the absorption constant, so it was fixed to 50 to stabilize the model without significantly affecting the fit.
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fected participants (Table 1), the effect of HIV-1 on CL was
independent of differences in FFM.

We split the covariate ART status into types of ART (i.e., no
ART, NNRTI-based ART, and LPV/r-based ART) and tested these
as further covariates (in addition to the HIV effect). We separately
tested the effects of both NNRTI-based regimens (yes/no) and
LPV/r-based regimens (yes/no) as covariates on bioavailability, V,
and CL in an optimized model which was already adjusted for the
effect of HIV-1 status on CL. On top of the effect of HIV-1 on CL,
patients on a double-dose LPV/r-based ART regimen (dosed at
800 mg/200 mg twice daily in all 5 cases) had a further significant
decrease in rifampin CL of 46% (OFV drop of 7.00 points; P �
0.01), and hence they had an increased AUC0 –24 (Table 2). When
the model was rerun with exclusion of the 5 participants on PI-
based regimens, the effect of HIV-1 on CL was still significant.

During model development, the multimodal distribution of
isoniazid CL attributed to the polymorphic nature of the NAT2
genotype (3) was described using a mixture model which im-
proved the model fit. However, the current version of Monolix
does not support both mixture modeling and estimation of in-
teroccasional variability, which was used to describe variability in
the predose sample, so the latter was included because it was more
significant in terms of model fit.

Figure 2 shows Cmax and AUC0 –24 values stratified by HIV-1
serostatus. For all 3 drugs, either pharmacokinetic exposures were
increased in those infected with HIV-1 or no difference was de-
tected. There were no differences in exposures between HIV-1-
infected patients with CD4 lymphocyte counts above and below
200 cells/mm3. Among HIV-1-infected participants, 41% had a
low isoniazid Cmax (�3 mg/liter), 75% had a low rifampin Cmax

FIG 1 (A) Visual predictive check for rifampin concentration versus time, stratified by HIV-1 serostatus and coadministration of lopinavir/ritonavir (LPV/r).
The blue dots are observed concentrations, and the red dots are simulation-based values below the limit of quantification (BLQ). Lines are 10th, 50th, and 90th
percentiles for observed data, while the shaded areas represent the 90% confidence intervals for the same percentiles, as predicted by the model. (B) Visual
predictive check for isoniazid concentration versus time, stratified by HIV-1 serostatus. The blue dots are observed concentrations, and the red dots are
simulation-based values below the limit of quantification (BLQ). Lines are 10th, 50th, and 90th percentiles for observed data, while the shaded areas represent the
90% confidence intervals for the same percentiles, as predicted by the model. (C) Visual predictive check for pyrazinamide concentration versus time. The blue
dots are observed concentrations, and the red dots are simulation-based values below the limit of quantification (BLQ). Lines are 10th, 50th, and 90th percentiles
for observed data, while the shaded areas represent the 90% confidence intervals for the same percentiles, as predicted by the model.
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(�8 mg/liter), and 31% had a low pyrazinamide Cmax (�35 mg/
liter) (33). Among HIV-1-uninfected participants, 46% had a low
isoniazid Cmax, 88% had a low rifampin Cmax, and 63% had a low
pyrazinamide Cmax.

The ranges of doses (in milligrams per kilogram of body
weight) for the three drugs are shown in Table 1. Eight partici-
pants required a change in weight band during treatment. Three
had their dose adjusted appropriately, one was put in a weight
band higher than his weight, and four were put in a weight band
lower than their weight. Hence, on the day of pharmacokinetic
sampling, 95 participants were being dosed correctly according to
current weight and height bands. Patients in the lowest weight
band had lower drug exposures, and this was explained by a rela-
tively higher CL in smaller individuals. Figure 3 shows differences
in pharmacokinetic exposures stratified by the WHO weight band
doses assigned by the program. The predictions shown included
allometric scaling with FFM, which accounted for the increased
clearance per kilogram of body weight in smaller individuals and
resulted in a significant improvement of the model.

All side effects were of CTCAE grades 1 and 2 and did not
require drug withdrawal. Thirty-five participants (35%) reported
CTCAE grade 1 and 2 side effects which were possibly/probably
attributed to anti-TB drugs, including central nervous system/
neuropsychiatric (4/35 patients), peripheral neuropathy (7/35 pa-
tients), nausea/gastrointestinal (11/35 patients), musculoskeletal
(11/35 patients), skin (8/35 patients), and other (2/35 patients)
effects. Patients presenting side effects had a significantly higher
median Cmax for isoniazid (4.42 mg/liter [IQR, 2.79 to 5.51 mg/

liter]) than those who did not (2.89 mg/liter [IQR, 2.28 to 3.87
mg/liter]) (P � 0.001). After adjustments for age, HIV-1 serosta-
tus, diabetes mellitus status, alcohol intake, and previous isoniazid
treatment, the highest quartile of isoniazid AUC0 –24 values was
still associated with increased side effects (OR, 7.11 [95% confi-
dence interval, 1.99 to 25.47]; P � 0.003) compared to the lowest
quartile of isoniazid AUC0 –24 values (Table 5). There were no
significant differences for rifampin or pyrazinamide (Fig. 4). Al-
though there was a trend of high isoniazid Cmax values for those
with central nervous system, peripheral nervous system, gastroin-
testinal, and musculoskeletal side effects, this was statistically sig-
nificant only for musculoskeletal side effects. A significantly
higher pyrazinamide Cmax was also seen for patients with muscu-
loskeletal side effects (Fig. 4).

