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Abstract: In this work, we have analysed the binding of the Pt(II) complexes ([PtCl(4′-phenyl-
2,2′:6′,2′′-terpyridine)](CF3SO3) (1), [PtI(4′-phenyl-2,2′:6′,2′′-terpyridine)](CF3SO3) (2) and [PtCl(1,3-
di(2-pyridyl)benzene) (3)] with selected model proteins (hen egg-white lysozyme, HEWL, and
ribonuclease A, RNase A). Platinum coordination compounds are intensively studied to develop
improved anticancer agents. In this regard, a critical issue is the possible role of Pt-protein interactions
in their mechanisms of action. Multiple techniques such as differential scanning calorimetry (DSC),
electrospray ionization mass spectrometry (ESI-MS) and UV-Vis absorbance titrations were used
to enlighten the details of the binding to the different biosubstrates. On the one hand, it may be
concluded that the affinity of 3 for the proteins is low. On the other hand, 1 and 2 strongly bind them,
but with major binding mode differences when switching from HEWL to RNase A. Both 1 and 2
bind to HEWL with a non-specific (DSC) and non-covalent (ESI-MS) binding mode, dominated by a
1:1 binding stoichiometry (UV-Vis). ESI-MS data indicate a protein-driven chloride loss that does
not convert into a covalent bond, likely due to the unfavourable complexes’ geometries and steric
hindrance. This result, together with the significant changes of the absorbance profiles of the complex
upon interaction, suggest an electrostatic binding mode supported by some stacking interaction of
the aromatic ligand. Very differently, in the case of RNase A, slow formation of covalent adducts
occurs (DSC, ESI-MS). The reactivity is higher for the iodo-compound 2, in agreement with iodine
lability higher than chlorine.

Keywords: antitumoral complex; Pt(II) coordination; calorimetry; binding mechanism; interaction
complex-protein

1. Introduction

Since the discovery of its therapeutic power in 1965, cisplatin has become the chemother-
apeutic agent of choice for the treatment of different types of cancers, e.g., testicular, ovarian
and bladder cancer, melanoma, non-small cell lung cancer (NSCLC), small cell lung cancer
(SCLC), lymphomas and myelomas [1,2]. Despite its wide use, cisplatin presents several
side effects (neurotoxicity, nephrotoxicity, myelosuppression and ototoxicity); these are
only partially reversible when the treatment is interrupted [3,4]. The accumulation of metal
ions in the body after long-term or high-dose therapy was found [5]. Besides, some types
of cancer are intrinsically insensitive to treatment with cisplatin (innate resistance), while
other tumours develop resistance only during chemotherapy (acquired resistance) [3].

In the past, the scientific community working on anticancer metal compounds has
mainly focused on interactions with DNA, the commonly accepted primary target for
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platinum compounds [6]. Subsequently other studies proved that only 5–10% of covalently
bound cell-associated cisplatin is found in the DNA fraction, whereas 75–85% of the drug
binds to proteins [7]. This finding opens the way to move the accepted paradigm on the
mechanism of action of Pt-based compounds to an enlarged paradigm involving protein
metalation [8]. The attention was thus also directed to the understanding of metallodrug-
protein interactions. These are crucial, not only concerning apoptosis but also for unwanted
side-effects (due to indiscriminate protein binding), drug resistance and even possibly drug
delivery and storage [9,10].

Nowadays, cisplatin and related compounds are known to bind to several classes of
proteins with different roles, including transporters, antioxidants, electron transfer proteins,
DNA-repair proteins, as well as proteins/peptides used as model systems to characterize
the reactivity of metallodrugs in vitro, but that are also present in vivo [11]. In this regard,
studies on the interactions of cisplatin and its analogues with proteins are fundamental in
determining the overall pharmacological and toxicological profile of platinum drugs [11].
After the intravenous administration to the patient, most of the platinum deriving from
cisplatin (from 65 to 90%) forms a binding with many plasma proteins (e.g., serum albumin,
haemoglobin and transferrin) [12], due to the strong affinity of platinum towards thiol
groups present in amino acids, such as cysteine residues [13]. Other proteins with which
cisplatin could interact during its life are copper transport proteins (Ctr1 and Ctr2) and
ATPases, involved in the cisplatin cellular uptake, DNA damage recognition proteins, that
limits its cytotoxic action, and many others in smaller percentages [12].

The consensus on the crucial role of the binding of metallodrugs with protein targets
has grown [14,15]. Some of us were already involved in the study of metallodrugs inter-
action with small molecular models mimicking the protein coordinative sites [16,17] and
with proteins of bigger size [18–20].

