
Frontiers in Oncology | www.frontiersin.org

Edited by:
Guang Yang,

Imperial College London,
United Kingdom

Reviewed by:
Yi Zhang,

Sichuan University, China
Shouping Zhu,

Xidian University, China
T. Niu,

Georgia Institute of Technology,
United States

*Correspondence:
Zhanli Hu

zl.hu@siat.ac.cn

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Cancer Imaging and
Image-directed Interventions,

a section of the journal
Frontiers in Oncology

Received: 19 November 2021
Accepted: 27 December 2021
Published: 26 January 2022

Citation:
Deng F, Li X, Yang F, Sun H, Yuan J,
He Q, Xu W, Yang Y, Liang D, Liu X,
Mok GSP, Zheng H and Hu Z (2022)

Low-Dose 68 Ga-PSMA Prostate
PET/MRI Imaging Using Deep
Learning Based on MRI Priors.

Front. Oncol. 11:818329.
doi: 10.3389/fonc.2021.818329

ORIGINAL RESEARCH
published: 26 January 2022

doi: 10.3389/fonc.2021.818329
Low-Dose 68 Ga-PSMA Prostate
PET/MRI Imaging Using Deep
Learning Based on MRI Priors
Fuquan Deng1,2,3†, Xiaoyuan Li4†, Fengjiao Yang4, Hongwei Sun5, Jianmin Yuan6,
Qiang He6, Weifeng Xu2, Yongfeng Yang1,3, Dong Liang1,3, Xin Liu1,3, Greta S. P. Mok7,
Hairong Zheng1,3 and Zhanli Hu1,3*

1 Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of
Sciences, Shenzhen, China, 2 Computer Department, North China Electric Power University, Baoding, China, 3 Chinese
Academy of Sciences Key Laboratory of Health Informatics, Shenzhen, China, 4 Department of Nuclear Medicine, Nanjing
First Hospital, Nanjing Medical University, Nanjing, China, 5 United Imaging Research Institute of Intelligent Imaging, Beijing,
China, 6 Central Research Institute, United Imaging Healthcare Group, Shanghai, China, 7 Biomedical Imaging Laboratory
(BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Avenida
da Universidade, Macau SAR, China

Background: 68 Ga-prostate-specific membrane antigen (PSMA) PET/MRI has become
an effective imaging method for prostate cancer. The purpose of this study was to use
deep learning methods to perform low-dose image restoration on PSMA PET/MRI and to
evaluate the effect of synthesis on the images and the medical diagnosis of patients at risk
of prostate cancer.

Methods: We reviewed the 68 Ga-PSMA PET/MRI data of 41 patients. The low-dose
PET (LDPET) images of these patients were restored to full-dose PET (FDPET) images
through a deep learning method based on MRI priors. The synthesized images were
evaluated according to quantitative scores from nuclear medicine doctors and multiple
imaging indicators, such as peak-signal noise ratio (PSNR), structural similarity (SSIM),
normalization mean square error (NMSE), and relative contrast-to-noise ratio (RCNR).

Results: The clinical quantitative scores of the FDPET images synthesized from 25%- and
50%-dose images based on MRI priors were 3.84±0.36 and 4.03±0.17, respectively,
which were higher than the scores of the target images. Correspondingly, the PSNR,
SSIM, NMSE, and RCNR values of the FDPET images synthesized from 50%-dose PET
images based on MRI priors were 39.88±3.83, 0.896±0.092, 0.012±0.007, and
0.996±0.080, respectively.

Conclusion: According to a combination of quantitative scores from nuclear medicine
doctors and evaluations with multiple image indicators, the synthesis of FDPET images
based on MRI priors using and 50%-dose PET images did not affect the clinical diagnosis
of prostate cancer. Prostate cancer patients can undergo 68 Ga-PSMA prostate PET/MRI
scans with radiation doses reduced by up to 50% through the use of deep learning
methods to synthesize FDPET images.
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INTRODUCTION

Prostate cancer is one of the most common cancers worldwide,
with approximately 1.41 million new cases reported in 2020, the
third most common among 36 cancers (1). In recent years,
studies have demonstrated that 68 Ga-prostate-specific
membrane antigen (PSMA) PET/MRI provides accurate
staging of primary prostate cancer with a high detection rate
(2–6). In terms of evaluating recurrent prostate cancer, this
imaging technique also has a high detection rate, even for
patients with extremely low levels of prostate specific antigen
(PSA; <0.5 ng/ml). Additionally, it plays an important role in
tumor detection, preliminary staging, treatment response
assessment, and treatment planning (7, 8).