DISCUSSION

Peak concentrations and AUC0 –24 values for rifampin, isoniazid,
and pyrazinamide were low and highly variable, and the findings
were comparable to those for other cohorts in both similar (south-
ern African) (6, 10, 13, 34, 35) and different (36–38) study popu-
lations. There have been previous studies examining anti-TB
pharmacokinetics in HIV-1-coinfected patients and an HIV-1-
uninfected comparator group. However, none of these studies
included HIV-1-coinfected patients concomitantly taking ART.
Reduced rifampin concentrations have been recorded for HIV-1-
coinfected patients with diarrhea, and this has been associated
with malabsorption and advanced immunosuppression (11, 39,
40). Further studies have also shown evidence of reduced rifampin

FIG 2 Pharmacokinetic measures Cmax and AUC0 –24, stratified by HIV serostatus and antiretroviral therapy regimen. The box-and-whisker plots show
model-derived PK measures. Cmax and AUC0 –24 are plotted on the left and right y axes, respectively. The boxes show medians and interquartile ranges. The
whiskers represent the 5th to 95th percentiles and illustrate the variability in both HIV-1-infected (�) and HIV-1-uninfected (�) patients and different
antiretroviral therapy categories. Patients on inhibitors appeared to have higher rifampin AUC0 –24 values than patients in the no-ART and NNRTI-based
categories. The dotted black lines indicate the current recommended thresholds for Cmax of 3 mg/liter, 8 mg/liter, and 30 mg/liter for isoniazid, rifampin, and
pyrazinamide, respectively. No tests for statistical significance were run to generate P values for these post hoc individual estimates, as the reported individual
values are based on the population PK models and are hence interdependent. The significance of the respective covariate effects (Tables 2 to 4) was tested within
the model. Abbreviations: ART, antiretroviral therapy; NNRTI, nonnucleoside reverse transcriptase inhibitor; PI, protease inhibitor; Cmax, maximum concen-
tration; AUC, area under the curve from 0 to 24 h.
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concentrations in HIV-1-coinfected patients (10, 12), while oth-
ers showed no significant difference (5, 13, 15, 41). There have also
been contrasting results in the literature regarding the effect of
HIV-1 coinfection on the pyrazinamide concentration (10, 42).

In this cohort of ambulatory patients, with 77% of HIV-1-
coinfected patients on ART, there was no evidence of lower
plasma concentrations of rifampin, isoniazid, or pyrazinamide in
HIV-1-coinfected patients. Conversely, the population pharma-
cokinetic model which accounted for the effect of FFM showed
evidence of reduced rifampin and isoniazid CL in HIV-1-coin-
fected compared to HIV-1-uninfected patients, leading to in-
creased AUC0 –24 values.

Although the use of ART or CD4 stratification as a covariate
did not significantly improve the model, there was an independent
effect of LPV/r versus no LPV/r on the rifampin AUC0 –24, which
again was explained by a reduction in CL. Although only 5 patients
in the study were on an ART regimen inclusive of LPV/r, the effect
of double-dose LPV/r on rifampin exposures was statistically sig-
nificant. This has not been reported previously. Rifampin is a sub-
strate of p-glycoprotein, organic anion-transporting polypeptide
1B1 (OATP1B1), and OATP1B3, which are involved in its trans-
porter-mediated efflux in the liver, and hence in biliary clearance.
Lopinavir and ritonavir are inhibitors of both p-glycoprotein and
OATP1/3 (43). Hence, this may be a potential mechanism for
decreased clearance of rifampin. Inhibition of gastrointestinal p-
glycoprotein may also increase systemic rifampin concentrations.
There are potential implications for dosing and toxicity profiles,
particularly in future regimens incorporating higher doses (per
kilogram) of rifampin, and these findings should be explored in
further pharmacokinetic studies. These results provide evidence
that at the time of switch to the continuation phase, ambulant
HIV-1-coinfected patients undergoing immune reconstitution on
ART do not have reduced anti-TB drug concentrations compared
to HIV-1-uninfected patients. These findings are not necessarily
generalizable to HIV-1-coinfected patients in an inpatient setting
or to those with advanced immunosuppression (the median CD4
count of this cohort was 233 cells/mm3).

