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Polyamines are highly regulated essential cations that are elevated in rapidly proliferat-
ing tissues, including diverse cancers. Expression analyses in neuroblastomas suggest
that up-regulation of polyamine pro-synthetic enzymes and down-regulation of catabolic
enzymes is associated with poor prognosis. Polyamine sufficiency may be required for
MYCN oncogenicity in MYCN amplified neuroblastoma, and targeting polyamine home-
ostasis may therefore provide an attractive therapeutic approach. ODC1, an oncogenic
MYCN target, is rate-limiting for polyamine synthesis, and is overexpressed in many
cancers including neuroblastoma. Inhibition of ODC1 by difluoromethylornithine (DFMO)
decreased tumor penetrance in TH-MYCN mice treated pre-emptively, and extended sur-
vival and synergized with chemotherapy in treating established tumors in both TH-MYCN
and xenograft models. Efforts to augment DFMO activity, or otherwise maximally reduce
polyamine levels, are focused on antagonizing polyamine uptake or augmenting polyamine
export or catabolism. Since polyamine inhibition appears to be clinically well tolerated,
these approaches, particularly when combined with chemotherapy, have great potential
for improving neuroblastoma outcome in both MYCN amplified and non-MYCN amplified
neuroblastomas.
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INTRODUCTION
Neuroblastoma originates from the primitive cells of the sym-
pathetic nervous system and is the most common solid tumor
of early childhood. It is an aggressive cancer that often presents
with high risk clinical and genetic features. In these cases, despite
the use of intense multimodal therapies, long-term survival rates
remain below 50% (Maris et al., 2007). Current treatment reg-
imens are also associated with substantial morbidity, so novel
therapeutic strategies are urgently needed. MYCN amplification,
identified in up to 30% of neuroblastomas, is a powerful and reli-
able marker of aggressive disease and is strongly prognostic of
poor outcome (Cohn and Tweddle, 2004). As a transcription fac-
tor, MYCN induces and represses a large number of genes involved
in multiple biological processes including cell growth and differ-
entiation. However, the genes necessary or sufficient to initiate
neuroblastoma tumorigenesis downstream of MYCN remain to
be established.

The polyamine pathway is frequently deregulated in neuroblas-
toma, and a number of genes involved in polyamine homeostasis
are known to be MYCN or c-MYC targets (Bello-Fernandez et al.,
1993; Lutz et al., 1996; Fernandez et al., 2003; Li et al., 2003;
Forshell et al., 2010), while the expression of others is linked to
MYCN status (Hogarty et al., 2008; Rounbehler et al., 2009). This
suggests a mechanism by which MYCN may contribute to the
malignant phenotype of neuroblastoma. Therapeutic approaches
targeting the polyamine pathway may therefore provide an effec-
tive strategy for the treatment of high risk neuroblastoma,

particularly in tumors dependent on deregulated Myc activity,
such as those with MYCN amplification.

REGULATION OF THE POLYAMINE PATHWAY
Polyamines are positively charged multifunctional polycations
derived from amino acids and found in all living organisms.
They are indispensable for cell growth, differentiation, and
cell survival and function by forming electrostatic bonds with
negatively charged macromolecules to mediate a number of bio-
logical processes. These include DNA synthesis and stability,
replication, transcription and translation, ribosome biogenesis,
modulation of ion channels and receptors, and protein phos-
phorylation (Pegg, 1988; Panagiotidis et al., 1995; Johnson, 1996;
Igarashi and Kashiwagi, 2000; Childs et al., 2003; Gerner and
Meyskens, 2004; Pegg, 2006). Polyamines are also required for
covalent activation of eIF5A, a major protein translation factor,
via hypusination, a polyamine-dependent modification (Cooper
et al., 1983). Whereas polyamine depletion leads to growth arrest,
overexpression of these essential cations is cytotoxic (Poulin et al.,
1993; Tobias and Kahana, 1995; Ray et al., 2001; Li et al., 2002).
Therefore, tight regulation of intracellular polyamine levels is
critical and is dependent on the proliferative state of the cell.
Regulatory mechanisms include de novo synthesis, recycling via
a back converting catabolic pathway and through transmembrane
import and efflux (Gerner and Meyskens, 2004; Casero and Mar-
ton, 2007). An overview of the polyamine pathway is shown in
Figure 1.
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FIGURE 1 | Regulation of the polyamines putrescine, spermidine and