However, this technique also has some limitations, including
scanning time, the cost of the associated radiopharmaceuticals, and
the radiation delivered by PET imaging (9). The economic factors
and radiation risks have different kinds of impact on the patients.
The purpose of reducing the dose of radiopharmaceuticals is related
to the potential risks of ionizing radiation. To reduce the risk of
radiation exposure that those involved in the scan may face,
especially pediatric patients and volunteers, or when a variety of
different tracers are used for follow-up or to monitor treatment
response, fewer radiopharmaceuticals should be used to perform
PET imaging. The reduction in the number of radiopharmaceuticals
will reduce the quality of the PET images, thereby affecting
quantitative analysis and clinical diagnosis.

In recent years, deep learning has entered various fields of
medical imaging. Hu Chen et al. used learned experts’
assessment-based reconstruction network to reconstruct CT
directly from sinogram data (10). Maosong Ran et al. proposed
a Parallel Dual-Domain Convolutional Neural Network for
Compressed Sensing MRI to deal with the k-space and spatial
data simultaneously (11) and a parameter-dependent framework
to process the CT data with different scanning geometries and
dose level in a unified network (12). Wenjun Xia et al.
simultaneously leverage the spatial convolution to extract the
local pixel-level features from the images and incorporate the
graph convolution to analyze the nonlocal topological features in
manifold space for low-dose CT reconstruction (13). Chenyu
Shen et al. leveraged deep regularization by denoising from a
Bayesian perspective to reconstruct PET images from a single
corrupted sinogram without any supervised or auxiliary
information (14). Researchers have proposed a variety of
methods to ensure that the synthesized FDPET images have
the same image quality as the clinical diagnostic images (15–17).
In particular, deep learning has shown great potential in
recovering LDPET images. Yan Wang et al. used a 3D
conditional generative adversarial network (GAN) to
synthesize FDPET images from head LDPET images (18).
Wenzhuo Lu et al. used a fully optimized 3D U-net to
effectively reduce the noise in LDPET images from the lungs
while minimizing the deviation in the lung nodules (19). Yang
Lei et al. proposed using CycleGAN to estimate prostate FDPET
images from prostate LDPET images (20). Long Zhou et al. also
used CycleGAN, denoising low-dose fluorodeoxyglucose (FDG)
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PET images and subsequently performing quantitative analysis
on the images (21).

Deep learning also has a variety of exploratory research in
prostate PET images. Pablo Borrelli et al. used convolutional
neural network to detect lymph node metastases by PET/CT
predicting prostate cancer-specific survival (22). Eirini Polymeri
et al. evaluated a novel three-dimensional deep learning-based
technique on PET/CT images for automated assessment of
cancer in the prostate gland and its agreement with manual
assessment (23). Sangwon Han et al. evaluated the performance
of deep learning classifers for bone scans of prostate cancer
patients (24). Dejan Kostyszyn et al. examined the capabilities of
convolutional neural network for intraprostatic GTV contouring
in 68Ga- and 18F-PSMA-PET (25). Sobhan Moazem et al. used
UNet to predict treatment response in prostate cancer patients
based on multimodal PET/CT for clinical decision support (26).
Andrii Pozaruk et al. developed a novel augmented deep learning
method based on GANs for accurate attenuation correction in
the simultaneous PET/MR scanner (27).

In this study, we retrospectively analyzed the 68 Ga-PSMA
PET/MRI data of 41 patients in Nanjing First Hospital of China.
The PET images were reconstructed at acquisition times of 2.5%,
5%, 25%, 50%, and 100% of the standard acquisition time. A
discrete-wavelet-transform convolutional neural network
(DWTN) was used to restore the LDPET images to the
original, FDPET images with or without the use of MRI priors,
respectively, to explore the extent to which this method can
reduce the required radiotracer dose.
MATERIALS AND METHODS

PET/MRI Data Acquisition
In this study, we used clinical images obtained from 68 Ga-
PSMA PET/MRI examinations performed at Nanjing First
Hospital of China from January 2021 to July 2021. The data
were obtained from 41 male patients who might present with
signs of future prostate cancer. The mean age of the patients was
67 ± 6 years, and the mean weight was 73 ± 10 kg. The research
protocol was approved by the institutional ethics committee, and
all patients were provided written informed content. Sixty
minutes after the patient had been injected with 68 Ga-PSMA
(in the range of 111-185×106 MBq), scanning data were collected
from the PET/MRI scanner (United Imaging Healthcare, uPMR
790). The acquisition time of emission images was 600 seconds,
and the PET images were reconstructed at acquisition times of
600, 300, 150, 30, and 15 seconds.