As previously reported (6), weight, and in particular FFM, in-
fluenced CL in a nonlinear fashion, and hence uniform dosing (in
milligram per kilogram of body weight) across the WHO weight
bands was associated with the lowest weight band having a trend
of lower drug concentrations than those with the highest weight
band. Therefore, dosing could be optimized according to FFM,
and in particular, dosing for the lower weight band should be
reviewed.

Having adjusted for potential confounders, we still found a

FIG 3 Pharmacokinetic measures Cmax and AUC0 –24, stratified by WHO
weight band. The box-and-whisker plots show model-derived PK measures
stratified by WHO weight band. Cmax and AUC0 –24 values are plotted on the
left and right y axes, respectively. The boxes show medians and interquartile
ranges. The whiskers represent the 5th to 95th percentiles. The predictions
include allometric scaling, which is necessary to account for nonlinear differ-
ences by weight/size. This explains differences in PK measures despite the same
dosing (milligram per kilogram of body weight) by weight band. The dotted
black lines indicate the current recommended thresholds for Cmax of 3 mg/
liter, 8 mg/liter, and 30 mg/liter for isoniazid, rifampin, and pyrazinamide,
respectively. Abbreviations: Cmax, maximum concentration; AUC, area under
the curve from 0 to 24 h; WB, weight band.

TABLE 5 Risk factors for reported side effects at 2-month review by univariate and multivariate models

Variablea OR (95% CI) for reported side effects Adjusted OR (95% CI) for reported side effects

INH AUC0–24 quartile 1 1 1
INH AUC0–24 quartile 2 1.26 (0.34–4.84) 1.19 (0.29–4.87)
INH AUC0–24 quartile 3 1.88 (0.52–6.84) 2.08 (0.54–8.07)
INH AUC0–24 quartile 4 7.11 (1.99–25.47) 9.12 (2.28–36.55)
10-yr increase in age 1.09 (0.71–1.67) 1.14 (0.68–1.92)
Previous isoniazid treatment 1.54 (0.67–3.55) 1.76 (0.63–4.97)
HIV-1 serostatus 1.56 (0.64–3.80) 1.12 (0.41–3.08)
Alcohol intake 1.46 (0.63–3.41) 1.92 (0.72–5.16)
Type 2 diabetes mellitus 1.99 (0.26–14.17) 1.67 (0.12–14.28)
a Abbreviations: INH, isoniazid; AUC0 –24, area under the concentration-time curve from 0 to 24 h.
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significantly increased proportion of side effects in patients with
isoniazid AUC0 –24 values in the highest quartile. Overall inci-
dences of drug side effects secondary to isoniazid reported in the
literature range from 1 to 3% for dermatological, gastrointestinal,
and neurological side effects and from 1 to 17% for hypersensitiv-
ity reactions (20). Thirteen of the 16 patients who had side effects
and were in the highest isoniazid AUC0 –24 quartile were coin-
fected with HIV-1. Studies have shown that 8 to 20% of patients
taking isoniazid can develop antinuclear antibodies. This is in-
creased in slow acetylators (44) and may be potentiated in HIV-1
coinfection. One randomized controlled clinical trial conducted
in Japan showed that isoniazid-related liver injury in the first 8
weeks of anti-TB treatment occurred in 78% of slow acetylators
given standard 5-mg/kg doses, compared to 0% of slow acetylators
given 2.5-mg/kg doses (45). Hence, significant pharmacokinetic
variability for isoniazid, even with standard dosing, may contrib-
ute to toxicity.

There were several limitations in this study. Pharmacogenomic
data, such as NAT2 and SLCO1B1 genotypes, were not available
for incorporation into the population PK models. Drug concen-
tration sampling was not repeated at different times during treat-
ment and hence may have under- or overestimated the IOV
secondary to changes in weight and immune reconstitution sec-
ondary to ART. A previous study of HIV-1-coinfected patients did
not find an independent effect on TB pharmacokinetics for first-
dose ART or steady-state ART (at 2 weeks) compared to day 1 of
anti-TB drugs (6). There was no routine monitoring of blood
tests, such as liver and renal function tests. Hence, asymptomatic
adverse drug reactions would not have been ascertained.

In this outpatient setting with a high burden of HIV-1-coin-
fected patients, the majority of whom were undergoing immune

reconstitution on ART, there was no evidence that HIV-1 coinfec-
tion led to lower anti-TB drug concentrations.

ACKNOWLEDGMENTS

We acknowledge the National Institute of Allergy and Infectious Dis-
eases (NIAID), which supports the overall running of the analytical
laboratory at the Department of Clinical Pharmacology, University of
Cape Town, through award numbers UM1 AI068634, UM1 AI068636,
UM1 AI106701, and U01 AI068632. The Division of Clinical Pharma-
cology at the University of Cape Town gratefully acknowledges No-
vartis Pharma for support of the development of pharmacometric
skills in Africa.