In this context, we evaluated the interactions and relevant thermodynamic param-
eters for the interaction of three Pt(II) anticancer complexes, potential cisplatin substi-
tutes, with selected model proteins, namely hen egg-white lysozyme (HEWL) and ribonu-
clease A (RNase A). We focused on the positively charged complexes [PtCl(4′-phenyl-
2,2′:6′,2′′-terpyridine)](CF3SO3) ([PtCl(phterpy)](CF3SO3)); (1) and [PtI(4′-phenyl-2,2′:6′,2′′-
terpyridine)](CF3SO3) ([PtI(phterpy)](CF3SO3); (2) (Scheme 1), as they showed promising
features in previous studies [21,22]. We added to the study the neutral complex [PtCl(1,3-
di(2-pyridyl)benzene)] ([PtCl(DPB)]); (3) as a reference to evaluate reactivity differences
due to the absence of the charge in the metal centre and of a less extended ligand. Be-
sides, samples 1 and 2 are Pt(II)-coordination compounds with an NNN-type ligand, while
the third complex is an organometallic compound with an NCN-type ligand. The 4′-
phenyl-2,2′:6′,2′′-terpyridine ligand has been already investigated by some of us as a stabile
tridentate conjugate ligand for the Pt(IV) centre and, behaving like an antenna, gathers the
light to promote the photoreduction to the corresponding Pt(II) analogue [21,23]. Despite
these Pt(II) compounds did not show any intercalative properties towards the DNA, they
turned out to be very cytotoxic in vitro against the A2780 ovarian cancer cell line [21].
These preliminary results spurred us to investigate further the reactivity of this class of
compounds towards model proteins.

The study of the possible interactions with proteins was performed with complemen-
tary techniques, i.e., differential scanning calorimetry (DSC), UV-Vis spectroscopy and
mass spectrometry. Calorimetry is a powerful tool for detecting the perturbations on the
protein unfolding process caused by an external agent, e.g., polymers or drugs [24–27].
UV-Vis titrations and, in general, spectroscopic studies (absorbance and fluorescence) are
approaches that may appear simple but are, instead, tricky and powerful procedures that
give interesting information on the binding mechanism [28,29]. Mass spectrometry gave
additional value to the study and enabled to define the molecular identity of the adduct
formed with the binding.
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Scheme 1. Platinum (II) complexes studied: [PtCl(4′-phenyl-2,2′:6′,2′′-terpyridine)](CF3SO3) (1), [PtI(4′-phenyl-2,2′:6′,2′′-
terpyridine)](CF3SO3) (2) and [PtCl(1,3-di(2-pyridyl)benzene)] (3).

Overall, we enlightened the presence of a peculiar binding mode for the two different
proteins and highly dependent on the electronic and steric properties given by the ligand
to the metallic centre.

2. Results and Discussion
2.1. Stability over Time of Metal Complex in Solution

The stability of the complexes 1–3 in the experimental conditions (0.1 M acetate buffer
at pH = 4.5) was evaluated by UV-Vis spectrophotometry. Samples 1 and 2 were stable
in the buffer for at least 24 h, while sample 3 presented variations occurring over time
(Figures S1 and S2 in the Supplementary Materials).

The different reactivity of the three complexes was probably due to electronic factors.
The phenyl and pyridine rings behave as π-acceptors with low steric hindrance, increasing
the electrophilicity of the metallic centre. The higher lability of complex 3 was probably
cuased by the presence, in a trans position with respect to the chloride, of a phenyl carbon
that is a strong σ-donor, that labilizes the Pt-Cl bond and cause a high destabilization of
the ground state with a consequent increase in intrinsic reactivity. Note that no such a
significant band shape change occurs in pure water, except for a slight absorbance reduction
in the UV region (Figure S2d in the Supplementary Materials). Therefore, we may suppose
that, in the buffer, an exchange between the chloride and an acetate group could take place,
changing the coordination sphere around the metal centre. This hypothesis was supported
by the observance of a change in the solution colour in the buffer, going from yellow to
blue over time and with the correspondent born of an intense new band peaked at 578 nm
(Figure S2a–c in the Supplementary Materials). The UV-vis spectra reached equilibrium
after about 40 h, confirming the stability of the new complex formed.

2.2. Protein Binding by Differential Scanning Calorimetry

The interaction between the complexes 1–3 and the model proteins HEWL and RNase
A was evaluated by differential scanning calorimetry (DSC). Table 1 gathers the relevant
thermodynamic parameters obtained at different incubation times.
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Table 1. Thermodynamic parameters of the unfolding process obtained for HEWL and RNase A in acetate buffer (0.1 M,
pH = 4.5) alone and in presence of samples 1–3, after 24/48 h of incubation at 37.0 ◦C.

Sample 1 Incub. (h) Tmax (◦C) 2 ∆dH (kJ mol−1) 3 Sample 4 Incub. (h) Tmax (◦C) 2 ∆dH (kJ mol−1) 3

HEWL 0 76.3 550 RNase A 0 59.4 440

HEWL + 1
24 71.8 515

RNase A + 1 24 56.4 220 *48 71.8 510

HEWL + 2
24 71.8 550

RNase A + 2 24 51.8 420 *48 71.8 550

HEWL + 3
24 75.5 550

RNase A + 3 24 57.6 425 *48 75.5 550
1 Recorded by micro-DSC. 2 Denaturation temperature, the values are reported with an error bar of ± 0.2 ◦C. 3 Denaturation enthalpy, the
values are reported with an RSD of 5%. 4 Recorded by nano-DSC. * These enthalpies are only apparent values because of kinetic effects.