spermine by biosynthetic enzymes (shown in green) and catabolic

enzymes (shown in red). Compounds and classes of compounds that target
various aspects of polyamine regulation are shown in yellow. ODC1, ornithine

decarboxylase; OAZ, antizyme; AZIN, antizyme inhibitor; SRM, spermidine
synthase; SMS, spermine synthase; AMD1, adenosylmethionine
decarboxylase; SAT1, spermine/spermidine N1-acetyltransferase; PAOX,
polyamine oxidase; SMOX, spermine oxidase.

POLYAMINE BIOSYNTHESIS
The first rate-limiting enzyme in the polyamine pathway is
ornithine decarboxylase (ODC1), which catalyzes the decarboxy-
lation and conversion of ornithine, a product of the urea cycle,
to the primary polyamine putrescine (Pegg, 2006). Putrescine
is the precursor for spermidine and spermine synthesis, and
is further processed into these more abundant polyamines by
two aminopropyltransferases, spermidine synthase (SRM) and
spermine synthase (SMS). The second rate-limiting enzyme,
adenosylmethionine decarboxylase (AMD1), decarboxylates S-
adenosylmethionine (SAM) to provide the aminopropyl donor
for the conversions to spermidine and spermine. Both ODC1
and AMD1 are highly controlled at the transcriptional and post-
transcriptional levels, and have among the shortest half-lives of any
mammalian enzymes. In addition, ODC1 turnover is regulated by
antizymes (OAZ1, OAZ2, and OAZ3) which in turn are controlled
by antizyme inhibitors (AZIN1 and AZIN2). Antizymes initiate
ODC1 degradation by binding the ODC monomer, inhibiting its
activity and shunting ODC1 to the 26S proteasome for degra-
dation (Li and Coffino, 1992; Murakami et al., 1992). Of the
three antizymes, OAZ1 is the most effective at stimulating ODC1
degradation. Antizyme expression is also induced by a feedback
mechanism. An increase in intracellular polyamine levels stim-
ulates a +1 frame-shift by the ribosomes during translation of
antizyme mRNA, increasing expression of the full-length pro-
tein (Matsufuji et al., 1995). In response to increased intracellular

polyamines, antizymes negatively regulate polyamine trans-
port by promoting polyamine secretion and inhibiting uptake,
while antizyme degradation by the ubiquitin pathway is also
inhibited (Mitchell et al., 1994; Suzuki et al., 1994; Palanimurugan
et al., 2004).

Antizyme inhibitors antagonize the function of antizymes by
mimicking ODC1 (Koguchi et al., 1997; Kanerva et al., 2008).
They are highly homologous to ODC1, but lack enzymatic activ-
ity due to critical amino acid substitutions and bind antizymes
with greater affinity than ODC1 (Albeck et al., 2008). Increased
antizyme inhibitor activity therefore results in the release of
ODC1 from the inactive ODC1-antizyme complex, which in turn
increases the production of polyamines (Murakami et al., 1996;
Mangold, 2006; Pegg, 2006). In addition, forced induction of
AZIN1 in cell cultures has also been shown to increase polyamine
uptake (Keren-Paz et al., 2006). Polyamine levels themselves act as
down-regulators of both ODC1 and AMD1 and as up-regulators
of antizymes by a feedback homeostasis mechanism.