N.R., H.M., R.J.W., and G.M. conceived and designed the experi-
ments; R.J.W. contributed materials and reagents; N.R. recruited patients
and sampled and collected data from patients; L.W. did the LC-MS work;
N.R., P.D., M.C., and H.M. analyzed the data; N.R., P.D., G.M., H.M., and
R.J.W. contributed intellectual input; and N.R., P.D., H.M., G.M., and
R.J.W. drafted the manuscript. All authors approved the final version of
the manuscript.

No authors declare any conflicts of interest.
R.J.W. was supported by the Wellcome Trust (grants WT 104803 and

WT084323), the UK MRC (grant UKMRC U1175.02.002.00014), the Eu-
ropean Union (grant EU FP7 HEALTH-F3-2012-305578), and the Na-
tional Research Foundation (NRF) of South Africa (grant 96841). G.M.
was supported by the Wellcome Trust (grant 098316), the South African
Research Chairs Initiative of the Department of Science and Technology
and National Research Foundation (NRF) of South Africa (grant 64787),
NRF incentive funding (UID 85858), and the South African Medical Re-
search Council through its TB and HIV Collaborating Centres Pro-
gramme, with funds received from the National Department of Health
(RFA no. SAMRC-RFA-CC: TB/HIV/AIDS-01-2014). H.M. was sup-
ported in part by the NRF of South Africa (grant 90729).

FIG 4 Pharmacokinetic measures Cmax and AUC0 –24, stratified by side effect profile. The top 3 graphs show Cmax values on the left axis and AUC0 –24 values on
the right y axis, stratified by the presence or absence of drug side effects. The bottom 3 graphs detail drug peak concentrations in those with (�) and without (�)
CNS, PNS, MS, skin, and GI side effects. Abbreviations: Cmax, peak concentration; AUC, area under the curve from 0 to 24 h; SE, side effects; CNS, central nervous
system; PNS, peripheral nervous system; MS, musculoskeletal system; GI, gastrointestinal.

HIV Coinfection and Pharmacokinetics of Anti-TB Drugs

October 2016 Volume 60 Number 10 aac.asm.org 6057Antimicrobial Agents and Chemotherapy

http://aac.asm.org


FUNDING INFORMATION
This work, including the efforts of Robert J. Wilkinson, was funded by
Wellcome Trust (WT104803 and WT084323). This work, including the
efforts of Graeme Meintjes, was funded by Wellcome Trust (098316). This
work, including the efforts of Robert J. Wilkinson, was funded by Medical
Research Council (MRC) (UKMRC U1175.02.002.00014). This work, in-
cluding the efforts of Graeme Meintjes, was funded by National Research
Foundation (NRF) (64787 and UID: 85858). This work, including the
efforts of Helen McIlleron, was funded by National Research Foundation
(NRF) (90729). This work, including the efforts of Robert J. Wilkinson,
was funded by National Research Foundation (NRF) (96841).

Robert J. Wilkinson is also supported by the European Union (EU FP7
HEALTH-F3-2012-305578). Graeme Meintjes is also supported by the
South African Research Chairs Initiative of the Department of Science and
Technology and the South African Medical Research Council through its
TB and HIV Collaborating Centres Programme with funds received from
the National Department of Health (RFA no. SAMRC-RFA-CC: TB/HIV/
AIDS-01-2014).
The funders had no role in the study design, data collection, data analysis,
data interpretation, or writing of this report. The opinions, findings, and
conclusions expressed in the manuscript reflect those of the authors alone.

REFERENCES
1. World Health Organization. 2015. Global tuberculosis report 2015.

WHO, Geneva, Switzerland. http://www.who.int/tb/publications/global
_report/gtbr2015_executive_summary.pdf?ua�1. Accessed 28 December
2015.

2. World Health Organization. 2010. Treatment of tuberculosis guidelines,
4th ed. WHO, Geneva, Switzerland. http://apps.who.int/iris/bitstream
/10665/44165/1/9789241547833_eng.pdf?ua�1&ua�1. Accessed 28 De-
cember 2015.

3. Parkin DP, Vandenplas S, Botha FJ, Vandenplas ML, Seifart HI, van
Helden PD, van der Walt BJ, Donald PR, van Jaarsveld PP. 1997.
Trimodality of isoniazid elimination: phenotype and genotype in patients
with tuberculosis. Am J Respir Crit Care Med 155:1717–1722. http://dx
.doi.org/10.1164/ajrccm.155.5.9154882.

4. Chigutsa E, Visser ME, Swart EC, Denti P, Pushpakom S, Egan D,
Holford NH, Smith PJ, Maartens G, Owen A, McIlleron H. 2011. The
SLCO1B1 rs4149032 polymorphism is highly prevalent in South Africans
and is associated with reduced rifampin concentrations: dosing implica-
tions. Antimicrob Agents Chemother 55:4122– 4127. http://dx.doi.org/10
.1128/AAC.01833-10.