The effect of HEWL interaction with the three complexes was investigated after
24 h and 48 h of incubation. Figure 1 reports the comparison of the free HEWL and
HEWL + complex systems after 24 h of incubation.
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Figure 1. Micro-DSC thermograms obtained for HEWL alone and in the presence of compounds
1–3 (in a molar ratio protein:complex 1:5) in acetate buffer (0.1M, pH 4.5), after 24 h of incubation
at 37.0 ◦C. The thermogram obtained for HEWL without incubation (0 h) is also reported for sake
of comparison.

We observe that the interactions with all complexes lead to a thermodynamic protein
destabilization, mainly in terms of entropic contribution. Its magnitude depends on the
chemical nature of the compound, whilst no significant variation in the ∆dH◦ are observed
(Table 1). In particular, both 1 and 2 lead to a similar downshift of the protein denaturation
temperature (Td), even though the peak obtained by the interaction with compound 2 is
wider, index of less cooperative process. Instead, the protein exhibits a minor decrease in
the Td caused by the interaction with complex 3. The same picture was obtained after 48 h
of incubation (Figure S4 in the Supplementary Materials), indicating that the interaction pro-
cesses have already reached saturation and no further kinetic phenomena will occur. Also,
no aggregation effects were observed. According to the literature [30–32], thermodynamic
exploitation may be carried out in these conditions. However, despite the denaturation
process of the free HEWL is well fitted by a single-step thermodynamic equilibrium model
(Figure S3a in the Supplementary Materials), the fit attempts performed on the different
HEWL + complex systems with various thermodynamic models failed [32–34]. In other
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words, the action of the complexes on the protein thermal stability cannot be described as a
simple equilibrium binding processes. This missed thermodynamic description, together
with the asymmetries of the thermograms exhibited by the HEWL + complex systems,
is compatible with a scenario for which the protein interaction with the compounds is
non-specific. Hydrophobic interactions between protein’s and complexes’ aromatic rings
or electrostatic interactions in the case of the charged complexes 1 and 2 may be at play
and produce statistical distributions of several populations in which the protein differently
coordinates the metal complexes.

Besides, we investigated the interaction of the three complexes with RNase A (Figure 2).
We studied the effects of the binding on the protein denaturation process after 24 h and
48 h of incubation. Although the RNase A denaturation peak can be fitted through a single-
step thermodynamic equilibrium model (Figure S3b in the Supplementary Materials),
metastable states and kinetic effects were observed in the RNase A + complex systems.
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incubation at 37 ◦C in 0.1 M acetate buffer at pH = 4.5; (b) Nano-DSC thermograms for RNase A alone or in the presence of
the samples 1–3 (protein:complex 1:5 molar ratio) after 24 h of incubation at 37.0 ◦C in 0.1 M acetate buffer at pH = 4.5.

Figure 2a reports the evolution of the thermograms observed for RNase A + 1 at
different incubation times, as an example. We note a destabilizing action that shifts the
thermograms towards lower temperatures. Furthermore, the thermograms become shoul-
dered, and despite the profiles remain almost similar, the overall enthalpy progressively
decreases, highlighting that the protein irreversibly denatures during the incubation time.
Similar kinetic effects are also observed for compounds 2 and 3, even though with lower
rates. A deeper kinetic study about such irreversible phenomena is beyond the scope of
this paper. Instead, to compare the action of the complexes, we limit our description to
the intensive properties, i.e., the temperature range of denaturation and the thermogram
profiles observed.

For the sake of homogeneity with the profiles reported for HEWL, Figure 2b shows a
comparison of the three systems after 24 h of incubation at 37 ◦C, whereas the respective
relevant thermodynamic parameters are reported in Table 1. We observe that compounds 2
and 3 behave similarly to the HEWL’s analogues (see Figure 1), whereas a minor destabiliz-
ing effect (if we exclude the irreversible time-depending phenomena) was produced by 1.
Furthermore, asymmetries and shoulders are evident in all cases, strengthening the scenario
of non-specific interactions leading to a distribution of multiple protein-complex species.
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2.3. Protein Binding by UV-Vis Titrations

The changes in the UV-Vis spectra of the complex under increasing protein content
enlighten the occurrence of a binding reaction. Figure 3 shows the result of a spectrophoto-
metric titration of the complex 1 with HEWL, which confirms the presence of an interaction
taking place between 1 and the biosubstrate. Complex 1 showed a characteristic absorption
maximum at 378 nm, which was red-shifted by about 3 nm and underwent hypochromism.
The presence of a well-defined isosbestic point at 390 nm suggested a relatively simple
equilibrium (one dominating type of bound species).
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The interaction between the platinum metal complex 1 and HEWL may be in a first
approximation represented by the following reaction (Equation(1)):

HEWL + PtL � HEWL-PtL, (1)

where HEWL is the protein, PtL the unbound Pt(II)-complex and HEWL-PtL the resulting
adduct. Under these circumstances, the analysis of spectrophotometric titrations can be
performed using Equation (2):

CPtLCHEWL

∆A
+

∆A
∆ε2 = (CPtL + CHEWL)

1
∆ε

+
1

K∆ε
(2)
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Here CPtL and CHEWL are the total analytical concentrations of respectively complex
1 and HEWL, ∆A = A − εPtLCPtL is the absorbance signal change, ∆ε = εHEWL-PtL − εPtL
is the amplitude of the binding isotherm (Figure S5a from Supplementary Materials) and
K is the equilibrium constant associated to equilibrium (1). As ∆ε value is not known, an
iterative procedure is needed that first disregards the ∆A/∆ε2 term and then calculates it
iteratively by reciprocal of the slope of the obtained straight line [35]. At convergence, the
value of K is calculated by the slope/intercept ratio of the straight-line interpolating data
points (Figure S5b from Supplementary Materials). Table 2 collects the K values obtained.