POLYAMINE CATABOLISM
Polyamine catabolism allows for the re-utilization of polyamines as
spermine is converted back to spermidine and spermidine back to
putrescine. A number of key enzymes are involved in this process
as shown in Figure 1. The degradation of polyamines depends
on three enzymes; spermine/spermidine N1-acetyltransferase
(SAT1), polyamine oxidase (PAOX), and spermine oxidase
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(SMOX). SAT1, a highly inducible cytosolic enzyme, acetylates
spermine and spermidine (Casero and Pegg, 1993), which are
then either exported from the cell, or oxidized by the peroxi-
somal enzyme PAOX, resulting in conversion to spermidine or
putrescine, H2O2 and 3-aminopropanol (Seiler, 1995). PAOX
preferentially catalyzes the oxidation of the N1-acetylspermine/
spermidine produced by SAT1 activity, rather than spermine or
spermidine, whereas SMOX is a cytosolic enzyme which catalyzes
the oxidation of spermine directly to spermidine, without acety-
lation and produces H2O2 and 2 aminopropanol (Vujcic et al.,
2002; Wang et al., 2003; Casero and Pegg, 2009; Pegg, 2009).
Mostly, PAOX is constitutively expressed and dependent on SAT1
as it is rate-limited by the availability of the acetylated spermi-
dine/spermine (Casero and Pegg, 1993; Vujcic et al., 2002). SAT1,
the rate limiting enzyme in polyamine catabolism, is therefore
extensively regulated at transcriptional and post-transcriptional
levels (Fogel-Petrovic et al., 1993; Coleman et al., 1996), and
is a gatekeeper regulating flux through the polyamine pathway
(Kramer et al., 2008).

TRANSMEMBRANE IMPORT AND EFFLUX
Cellular polyamine levels are also regulated by transmembrane
transport where cells can take up polyamines from their sur-
roundings and also export them to the extracellular space, and this
can make a significant contribution to cellular polyamine levels.
Known polyamine transporters include SLC3A2 (Uemura et al.,
2008) and SLC22A16 (Aouida et al., 2010). SAT1 is co-localized
with the SLC3A2 transporter and catalyzes the export of acetylated
polyamines via a polyamine/arginine exchange reaction, suggest-
ing a role for acetylation in polyamine efflux (Uemura et al., 2008).
SLC22A16 has also been identified as a high affinity transporter
directing polyamine import in mammalian cells (Aouida et al.,
2010). Polyamine uptake by caveolae-dependent endocytosis has
also been reported (Roy et al., 2008). Polyamines are present in
the extracellular space from dietary intake, export from neigh-
boring cells and synthesis by intestinal bacteria. Such microen-
vironment polyamines provide a reservoir whereby polyamine
antagonized cancer cells can circumvent biosynthetic blockade
through augmented uptake.

ABERRANT EXPRESSION WITHIN THE POLYAMINE
PATHWAY IN NEUROBLASTOMA, AND THE
ASSOCIATION WITH MYCN
Polyamines are elevated in rapidly proliferating cells, including
cancer cells, and substantial evidence suggests cancer development
is associated with altered polyamine regulation. The biological
association between increased polyamines and tumor formation
is well established in numerous cancers including breast, prostate,
colon, skin carcinoma and neuroblastoma (Cipolla et al., 1993;
Leveque et al., 2000; Thomas and Thomas, 2003; Gerner and
Meyskens, 2004; Casero and Marton, 2007). There is also evidence
that increased polyamine biosynthesis is not just a consequence
of increased proliferation in these cells, but may be necessary
for the development of specific cancers (Gerner and Meyskens,
2004; Casero and Marton, 2007). The mechanism by which
MYCN amplification results in such a poor prognosis has yet to
be fully elucidated, and recent evidence suggests that its effect

on the polyamine pathway may play a critical role. A number
of polyamine genes have been shown to be c-MYC target genes
(ODC1, AMD1, and SRM) whereas others appear to be regu-
lated by MYC/MYCN (Bello-Fernandez et al., 1993; Fernandez
et al., 2003; Hogarty et al., 2008; Rounbehler et al., 2009; For-
shell et al., 2010). However, with the exception of ODC1 (Lutz
et al., 1996), the polyamine genes that are direct transcriptional
targets of MYCN remain to be established. It is highly likely
that polyamine synthesis may be specifically required to support
downstream MYCN-governed functions.