5. Requena-Mendez A, Davies G, Ardrey A, Jave O, Lopez-Romero SL,
Ward SA, Moore DA. 2012. Pharmacokinetics of rifampin in Peruvian
tuberculosis patients with and without comorbid diabetes or HIV. Anti-
microb Agents Chemother 56:2357–2363. http://dx.doi.org/10.1128/AAC
.06059-11.

6. McIlleron H, Rustomjee R, Vahedi M, Mthiyane T, Denti P, Con-
nolly C, Rida W, Pym A, Smith PJ, Onyebujoh PC. 2012. Reduced
antituberculosis drug concentrations in HIV-infected patients who are
men or have low weight: implications for international dosing guide-
lines. Antimicrob Agents Chemother 56:3232–3238. http://dx.doi.org
/10.1128/AAC.05526-11.

7. Nijland HM, Ruslami R, Stalenhoef JE, Nelwan EJ, Alisjahbana B,
Nelwan RH, van der Ven AJ, Danusantoso H, Aarnoutse RE, van Crevel
R. 2006. Exposure to rifampicin is strongly reduced in patients with tu-
berculosis and type 2 diabetes. Clin Infect Dis 43:848 – 854. http://dx.doi
.org/10.1086/507543.

8. Ruslami R, Nijland HM, Adhiarta IG, Kariadi SH, Alisjahbana B,
Aarnoutse RE, van Crevel R. 2010. Pharmacokinetics of antitubercu-
losis drugs in pulmonary tuberculosis patients with type 2 diabetes.
Antimicrob Agents Chemother 54:1068 –1074. http://dx.doi.org/10
.1128/AAC.00447-09.

9. Babalik A, Ulus IH, Bakirci N, Kuyucu T, Arpag H, Dagyildizi L,
Capaner E. 2013. Plasma concentrations of isoniazid and rifampin are
decreased in adult pulmonary tuberculosis patients with diabetes mellitus.
Antimicrob Agents Chemother 57:5740 –5742. http://dx.doi.org/10.1128
/AAC.01345-13.

10. Chideya S, Winston CA, Peloquin CA, Bradford WZ, Hopewell PC,

Wells CD, Reingold AL, Kenyon TA, Moeti TL, Tappero JW. 2009.
Isoniazid, rifampin, ethambutol, and pyrazinamide pharmacokinetics
and treatment outcomes among a predominantly HIV-infected cohort of
adults with tuberculosis from Botswana. Clin Infect Dis 48:1685–1694.
http://dx.doi.org/10.1086/599040.

11. Sahai J, Gallicano K, Swick L, Tailor S, Garber G, Seguin I, Oliveras
L, Walker S, Rachlis A, Cameron DW. 1997. Reduced plasma con-
centrations of antituberculosis drugs in patients with HIV infection.
Ann Intern Med 127:289 –293. http://dx.doi.org/10.7326/0003-4819
-127-4-199708150-00006.

12. Jeremiah K, Denti P, Chigutsa E, Faurholt-Jepsen D, PrayGod G, Range
N, Castel S, Wiesner L, Hagen CM, Christiansen M, Changalucha J,
McIlleron H, Friis H, Andersen AB. 2014. Nutritional supplementation
increases rifampin exposure among tuberculosis patients coinfected with
HIV. Antimicrob Agents Chemother 58:3468 –3474. http://dx.doi.org/10
.1128/AAC.02307-13.

13. Tappero JW, Bradford WZ, Agerton TB, Hopewell P, Reingold AL,
Lockman S, Oyewo A, Talbot EA, Kenyon TA, Moeti TL, Moffat HJ,
Peloquin CA. 2005. Serum concentrations of antimycobacterial drugs in
patients with pulmonary tuberculosis in Botswana. Clin Infect Dis 41:
461– 469. http://dx.doi.org/10.1086/431984.

14. Taylor IK, Evans DJ, Coker RJ, Mitchell DM, Shaw RJ. 1995.
Mycobacterial infection in HIV-seropositive and seronegative popula-
tions, 1987–93. Thorax 50:1147–1150. http://dx.doi.org/10.1136/thx
.50.11.1147.

15. Choudhri SH, Hawken M, Gathua S, Minyiri GO, Watkins W, Sahai J,
Sitar DS, Aoki FY, Long R. 1997. Pharmacokinetics of antimycobacterial
drugs in patients with tuberculosis, AIDS, and diarrhea. Clin Infect Dis
25:104 –111. http://dx.doi.org/10.1086/514513.

16. Mitchison DA. 2000. Role of individual drugs in the chemotherapy of
tuberculosis. Int J Tuberc Lung Dis 4:796 – 806.

17. US Department of Health and Human Services, National Institutes of
Health, National Cancer Institute. 2009. Common terminology criteria for
adverse events (CTCAE), version 4. http://evs.nci.nih.gov/ftp1/CTCAE
/CTCAE_4.03_2010-06-14_QuickReference_8.5x11.pdf. Accessed 28 De-
cember 2015.