Table 2. Binding constant parameters for the HEWL/Pt(II)-complex systems analysed in this work.
Acetate buffer 0.1 M, pH = 4.5, 25 ◦C.

Titration K (M−1) 1 K′ (M−1) 2 n 2

HEWL + 1 (1.7 ± 0.2) × 104 (1.5 ± 0.8) × 104 0.91 ± 0.05
HEWL + 2 (1.2 ± 0.4) × 104 (1.2 ± 0.5) × 104 1.00 ± 0.04
HEWL + 3 (4 ± 2) × 102 - ∼= 1.0

1 Obtained according to Equation (2). 2 Obtained according to Equation (3).

The apparent interaction constant can also be obtained using Equation (3), which is an
alternative form of the Scatchard equation [28]:

CHEWL(CPtL∆ε− ∆A)

∆A
=

1
nK

+
(CPtL∆ε− ∆A)

∆ε
1
n

. (3)

Here, n is the number of equivalent sites per protein unit and ∆ε value comes from the
binding isotherm and is confirmed by the analysis according to Equation (2). An example
of data analysis is provided in the Supplementary Materials (Figure S5c); results are in
Table 2. The number of sites per unit of protein is close to one, confirming the suitability of
Equation (2) to treat the data.

The same procedure was applied to complex 2. Examples of the spectral variation
observed are shown in Figure 3b, and data treatment is reported in the Supplementary Ma-
terials as Figure S6. When increasing amounts of HEWL are added, the absorption band of
2 at ca. 450 nm fades out and a new band appears in the 380–410 nm range. An isosbestic
point at 420 nm suggests the presence of simple equilibria. The spectrophotometric data
were analysed according to Equations (2) and (3), and the results are shown in Table 2.

Complex 3, unlike the previous two, showed precipitation for CHEWL/CPtL > 2.5. As
shown in Figure 3c, by increasing HEWL concentration, the absorption band at 360 nm is
slightly red-shifted by about 5 nm and shows hyperchromism, while that at 700 nm shows a
marked hypochromism and blue-shifts while fading. The precipitation process lowered the
robustness of the binding models and concurrently the precision of the binding parameters;
no K evaluation was possible, in particular by Equation (3) (Table 2 and Figure S7 in the
Supplementary Materials). However, it can be concluded that for this species the affinity
for the protein is much lower with respect to the other complexes. Note that, in the presence
of HEWL, there is no born of the peak at 578 nm related to acetate coordination (and this
should be visible in the time range of sample preparation + titration). Also, the final mixture
was left in the spectrophotometer, but no substantial change of the spectrum occurred even
on longer time ranges. It means that acetate coordination is suppressed in the presence
of protein.

Turning now to RNase A interactions, the absorption spectra of 1 in the presence
of increasing protein concentration are shown in Figure 4a. With increasing additions
of RNase A, the absorption band of complex 1 is blue-shifted by about 10 nm, and its
intensity is enhanced. Therefore, the effect is here opposite to what observed for HEWL.
The binding isotherm (Figure 4b) corresponds to a complex trend which suggests the
presence of multiple and cooperative equilibria (also in agreement with the non-perfect
isosbestic point shown in the inset of Figure 4a), finally leading to some precipitation.
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Under these circumstances, no quantitative data analysis according to the equations above
is possible.
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As for 2, when increasing amounts of proteins are added, the absorption band at
430 nm undergoes hypochromicity, and a new band is formed in the range between 350 and
380 nm (Figure S8a in the Supplemetary Materials). For 2, application of Equations (2) and
(3) yielded, respectively, K = (5 ± 2) × 103 M−1, K′ = (3 ± 1) × 104 M−1 and n = 0.5 (Fig-
ure S8c, d in the Supplementary Materials). Nevertheless, these values must be considered
only indicative, since the binding isotherms are again significantly distorted (Figure S8b
in the Supplementary Materials). This finding indicates that, also for complex 2, multi-
ple/cooperative equilibria with complex stoichiometries should be envisaged. In the case
of 3, the presence of precipitation effects inhibited any analysis of the binding process.