All PET images were reconstructed using ordered subset
expectation maximization (OSEM) algorithm and a set series of
parameters, for example, 3D iterative time-of-flight (TOF) and
point-spread function (PSF) reconstruction, 2 iterations, 20
subsets, matrix 192×192, slice thickness 2.5 mm, and correction
methods such as decay correction, attenuation correction, scatter
correction, dead time correction, random correction, and detector
normalization correction. The images reconstructed at the
acquisition times above correspond to 100%-, 50%-, 25%-, 5%-,
January 2022 | Volume 11 | Article 818329
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and 2.5%-dose (low-dose) PET images, respectively. The 100% does
PET images were used as ground-truth and the remaining dose PET
images were used as input images. The water sequence decomposed
from the T1-weighted MRI images was used as the prior images for
generating the LDPET images.

Since integrated prostate PET/MRI was used for scanning, the
PET and MRI scans were coaxial. The PET image matrix size is
192×192, and the MRI image matrix size is 552×387. To ensure
that the image resolution was not lower than that of the original
image, we used bicubic interpolation to resize the two modal
images as a 512×512 matrix. Since the image matrix sizes of the
two modalities are now the same, the images of the two
modalities do not need to be registered. In total, the 41
patients had 4100 sets of images. These sets are divided into
training data set and test data set. We used 90% of the data set to
train the model and the remaining 10% to verify the effect of the
images generated by the model. To avoid overfitting due to the
small size of the training data set, we increased the number of
images in the training data set by flipping the images down, left
Frontiers in Oncology | www.frontiersin.org 3
and right, quadrupling the size of the training data set. This
process helped improve the generalizability of the deep
learning models.

Discrete-Wavelet-Transform Convolutional
Neural Network
The discrete-wavelet-transform convolutional neural network
(DWTN) proposed in this study is an improvement of the
densely self-guided wavelet network (28), which is suitable for
LDPET image restoration tasks based on MRI priors. The
structure of DWTN was shown in Figure 1. The multilayer self-
guided architecture makes better use of multiscale image
information; low-resolution feature information from the top
layer is gradually fused with higher-resolution feature
information to improve the network’s ability to extract
multiscale feature information from images. Wavelet transform
is used instead of ordinary upsampling and downsampling and
PixelShuffle and PixelUnshuffle to generate multiscale image
information. Before the convolution process, the image is
A

B C

FIGURE 1 | Discrete-wavelet-transform neural network (DWTN), including (A) the structure of the DWTN network, (B) the structure of the densely connected
residual (DCR) block, and (C) the structure of the residual block.
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converted into horizontal, vertical, and diagonal detail images and
thumbnails through discrete wavelet transform (29). At the full-
resolution layer, the main branch and attention branch provide
stability and process the feature images. At each layer, we add
densely connected residual blocks to improve the convergence of
the network. The top layer of the DWTN extracts large-scale
image feature information in the lowest resolution space. The top-
level network contains two convolution layers, a leaky ReLU layer,
and a densely connected residual (DCR) block (30). As shown in
Figure 1 (B), the DCR block consists of three convolutional layers,
each of which is followed by a leaky ReLU. Each feature image is
connected by dense connections so that our model can use the
previous feature information to solve the gradient disappearance
problem. Themiddle two layers are similar to the top layer. For the
full-resolution level, we add multiple DCR blocks after merging
the multiscale feature information to enhance the feature
extraction capability of the DWTN. For the attention branch, we
add a tanh activation function after the two DCR blocks. The main
branch and the attention branch are processed and added, and
then through multiple residual blocks and convolution blocks, the
added image feature information is extracted. The structure of
residual block was shown in Figure 1 (C). Finally, through a
convolution block without an activation function, the details of the
image are preserved. The last convolution layer uses a 1×1
convolution kernel with a step count of 1, and the remaining
convolution layers all use a 3×3 convolution kernel with a step
count of 1.