18. World Health Organization. The use of the WHO-UMC system for
standardised case causality assessment. WHO, Geneva, Switzerland.
http://www.who.int/medicines/areas/quality_safety/safety_efficacy
/WHOcausality_assessment.pdf. Accessed 28 December 2015.

19. Lv X, Tang S, Xia Y, Wang X, Yuan Y, Hu D, Liu F, Wu S, Zhang Y,
Yang Z, Tu D, Chen Y, Deng P, Ma Y, Chen R, Zhan S. 2013. Adverse
reactions due to directly observed treatment strategy therapy in Chinese
tuberculosis patients: a prospective study. PLoS One 8:e65037. http://dx
.doi.org/10.1371/journal.pone.0065037.

20. Forget EJ, Menzies D. 2006. Adverse reactions to first-line antitubercu-
losis drugs. Expert Opin Drug Saf 5:231–249. http://dx.doi.org/10.1517
/14740338.5.2.231.

21. Vieira DE, Gomes M. 2008. Adverse effects of tuberculosis treatment:
experience at an outpatient clinic of a teaching hospital in the city of Sao
Paulo, Brazil. J Bras Pneumol 34:1049 –1055. http://dx.doi.org/10.1590
/S1806-37132008001200010.

22. Awofeso N. 2008. Anti-tuberculosis medication side-effects constitute
major factor for poor adherence to tuberculosis treatment. Bull World
Health Organ 86:B–D.

23. Kwara A, Enimil A, Gillani FS, Yang H, Sarfo AM, Dompreh A, Ortsin
A, Osei-Tutu L, Kwarteng Owusu S, Wiesner L, Norman J, Kurpewski
J, Peloquin CA, Ansong D, Antwi S. 26 May 2015. Pharmacokinetics of
first-line antituberculosis drugs using WHO revised dosage in children
with tuberculosis with and without HIV coinfection. J Pediatric Infect Dis
Soc http://dx.doi.org/10.1093/jpids/piv035.

24. Wilkins JJ, Savic RM, Karlsson MO, Langdon G, McIlleron H, Pillai G,
Smith PJ, Simonsson US. 2008. Population pharmacokinetics of rifam-
pin in pulmonary tuberculosis patients, including a semimechanistic
model to describe variable absorption. Antimicrob Agents Chemother
52:2138 –2148. http://dx.doi.org/10.1128/AAC.00461-07.

25. Wilkins JJ, Langdon G, McIlleron H, Pillai G, Smith PJ, Simonsson US.
2011. Variability in the population pharmacokinetics of isoniazid in South
African tuberculosis patients. Br J Clin Pharmacol 72:51– 62. http://dx.doi
.org/10.1111/j.1365-2125.2011.03940.x.

26. Wilkins JJ, Langdon G, McIlleron H, Pillai GC, Smith PJ, Simonsson
US. 2006. Variability in the population pharmacokinetics of pyrazinamide

Rockwood et al.

6058 aac.asm.org October 2016 Volume 60 Number 10Antimicrobial Agents and Chemotherapy

http://www.who.int/tb/publications/global_report/gtbr2015_executive_summary.pdf?ua=1
http://www.who.int/tb/publications/global_report/gtbr2015_executive_summary.pdf?ua=1
http://apps.who.int/iris/bitstream/10665/44165/1/9789241547833_eng.pdf?ua=1&ua=1
http://apps.who.int/iris/bitstream/10665/44165/1/9789241547833_eng.pdf?ua=1&ua=1
http://dx.doi.org/10.1164/ajrccm.155.5.9154882
http://dx.doi.org/10.1164/ajrccm.155.5.9154882
http://dx.doi.org/10.1128/AAC.01833-10
http://dx.doi.org/10.1128/AAC.01833-10
http://dx.doi.org/10.1128/AAC.06059-11
http://dx.doi.org/10.1128/AAC.06059-11
http://dx.doi.org/10.1128/AAC.05526-11
http://dx.doi.org/10.1128/AAC.05526-11
http://dx.doi.org/10.1086/507543
http://dx.doi.org/10.1086/507543
http://dx.doi.org/10.1128/AAC.00447-09
http://dx.doi.org/10.1128/AAC.00447-09
http://dx.doi.org/10.1128/AAC.01345-13
http://dx.doi.org/10.1128/AAC.01345-13
http://dx.doi.org/10.1086/599040
http://dx.doi.org/10.7326/0003-4819-127-4-199708150-00006
http://dx.doi.org/10.7326/0003-4819-127-4-199708150-00006
http://dx.doi.org/10.1128/AAC.02307-13
http://dx.doi.org/10.1128/AAC.02307-13
http://dx.doi.org/10.1086/431984
http://dx.doi.org/10.1136/thx.50.11.1147
http://dx.doi.org/10.1136/thx.50.11.1147
http://dx.doi.org/10.1086/514513
http://evs.nci.nih.gov/ftp1/CTCAE/CTCAE_4.03_2010-06-14_QuickReference_8.5x11.pdf
http://evs.nci.nih.gov/ftp1/CTCAE/CTCAE_4.03_2010-06-14_QuickReference_8.5x11.pdf
http://www.who.int/medicines/areas/quality_safety/safety_efficacy/WHOcausality_assessment.pdf
http://www.who.int/medicines/areas/quality_safety/safety_efficacy/WHOcausality_assessment.pdf
http://dx.doi.org/10.1371/journal.pone.0065037
http://dx.doi.org/10.1371/journal.pone.0065037
http://dx.doi.org/10.1517/14740338.5.2.231
http://dx.doi.org/10.1517/14740338.5.2.231
http://dx.doi.org/10.1590/S1806-37132008001200010
http://dx.doi.org/10.1590/S1806-37132008001200010
http://dx.doi.org/10.1093/jpids/piv035
http://dx.doi.org/10.1128/AAC.00461-07
http://dx.doi.org/10.1111/j.1365-2125.2011.03940.x
http://dx.doi.org/10.1111/j.1365-2125.2011.03940.x
http://aac.asm.org