On the whole, as for the point of view of the UV-Vis titrations, we may conclude
the following. First, the binding to HEWL occurs in a very different way to RNase A. A
comparison between Figures 3a and 4a supports this picture, as the spectrophotometric
response of 1 upon binding is opposite in the case of the two biosubstrates. Note that
UV-Vis titrations will reflect the events occurring on short time scales (1–2 h), whereas
slow conformational changes of the protein and possible covalent binding will need longer
times to take place. The complexes do bind to HEWL according to a simple equilibrium
(in particular, no different binding types evidenced) that follows a 1:1 stoichiometry. The
binding constants follow the order K(1) ≥ K(2) >> K(3). The significant spectral changes
observed indicate that the aromatic part of the ligand is involved in the binding. For RNase
A, besides precipitation phenomena taking place, the binding isotherms show complex
trends suggesting a different and more complex binding mechanism.

2.4. Protein Binding by Mass Spectrometry

The reactivity behaviour of complexes 1–3 towards the two model proteins was also
evaluated using high-resolution ESI mass spectrometry. For these experiments, the proteins
were treated in physiological-like conditions, using a well-established protocol [18,36,37]
that can assure a protein reactivity as similar as possible to that of the physiological
environment. Moreover, the spectra were acquired with a methodology able to preserve
the protein in its native state, conserving unaltered all the covalent interactions formed
in solution and most of the non-covalent ones [38]. From the inspection of the obtained
spectra, clearly emerged two different reactivity patterns depending on the nature of the
biomolecules. Specifically, in the case of HEWL, the main peak showed in the spectrum
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recorded after 24 h of incubation at 37 ◦C (14304 Da) belongs to the unreacted protein
(Figure 5). Nevertheless, a very weak signal at 14,807 Da was also present and assignable
to the adduct between HEWL and compound 1 without the chloride ligand. Interestingly,
this signal was not conserved in the spectrum recorded after 48 h of incubation, and
only the unreacted protein was present (Figure S9 from Supplementary Materials). This
behaviour seems to be in accordance with a non-covalent interaction between the protein
and the metal complex, probably giving an interaction mainly of electrostatic nature with
the dicationic metal fragment and some negatively-charged amino acid residues, e.g., the
aspartic acid.
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Although the weak electrostatic interactions can be preserved in the gas phase during
the ionization process [39,40], the spectrum recorded after 48 h of incubation with com-
pound 1 did not show any adduct signal. This behaviour was probably due to the lability
of this non-covalent adduct and its possible degradation in the measurement conditions.
In the case of complex 2, this behaviour was not evidenced even after 24 h of incubation
(Figure S10 from Supplementary Materials). In this case, the presence of one iodide in
place of one chloride could affect in a significant way the non-covalent interactions of this
complex. Probably, being the iodide ligand of much bigger size with respect to the chloride
and less prone to hydrolysis, complex 2 is not favoured, in the measurement conditions, to
correctly approach the protein surface and establish the weak non-covalent interaction [41].

On the other hand, the neutral complex 3, probably due to the absence of charge,
did not show any electrostatic interaction with HEWL. The covalent interaction is also
absent and its NCN coordinative environment confers to this complex a particular stabili-
sation to the metal centre, and thus, less reactivity (Figures S9 and S10 in the Supplemen-
tary Materials).

Contrarywise, when compound 2 reacted with RNase A, its reactivity behaviour was
totally different. After the first 24 h of incubation, the spectrum showed two main signals
at 13,682 and 13,780 Da corresponding to the unreacted RNase A and its adducts with the
isobaric sulphate or phosphate anions, respectively (Figure S11 in the Supplementary Ma-
terials). From the literature, it was well established that the solution media used during the
extraction and purification process of the commercially available RNase A can contain a
small amount of phosphoric acid or sulphuric acid that is responsible for the formation of
isobaric and undesired adducts with RNase A (+98 m/z) [42]. These adducts remain visible
even when the protein is dissolved in a different medium, like here, where ammonium
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acetate solution has been employed. Beyond the unreacted protein, the spectra also showed
two peaks corresponding to the metal adduct of these two protein forms at 14,184 and
14,283 Da. In this adduct, the reactive fragment corresponds to compound 2 without the
iodide ligand.

The ESI mass spectrum obtained for RNase A after 48 h of incubation with complex 2
is reported in Figure 6. It shows that the two peaks at 14,184 and 14,283 Da (corresponding
to the mono adduct of RNase A and its form with SO4

2−/PO4
3−) are still present, and

their intensities appear to be remarkably increased with respect to 24 h. This is the typical
behaviour of a covalent adduct with slow kinetics of the reaction, that proceeds during all
the incubation period. As a further insight in this direction, note the appearance of a new
small peak at 14,686 Da, corresponding to the bis adduct with the protein. The main peaks
at 13,682 and 13,780 Da due to the unreacted protein forms are still present.
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Similarly to compound 2, complex 1 produced a protein adduct with a related intense
signal at 14,183 Da (and 14,282 for the protein with SO4

2−/PO4
3−). This peak corresponds,

also in this case, to the monoadduct of complex 1 with the loss of the chloride ligand.
Surprisingly, after 48 h of incubation, the resulting spectra did not show any adduct signals
(Figures S11 and S12 in the Supplementary Materials). Also, the intensity of the unreacted
protein signal appears to be sensibly diminishing. In fact, from the data and experimental
observations gathered with the other techniques described above, this is in accordance
with an extensive adducts precipitation from the solution.