To improve the generalization of the network, we used
perceptual loss, mean-square-error loss and kernel loss to
constrain the network (31). Among them, perceptual loss
enabled the network to learn the characteristics of the overall
images and converge faster than mean-absolute-error loss. The
perceptual loss used pre-trained VGG19 for extracting image
features. The mean-square-error loss was to calculate the loss
function at the pixel level to ensure the network to generate more
details of the images. The kernel loss reduced the weight of the
hidden layer inside network, thereby promoting the convergence
of DWTN. The loss function formula was as follows:

Losstotal = mse� LossMSE + vgg � Lossper + kl � Lossker , (1)

where mse, vgg and kl are 0.5, 0.5 and 0.0001, respectively. The
formulas of each loss function are as follows:

2

�LossMSE =     (by − y) ; (2)
2

�Lossper =     (VGG(by ) − VGGðyÞÞ ; (3)
2

�Lossker =     (by ) ; (4)

where ŷ and y represent the generated images and ground-truth,
respectively. VGG represents the processing of VGG model.

When initializing the training parameters, we used the
ADAM optimizer, and the remaining parameters are set to
their default values. We update the learning rate every 25
epochs and set the learning rate decay rate to 0.5. The weights
Frontiers in Oncology | www.frontiersin.org 4
of all hidden layers are initialized with Gaussian random
numbers. The model was implemented on an NVIDIA
GeForce RTX 2080Ti GPU with 11 GB of memory and run
under the Microsoft Windows 10 operating system. During
training, we used a batch size of 4 for 100 epochs.

Evaluation Metrics
Clinical quantitative evaluation. To evaluate the quality of the
PET images, we evaluated the original LDPET images, the
synthesized FDPET images, and the synthesized FDPET
images based on the MRI priors. There were 13 sets of images,
including 32 PET images in each group. The PET images were
evaluated using a 5-point method by two nuclear medicine
physicians from Nanjing First Hospital of China (32, 33).

Image quantitative analysis. To evaluate the image quality
between the synthesized FDPET images and the original FDPET
images, we used the PSNR, SSIM, RCNR, and NMSE as
objective indicators.

The PSNR is a quantitative index for evaluating images and
noise, and the SSIM is an index for evaluating the similarity of
two image features; both indices offer comprehensive evaluations
of two images.

PSNR = 10� log10
(2n − 1)2

MSE

� �
, (5)

Where MSE is the mean square error between the compared
images and the ground-truth.

SSIM =
(2mxmy + c1)(2sxy + c2)

(m2
x + m2

y + c1)(s 2
x + s 2

y + c2)
(6)

where mx is the mean of compared images and my is the mean of
ground-truth, respectively. sx and sy are variance of compared
images and ground-truth, respectively. sxy is the covariance
between compared images and ground-truth. c1 and c2 are 0.01
and 0.03, respectively.

The NMSE is an indicator of the quantitative analysis of two
images at the pixel level.

NMSE =
Si∈V (Xi − Yi)

2

Si∈V (Yi)
2 , (7)

Where Xi and Yi represent the pixel value of the compared image
and groud-truth, respectively.

The contrast-to-noise ratio is an objective index used to
evaluate the quality of medical images; the RCNR is a
dimensionless image index based on CNR that is used to
compare the contrast of two images.

CNR =
X − Xbackground

X
(8)

RCNR =
CNRx

CNRy
, (9)

Where X and Xbackground represent the mean of the matrix and
background matrix, respectively.
January 2022 | Volume 11 | Article 818329
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RESULTS

Compared with the LDPET images, the FDPET images synthesized
by the deep learning method demonstrated significantly improved
image quality. PET images with a dose of less than 5% showed
irregular spots, and their contours, shapes, and contrast were
different from those of the target images. In the images
synthesized from those with a dose of less than 5%, the spots
were eliminated, and the shape features and contrast were relatively
consistent with those of the target images. In PET images with a
dose greater than 5%, the contours, shapes, and contrast were
similar to those the target images, but subtle differences could be
observed. In the synthesized PET images, the shapes, contours, and
contrast were consistent with those of the target images.