in South African tuberculosis patients. Eur J Clin Pharmacol 62:727–735.
http://dx.doi.org/10.1007/s00228-006-0141-z.

27. Bergstrand M, Karlsson MO. 2009. Handling data below the limit of
quantification in mixed effect models. AAPS J 11:371–380. http://dx.doi
.org/10.1208/s12248-009-9112-5.

28. Holford NH. 1996. A size standard for pharmacokinetics. Clin Pharmacoki-
net 30:329–332. http://dx.doi.org/10.2165/00003088-199630050-00001.

29. Anderson BJ, Holford NH. 2008. Mechanism-based concepts of size and
maturity in pharmacokinetics. Annu Rev Pharmacol Toxicol 48:303–332.
http://dx.doi.org/10.1146/annurev.pharmtox.48.113006.094708.

30. Janmahasatian S, Duffull SB, Ash S, Ward LC, Byrne NM, Green B.
2005. Quantification of lean bodyweight. Clin Pharmacokinet 44:1051–
1065. http://dx.doi.org/10.2165/00003088-200544100-00004.

31. Lavielle M. 2015. mlxR: simulation of longitudinal data. https://cran.r
-project.org/web/packages/mlxR/index.html. Accessed 28 December
2015.

32. Savic RM, Karlsson MO. 2009. Importance of shrinkage in empirical
Bayes estimates for diagnostics: problems and solutions. AAPS J 11:558 –
569. http://dx.doi.org/10.1208/s12248-009-9133-0.

33. Peloquin CA. 2002. Therapeutic drug monitoring in the treatment of
tuberculosis. Drugs 62:2169 –2183. http://dx.doi.org/10.2165/00003495
-200262150-00001.

34. Pasipanodya JG, McIlleron H, Burger A, Wash PA, Smith P, Gumbo T.
2013. Serum drug concentrations predictive of pulmonary tuberculosis
outcomes. J Infect Dis 208:1464 –1473. http://dx.doi.org/10.1093/infdis
/jit352.

35. Chigutsa E, Pasipanodya JG, Visser ME, van Helden PD, Smith PJ,
Sirgel FA, Gumbo T, McIlleron H. 2015. Impact of nonlinear interac-
tions of pharmacokinetics and MICs on sputum bacillary kill rates as a
marker of sterilizing effect in tuberculosis. Antimicrob Agents Chemother
59:38 – 45. http://dx.doi.org/10.1128/AAC.03931-14.

36. Burhan E, Ruesen C, Ruslami R, Ginanjar A, Mangunnegoro H,
Ascobat P, Donders R, van Crevel R, Aarnoutse R. 2013. Isoniazid,
rifampin, and pyrazinamide plasma concentrations in relation to treat-
ment response in Indonesian pulmonary tuberculosis patients. Anti-
microb Agents Chemother 57:3614 –3619. http://dx.doi.org/10.1128
/AAC.02468-12.

37. Babalik A, Ulus IH, Bakirci N, Kuyucu T, Arpag H, Dagyildiz L,
Carpaner E. 2013. Pharmacokinetics and serum concentrations of anti-

mycobacterial drugs in adult Turkish patients. Int J Tuberc Lung Dis 17:
1442–1447. http://dx.doi.org/10.5588/ijtld.12.0771.

38. Tostmann A, Mtabho CM, Semvua HH, van den Boogaard J, Kibiki GS,
Boeree MJ, Aarnoutse RE. 2013. Pharmacokinetics of first-line tubercu-
losis drugs in Tanzanian patients. Antimicrob Agents Chemother 57:
3208 –3213. http://dx.doi.org/10.1128/AAC.02599-12.