This protein aggregation phenomenon is evident with compound 1 and is absent with
compound 2. The real explanation of this different behaviour cannot be furnished at this
stage of the study; however, since the reactive fragment is the same in both cases—i.e.,
Pt(4′-phenyl-2,2′:6′,2”-terpyridine)- the nature of the labile ligand released in solution
could play a fundamental role in the protein aggregation.

Once again, complex 3 appears to be completely unreactive, also with the RNase A,
and both its spectra recorded after 24 and 48 h of incubation displayed only the signals
belonging to the unreacted protein (Figures S11 and S12 in the Supplementary Materials).

In conclusion, with the ESI-MS we gained further insight into the peculiar reactivity
for these three platinum-based complexes confirming and deepening the experimental
evidence obtained with DSC and UV-Vis spectrophotometry. Complex 1 forms with HEWL
a small percentage of a non-covalent adduct that can be reasonably described as electrostatic.
Probably due to the chemico-physical properties of the labile ligand, complex 2 is not able
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to establish the necessary electrostatic interaction with the protein to be revealed in MS
as a non-covalent adduct. Taking into account the nephelauxetic effect of the ligands, the
iodide can establish interaction with the Pt centre of more covalent nature with respect
to the chloride, leading to a more stable complex where the labile ligand is more easily
retained, and to a less propensity to give adducts of electrostatic nature.

On the contrary, both complexes 1 and 2 are reactive towards RNase A, giving a
well-defined monoadduct and, in the case of complex 2, a bis-adduct. Lastly, the neutral
compound 3 is unreactive with both proteins, and in its MS spectra, there are no indications
for the formation of covalent adducts nor electrostatic ones.

Overall, in agreement with the other techniques, ESI-MS showed a stronger affinity
of the complexes for RNase A with respect to HEWL. Looking more in detail at the
protein’s structure, it is known from the literature that both HEWL and RNase A possess
some amino acid side chains with which platinum could interact covalently [43–45]. The
differential reactivity found in this work could be tentatively explained by keeping in mind
the molecular geometry of the reactive fragment. The three-coordinated platinum centre
is surrounded by the terpyridine ligand, endowed with three aromatic rings that confer
rigidity to this planar structure. Moreover, the Pt atom has only one free coordinative
site requiring the right spatial orienteering of the molecule to establish a covalent bond.
Besides, the spatial hindrance of the terpyridine ligand could not allow the interaction with
the protein amino acid side chains that are not fully solvent-exposed, as it probably occurs
in the case of HEWL.

3. Materials and Methods
3.1. Materials

The metal complexes 1–3 were synthesized as described in the cited papers [21,22,46].
Hen egg-white lysozyme (HEWL) and ribonuclease A from bovine pancreas (RNase A)
were purchased from Sigma-Aldrich (St. Louis, MO, USA) and used without further
purification or manipulation. LC-MS grade water, sodium acetate, acetic acid and dimethyl-
sulfoxide (DMSO) were also purchased from Sigma-Aldrich. When not otherwise specified,
all reagents were analytical grade purity and were used without further purification.

Stock solutions of the metal complexes (1.0 mM) were prepared in DMSO by weight
and kept in the fridge; working solutions were obtained by diluting the stocks with the de-
sired buffer. The exact protein concentration in buffer was calculated by UV-Vis absorbance
spectrophotometry, using ε(280 nm): 38,940 cm−1M−1 for HEWL and 8640 cm−1M−1 for
RNase A. The final values were an average of 5 replicas.

3.2. Differential Scanning Calorimetry

Calorimetric measurements in solution were carried out using both a N-DSC III (model
CS-6300, Calorimetry Science Corporation, Lindon, UT, USA) equipped with capillary cells
and with a micro DSC III (Setaram, Caluire, France) equipped with 1.0 mL hermetically
closed cylindrical pans, at scan rate 0.5 ◦C/min in the temperature range from 20.0 to
95.0 ◦C. For all the experiments, a heating-cooling cycle was performed, followed by a
second heating ramp. All the samples were degassed and filtered before the measurements,
following the standard procedure [26]. A blank scan was performed by filling the sample
and the reference cells with the buffer, in the same experimental conditions.

Data were analysed using the software nano-Analyze Data Analysis (version 3.11.0,
TA Instruments, New Castle, DE, USA) and Theseus [47], following a previously reported
procedure [30,48]. Briefly, the excess molar heat capacity Cp

exc(T) of the sample, namely the
difference between the apparent heat capacity and the protein heat capacity in the native
state, was recorded across the scanned temperature range. The denaturation enthalpy (∆dH)
was defined as the area underlying the recorded peak. Errors were evaluated based on at
least three replicas. The fit attempts based on the denaturation thermodynamic models
(see the Supplementary Materials) were accomplished using the nonlinear Levenberg–
Marquardt method [49].
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The samples were tested in protein solutions at a concentration of 3 mg/mL
(ca 2 × 10−4 M) in acetate buffer (0.1 M, pH 4.5), to which ca 30 µL of each metal complex
was added at a concentration of 5 × 10−2 M in DMSO, with a complex/protein molar ratio
of five. The amount of DMSO used to solubilize the Pt(II) complexes never exceed 2% v/v.
The samples were incubated for 0, 24 or 48 h in a water-bath or a stove at 37 ◦C.