After training the model, we calculated the mean and standard
deviation of the RCNR, PSNR, SSIM, NMSE among the original
LDPET original image, the synthesized FDPET images, the prior-
synthesized FDPET images, and the target images of all doses in the
test set. Table 1 shows the mean and standard deviation values of
the image indicators. To more intuitively visualize the differences in
these image indicators, Figure 2 shows the histograms of the
structural similarity and NMSE indicators. The processed LDPET
images had significantly better image quality than the original
LDPET images. The images based on MRI prior synthesis
showed better image quality at the global-feature and pixel levels.

Figure 3 shows one patient’s original 2.5%-, 5%-, 25%-, and
50%-dose PET images and their corresponding synthesized
FDPET images and prior-synthesized FDPET images for the
prostate. The average RCNR of the LDPET images and MRI
prior-based synthesized LDPET images was close to 1. Moreover,
the pelvic contour details of the prior-based synthesized images
for doses of 25% and above are visible.

We transferred the synthesized images and MRI prior
synthesized images for each LDPET image to DICOM format,
subtracted each image from the original FDPET image matrix,
and finally divided the difference matrix by the maximum value
of the original image. The resulting image matrixes are shown in
Figure 4. The error between the 25%-dose synthesized images
and the prior-synthesized images are within 25%, and the error
between the 50%-dose synthesized images and the prior-
synthesized images are within 10%.
Frontiers in Oncology | www.frontiersin.org 5
Six patients were selected from the test set, all of whomhad images
of prostate or pelvic lesions, as shown in Figure 5. The figure shows
the diffusion weighted (DW) image, apparent diffusion coefficient
(ADC) image, T2-weighted image, FDPET image, and various
synthesized images. The DW image, ADC image, and T2-weighted
image in the MRI sequence are important references for clinical
diagnosis, and the PET images and MRI images are complementary.

In the clinical quantification phase, we selected 32 images with
lesions in the pelvis or prostate from the test set for scoring. Table 2
shows the mean and variance of the scored from the two nuclear
medicine doctors for PET images of different doses, processed PET
images, and prior-based PET images. The average score of the
FDPET images MRI prior-synthesized from 25%-dose PET images
is 0.1 points lower than the average score of the target images. In
contrast, the average score of the FDPET images synthesized from
25% dose PET images without the prior is 0.3 points lower than the
average score of the target images. In addition, to improve the
FIGURE 2 | NMSE and SSIM of the original LDPET images, synthetic FDPET
images, and MR prior-synthesized FDPET images at all doses, where blue
represents SSIM, orange represents NMSE, and different degrees of color
represent images of different doses.
TABLE 1 | Objective indicators for LDPET images, synthesized FDPET images, MR prior-synthesized FDPET images, and target images.

Image PSNR SSIM NMSE RCNR

2.5% 25.56±4.99 0.745±0.112 0.065±0.045 0.835±0.267
2.5%LDPET 32.51±4.89 0.820±0.079 0.029±0.021 1.046±0.213
2.5%LDPET+MRI 33.34±4.47 0.846±0.060 0.026±0.018 1.118±0.218
5% 26.99±5.56 0.756±0.113 0.057±0.037 0.860±0.227
5%LDPET 33.25±4.57 0.814±0.137 0.026±0.018 1.032±0.216
5%LDPET+MRI 33.78±4.25 0.817±0.141 0.024±0.017 0.964±0.248
25% 29.58±7.05 0.832±0.114 0.047±0.036 0.901±0.195
25%LDPET 36.90±4.40 0.893±0.090 0.017±0.012 1.035±0.123
25%LDPET+MRI 37.86±4.16 0.916±0.063 0.015±0.012 1.004±0.126
50% 32.02±8.66 0.865±0.123 0.040±0.036 0.909±0.183
50%LDPET 39.48±3.90 0.919±0.067 0.012±0.008 1.009±0.079
50%LDPET+MRI 39.88±3.83 0.896±0.092 0.012±0.007 0.996±0.080
January 2022 | Volume 11 | A
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credibility of the analysis, we combined the scores of the two
doctors. When the two nuclear medicine doctors had different
scores for the same image, then the lower score of the two was taken.
Figure 6 shows the distribution of this score. When MRI images
were used as the prior, more than 80% of the FDPET images
synthesized from 25%-dose PET images had scores of 4, while the
Frontiers in Oncology | www.frontiersin.org 6
rest had scores of 3. When no priors were used, the scores of the
FDPET images synthesized from the 25%-dose images indicated
that the FDPET images were between good and poor quality.
Regardless of whether MRI images were used as priors, the scores
of the FDPET image synthesized from the 50%-dose PET images
were greater than or equal to 4. At each dose, using MRI images as
FIGURE 3 | The original LDPET images, synthesized FDPET images, MR prior-synthesized FDPET images of all doses, and their ROIs.
FIGURE 4 | Synthesized FDPET image, MR prior for all doses, combined FDPET image and target subtraction difference map and original image.
January 2022 | Volume 11 | Article 818329
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priors in synthesizing the images was better than using single
LDPET images to synthesize FDPET images.
DISCUSSION