39. Gurumurthy P, Ramachandran G, Hemanth Kumar AK, Rajasekaran S,
Padmapriyadarsini C, Swaminathan S, Venkatesan P, Sekar L, Kumar
S, Krishnarajasekhar OR, Paramesh P. 2004. Malabsorption of rifampin
and isoniazid in HIV-infected patients with and without tuberculosis. Clin
Infect Dis 38:280 –283. http://dx.doi.org/10.1086/380795.

40. Gurumurthy P, Ramachandran G, Hemanth Kumar AK, Rajasekaran S,
Padmapriyadarsini C, Swaminathan S, Bhagavathy S, Venkatesan P,
Sekar L, Mahilmaran A, Ravichandran N, Paramesh P. 2004. Decreased
bioavailability of rifampin and other antituberculosis drugs in patients
with advanced human immunodeficiency virus disease. Antimicrob
Agents Chemother 48:4473– 4475. http://dx.doi.org/10.1128/AAC.48.11
.4473-4475.2004.

41. Taylor B, Smith PJ. 1998. Does AIDS impair the absorption of antituber-
culosis agents? Int J Tuberc Lung Dis 2:670 – 675.

42. Zhu M, Starke JR, Burman WJ, Steiner P, Stambaugh JJ, Ashkin D,
Bulpitt AE, Berning SE, Peloquin CA. 2002. Population pharmacoki-
netic modeling of pyrazinamide in children and adults with tuberculosis.
Pharmacotherapy 22:686 – 695. http://dx.doi.org/10.1592/phco.22.9.686
.34067.

43. Niemi M, Pasanen MK, Neuvonen PJ. 2011. Organic anion transporting
polypeptide 1B1: a genetically polymorphic transporter of major impor-
tance for hepatic drug uptake. Pharmacol Rev 63:157–181. http://dx.doi
.org/10.1124/pr.110.002857.

44. Alarcon-Segovia D, Fishbein E, Alcala H. 1971. Isoniazid acetylation rate
and development of antinuclear antibodies upon isoniazid treatment. Ar-
thritis Rheum 14:748 –752. http://dx.doi.org/10.1002/art.1780140610.

45. Azuma J, Ohno M, Kubota R, Yokota S, Nagai T, Tsuyuguchi K,
Okuda Y, Takashima T, Kamimura S, Fujio Y, Kawase I, Pharma-
cogenetics-Based Tuberculosis Therapy Research Group. 2013.
NAT2 genotype guided regimen reduces isoniazid-induced liver injury
and early treatment failure in the 6-month four-drug standard treat-
ment of tuberculosis: a randomized controlled trial for pharmacoge-
netics-based therapy. Eur J Clin Pharmacol 69:1091–1101. http://dx
.doi.org/10.1007/s00228-012-1429-9.

HIV Coinfection and Pharmacokinetics of Anti-TB Drugs

October 2016 Volume 60 Number 10 aac.asm.org 6059Antimicrobial Agents and Chemotherapy

http://dx.doi.org/10.1007/s00228-006-0141-z
http://dx.doi.org/10.1208/s12248-009-9112-5
http://dx.doi.org/10.1208/s12248-009-9112-5
http://dx.doi.org/10.2165/00003088-199630050-00001
http://dx.doi.org/10.1146/annurev.pharmtox.48.113006.094708
http://dx.doi.org/10.2165/00003088-200544100-00004
https://cran.r-project.org/web/packages/mlxR/index.html
https://cran.r-project.org/web/packages/mlxR/index.html
http://dx.doi.org/10.1208/s12248-009-9133-0
http://dx.doi.org/10.2165/00003495-200262150-00001
http://dx.doi.org/10.2165/00003495-200262150-00001
http://dx.doi.org/10.1093/infdis/jit352
http://dx.doi.org/10.1093/infdis/jit352
http://dx.doi.org/10.1128/AAC.03931-14
http://dx.doi.org/10.1128/AAC.02468-12
http://dx.doi.org/10.1128/AAC.02468-12
http://dx.doi.org/10.5588/ijtld.12.0771
http://dx.doi.org/10.1128/AAC.02599-12
http://dx.doi.org/10.1086/380795
http://dx.doi.org/10.1128/AAC.48.11.4473-4475.2004
http://dx.doi.org/10.1128/AAC.48.11.4473-4475.2004
http://dx.doi.org/10.1592/phco.22.9.686.34067
http://dx.doi.org/10.1592/phco.22.9.686.34067
http://dx.doi.org/10.1124/pr.110.002857
http://dx.doi.org/10.1124/pr.110.002857
http://dx.doi.org/10.1002/art.1780140610
http://dx.doi.org/10.1007/s00228-012-1429-9
http://dx.doi.org/10.1007/s00228-012-1429-9
http://aac.asm.org

	MATERIALS AND METHODS
	Patients.
	Characterization of side effects.
	Pharmacokinetics.
	Statistical analyses.

	RESULTS
	Patient demographics.
	Patient pharmacokinetic parameters.

	DISCUSSION
	ACKNOWLEDGMENTS
	REFERENCES