The effects of incubation at 37 ◦C on the thermal stability of the two model proteins
used as reference were verified. The DSC thermograms showed slight differences as for the
enthalpy values in the case of HEWL subjected to incubation. Indeed, despite both the peak
profile and the denaturation temperature Td were unaffected, a reduction of the enthalpy
after 24 h and 48 h of incubation was observed, reflecting a loss of the protein native form
(about 12% after 24 h and a further 9% after 48 h). Nonetheless, the profiles were perfectly
superimposable after applying a correction that considered protein loss. For this reason, to
correctly compare the mere effects of the compounds, the thermograms obtained for the
interaction between HEWL and compounds 1–3 were all corrected with the same factor
according to the incubation time. By contrast, the calorimetric profile of RNase A remains
unaffected over incubation time, in agreement with the well-known good denaturation
reversibility of RNase A reported in the literature [47,50].

3.3. UV-Vis Spectrophotometry

Both UV-2450 UV-Vis (Shimadzu, Chashan Town, Dongguan, China) and Lambda
35 UV-Vis (Perkin Elmer, Waltham, MA, USA) spectrophotometers were used. Both
instruments are dual-beam ones; quartz cuvettes with an optical path of 1.0 cm were used.

To measure the stability of the metal complexes over time, the complex stock solution
was diluted in acetate buffer (0.1 M, pH 4.5) to reach a concentration of 10−5 M. The
absorption spectra were recorded at 25 ◦C.

To evaluate the interaction between the model proteins and each of the three Pt (II)
complexes, differential spectrophotometric titrations were performed at 25 ◦C. For all
titrations, first, a working solution of metal complex was obtained by adding 150 µL of
10−3 M stock solution in DMSO to 1.0 mL of 0.1 M acetate buffer at pH = 4.5. This was
added to a solution of protein 2.0 × 10−3 M directly in the spectrophotometric cell. The
additions were made by using a glass syringe connected to a micrometric screw (Mitutoyo–
one turn equal to 8.2 µL, 1/50 of a turn is the minimum addition possible). Additions of
titrant were done both in the cell containing the metal complex and in the reference cell
so that the contribution of absorbance by the protein is zero (differential procedure). The
experimental conditions require the presence of ca. 10% of DMSO in the sample, due to
experimental needs and solubility limits of the complexes. Previous studies have shown
that the protein structure is maintained at these levels of DMSO [51] and, due to the very
limited dilution effect, the amount of DMSO in the sample stays constant all over the
experiment. The absorption spectra are corrected for the dilution factor. Any titration was
done at least in duplicate.

3.4. Mass Spectrometry

Stock solutions of HEWL and RNase A 10−3 M were prepared by dissolving the
proteins in 2 × 10−3 M ammonium acetate solution (pH 6.8). Stock solutions 10−2 M of the
investigated Pt compounds were prepared by dissolving the samples in DMSO.

For the ESI–MS experiments, aliquots of the protein stock solutions were mixed to
aliquots of the Pt-based compounds stock solution in metal to protein ratio of 3:1 and
diluted with ammonium acetate solution 2 × 10−3 M (pH 6.8) to a protein concentration
of 10−4 M (in these conditions the final percentage of DMSO was 3%). The mixtures were
incubated at 37 ◦C up to 48 h.

After 24 and 48 h of incubation time, all solutions were sampled and diluted to a final
protein concentration of 10−7 M using ammonium acetate solution 2 × 10−3 M, pH 6.8 and
added with 0.1% v/v of formic acid just before the infusion in the mass spectrometer.
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The ESI mass spectra were acquired using a TripleTOF® 5600+ high-resolution mass
spectrometer (Sciex, Framingham, MA, USA), equipped with a DuoSpray® interface oper-
ating with an ESI probe. All the ESI mass spectra were acquired through a direct infusion
at 5 µL min−1 flow rate. The general ESI source parameters optimized for HEWL and
RNase A were as follows: positive polarity; ionspray voltage floating 5500 V, temperature
(TEM) 25 ◦C, ion source gas 1 (GS1) 45 L min−1; ion source gas 2 (GS2) 0; curtain gas (CUR)
20 L min−1, declustering potential (DP) 150 V, collision energy (CE) 10 V, acquisition range
1000–2600 m/z.

For the acquisition, the Analyst TF 1.7.1 software (Sciex, Framingham, MA, USA) was
used and deconvolved spectra were obtained using the Bio Tool Kit v2.2 incorporated in
the software PeakView™ v.2.2 (Sciex).

4. Conclusions

The joint use of different techniques permitted us to observe with a multi-technique
approach the interaction between two model proteins (HEWL and RNase A) and three Pt(II)
complexes, namely [PtCl(4′-phenyl-2,2′:6′,2′′-terpyridine)](CF3SO3) (1), [PtI(4′-phenyl-
2,2′:6′,2′′-terpyridine)](CF3SO3) (2) and [PtCl(1,3-di(2-pyridyl)benzene)] (3), all potential
cisplatin substitutes.