In the LDPET image denoising method, MRI images were used as
prior image to provide rich tissue and anatomical information for
PET image synthesis, thereby improving image quality, contours
Frontiers in Oncology | www.frontiersin.org 7
and details. However, the use of MRI as priors can also lead to
registration problems. Due to the characteristics of the MRI images
and the PSMA PET images, accurate registration, regardless of
whether rigid registration or flexible registration is used, can be
difficult. Data registration is not a problem, however, because the
integrated PET/MRI device uses coaxial scanning, and the data it
collects can be directly applied to LDPET restoration. Theoretically,
data collected by integrated PET/MRI are more suitable for MRI
prior-based LDPET estimation than data collected by sequential
PET/MRI, insert PET/MRI, or multiple devices.

When using a single LDPET image for denoising, synthesized
prostate FDPET images have poor overall contour and edge details
and cannot be restored well. When includingMRI images as priors
for LDPET image denoising, the edges of PET images with a dose
of less than 5% is blurred, and the surrounding contours are not
clear, which can affect the diagnosis. In PET images with a dose
higher than 5%, the shape and edges of the key parts of the
prostate are clear, the contours of the surrounding organs are
distinct, the contrast is relatively close to that of the target image,
and the clinical quantitative score is the same as that of the target
FIGURE 5 | MR and PET images of 6 patients with prostate or pelvic lesions from the test set. The MR sequences included DW-, ADC- and T2-weighted images.
The PET images consist of the original FDPET images, FDPET images synthesized from 50%-dose images with MR priors, FDPET images synthesized from 50%-
dose images without MR priors, and FDPET images synthesized from 25%-dose images with MR priors.
TABLE 2 | Mean clinical quantitative scores from nuclear medicine doctors on
LDPET images, synthesized FDPET images, MR prior-synthesized FDPET
images, and target images.

Original LDPET LDPET+MRI

2.5% 1.00±0.00 2.44±0.56 2.69±0.46
5% 1.69±0.46 2.94±0.43 3.28±0.57
25% 2.47±0.50 3.62±0.48 3.84±0.36
50% 3.03±0.39 4.03±0.17 4.03±0.17
100% 3.94±0.24 – –
January 2022 | Volume 11 | Article 818329
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image. However, Figure 3 shows that the 25%-dose PET
synthesized images based on the MRI priors and the ground-
truth have a large error in the local area of the prostate. Thus, the
50%-dose PET images synthesized based on the MRI priors
showed sufficient quality to meet the requirements for
clinical analysis.

However, our method still has certain limitations. First, the
proposed network uses the Haar wavelet transform for up- and
downsampling. Other potential wavelet transforms include
Gaussian, Morlet, Shanno, and other transformation methods,
and whether the Haar wavelet transform is the most suitable for
MRI prior-based LDPET estimation is not yet known. Second,
the proposed network has a significant effect on LDPET images
with good overall characteristics but has a poor effect on LDPET
images with inconspicuous overall characteristics. The recovery
effect of the convolutional neural network on PET images with a
dose of 5% and below needs to be improved; for example, the use
of generative adversarial neural networks for image recovery and
PET/MRI examinations could reduce the dose even further.
CONCLUSION

In conclusion, we used a convolutional neural network
combining discrete wavelet transform and convolution
methods to estimate FDPET images from PSMA LDPET image
collected by PET/MRI. After clinical quantitative analysis and
objective image index analysis, the deep learning method we
proposed was shown to be capable of synthesizing a FDPET
image from 50%-dose PSMA PET images collected by PET/MRI,
indicating that the dose can be reduced by 50%.
Frontiers in Oncology | www.frontiersin.org 8
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