UV-Vis titrations permitted to detect the binding in short times of 1 and 2 complexes to
HEWL (with a 1:1 stoichiometry) and to calculate apparent constant values of ca 104 M−1.
The significant spectral changes observed indicate that the aromatic part of the ligand is
involved in the binding. Besides, the entropic destabilization and the peak asymmetry
in the HEWL-complexes solutions observed by calorimetry suggested the occurring of
non-specific interactions between the biosubstrate and the complexes. We hypothesize a
statistical distribution of several populations in which the protein differently coordinates
the metal complexes. Moreover, mass spectrometry permitted to exclude the covalent
binding mode, suggested by the presence in HEWL + 1 of a small quantity of adduct
complex-protein not stable in time. On the whole, the picture which comes out for com-
plexes 1 and 2 is a binding mode mainly of electrostatic nature with the dicationic metal
fragment and some negatively-charged amino acid residues, e.g., the aspartic acid. In
addition to the electrostatic contribution, we believe that weak π-stacking interactions
could play a role, as found by UV-Vis titrations.

We observed that steric and electronic differences of the ligands drive the nature of
the interactions. The differences obtained for complexes 1 and 2 might be ascribable to the
different reactivity of the labile ligand (Cl vs. I), and phenomenological evidence indicates
that these compounds interact with the protein in peculiar manners. On the other hand,
complex 3 (neutral) is less reactive and probably interacts with the protein only via weak
hydrophobic interactions. Anyway, these interactions inhibit the substitution of the labile
chloride ligand, as observed by UV-Vis spectroscopy.

The evaluation of the interactions between the three complexes and RNase A provided
a different picture, as the complexes showed a stronger affinity with respect to the one
observed with HEWL. Calorimetric measurements on protein-complex solutions showed
kinetic effects, suggesting the occurrence of partial complex-induced protein denaturation
during the incubation time. Besides, the appearance of a shoulder in the thermograms
highlight the statistical distribution of multiple protein-complex species. The spectropho-
tometric analysis of the binding is made difficult complex phenomena that finally lead
to precipitation. This finding may be related to the higher exposure of RNase A active
sites, which enhances the possibility of aggregation phenomena. On longer time ranges,
this accessibility turns into the ability of the metal complex to be placed in a position that
enables covalent bond formation. This is enlightened by the mass spectra, which show that
for RNase A + 2 the formation of 1:1 and 1:2 adducts after the labile ligand loss, whose
abundance increase over time. Once again, complex 3 appears to be weakly reactive also
with the RNase A.
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This study provides information on the binding details of Pt(II)-terpy metal complexes
to small proteins and on structure-reactivity relationships due to the ligands coordinated
to the metal centre. It also evidences that the same Pt(II)-terpy metal complex may bind in
a very different way to two apparently similar biosubstrates. Further studies, with the help
of different techniques, will be needed to unravel selectivity issues of protein binding for
this class of metal complexes.

Supplementary Materials: The following are available online. Figure S1: UV-Vis absorption spectra
of the complexes 1 and 2 over time. Figure S2: Solutions of complex 3 at concentration 2.0 × 10−4 M
in acetate buffer at time zero (a) and after one hour from solutions’ preparation (b); UV-Vis absorption
spectra of the complex 3 in acetate buffer (c) and water (d) recorded over time. Figure S3: Thermo-
grams for the proteins HEWL (a) and RNase A (b) recorded by micro-DSC and n-DSC. Figure S4:
Micro-DSC thermograms of HEWL+ complex 1 (a), 2 (b) and 3 (c) after 24 h (green solid line) and 48 h
(red dashed lines) of incubation in at 37.0 ◦C in 0.1 M acetate buffer at pH 4.5. Figure S5: Examples
of UV-Vis titrations of the platinum complex 1 in the presence of increasing amounts of the HEWL
protein and relevant data analysis. Figure S6: Examples of UV-Vis titrations of the platinum complex
2 in the presence of increasing amounts of the HEWL protein and relevant data analysis. Figure S7:
Examples of UV-Vis titrations of the platinum complex 3 in the presence of increasing amounts of the
HEWL protein and relevant data analysis. Figure S8: Absorption spectra of the platinum complex 2
in the presence of increasing amounts of the RNAse A protein (from blue to red) (a) and relevant
binding isotherm at 410 nm (b). Relevant data analysis is also shown as panels (c) and (d). Figure S9:
Deconvoluted ESI-Q-TOF mass spectra of HEWL incubated for 48 h at 37 ◦C with (a complex 1,
(b) 2 and (c) 3 in ammonium acetate solution. Figure S10: Deconvoluted ESI-Q-TOF mass spectra
of HEWL incubated for 24 h at 37 ◦C with (a) complex 2 and (b) 3 in ammonium acetate solution.
Figure S11: Deconvoluted ESI-Q-TOF mass spectra of RNase A incubated for 24 h at 37 ◦C with
(a) complex 1, (b) 2 and (c) 3 in ammonium acetate solution. Figure S12: Deconvoluted ESI-Q-TOF
mass spectra of RNase A incubated for 48 h at 37 ◦C with (a) complex 1, and (b) 3 in ammonium
acetate solution.
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