ODC1 is a well-established oncogene in its own right (Auvi-
nen et al., 1992), with high ODC1 activity associated with
tumor growth in several human cancers, including neuroblas-
toma (O’Brien et al., 1975; Janne et al., 1978; Scalabrino and
Ferioli, 1981; Crozat et al., 1992; Mohan et al., 1999; Wallace and
Caslake, 2001; Hogarty et al., 2008). The contribution of ODC1
activity to MYC-induced lymphomagenesis was examined in a
mouse model of B-cell lymphoma, the Eμ-Myc transgenic mouse.
In this model, ODC1 ablation inhibited lymphomagenesis, but
subsequent restoration of ODC1 activity promoted tumor onset
(Nilsson et al., 2005). In addition, enforced expression of ODC1
in the skin of transgenic mice led to increased tumor incidence
(O’Brien et al., 1997; Chen et al., 2000). In neuroblastoma there is
significant evidence that ODC1 is overexpressed in high risk dis-
ease. It is often co-amplified with MYCN or overexpressed, and
is associated with poor prognosis in both MYCN amplified and
non-MYCN amplified tumors (Hogarty et al., 2008; Rounbehler
et al., 2009; Geerts et al., 2010).

Evaluation of several polyamine genes included in the Neu-
roblastoma Prognosis Database (publically available at http://
home.ccr.cancer.gov/oncology/oncogenomics/) revealed that
increased expression of biosynthetic SMS, AMD1, and AZIN,
and decreased expression of catabolic OAZ2 was associated with
decreased survival and poor prognosis as shown in Figure 2A.
The levels of SAT1 or SRM expression on the other hand, were
not prognostic of survival. However, all of these genes, including
SAT1 and SRM, were associated either positively or negatively with
MYCN amplification dependent on their biosynthetic or catabolic
role (Figure 2B). Since MYCN is upstream of the polyamine
biosynthesis pathway, this suggests a major role for MYCN in
regulating polyamine biosynthesis, and a mechanism by which
MYCN contributes to neuroblastoma development. Several stud-
ies support these findings. Geerts et al. (2010) found increased
ODC1 and reduced OAZ2 expression to be excellent predictors of
survival and poor prognosis in both MYCN amplified and non-
amplified neuroblastomas. OAZ1 and OAZ3 on the other hand
played no role in predicting survival. Transcriptome analysis of
101 primary neuroblastomas found several polyamine biosyn-
thetic genes, including ODC1, AMD1, SRM, and SMS, to be
up-regulated in the MYCN amplified high risk cohort (and again
ODC1 expression was elevated in non-MYCN amplified high risk
group; Hogarty et al., 2008). OAZ2 was expressed at lower lev-
els in high risk MYCN amplified tumors but also significantly
reduced in non-MYCN amplified high risk tumors. In addition
catabolic SMOX was decreased, while the level of SAT1 expres-
sion was not associated with any particular risk group (Hogarty
et al., 2008). These studies suggest a role for ODC1, and OAZ2,
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FIGURE 2 | Analysis of expression of the polyamine pathway regulators

SMS, OAZ2, AMD1, AZIN1, SAT1, and SRM, and their association with

neuroblastoma outcome. (A) Kaplan–Meier survival curves in the overall
neuroblastoma cohort with dichotomization for high/low expression around

the median. (B) Expression of polyamine pathway genes in the subsets of
tumors with and without MYCN amplification. Data was obtained from the
Neuroblastoma Prognosis Database (publically available at
http://home.ccr.cancer.gov/oncology/oncogenomics/).
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independent of MYCN, in promoting an aggressive phenotype.
Further evidence supporting this conclusion comes from the
finding that ODC1 is not always co-amplified with MYCN in neu-
roblastomas, while copy number gain of ODC1 has been reported
in half of high risk neuroblastomas without MYCN amplification,
suggesting a mechanism by which the polyamine pathway is up-
regulated in this subset (George et al., 1997; Mosse et al., 2007;
Hogarty et al., 2008).

These data suggest that systemic alterations in polyamine
metabolism correlate with MYCN amplification, but that
polyamine enhancement in non-MYCN amplified tumors is also
associated with high risk disease. Polyamine depletion strategies
may be broadly effective against high risk tumors, rather than just
MYCN amplified tumors.

TARGETING POLYAMINE BIOSYNTHESIS AS A THERAPEUTIC
APPROACH IN NEUROBLASTOMA
Since elevated polyamines are sustained in rapidly proliferating
cells and levels are increased in cancer tissues compared to sur-
rounding tissues, suppression of polyamine biosynthesis provides
an attractive therapeutic approach for many cancers. Inhibitors of
the rate-limiting enzymes in polyamine biosynthesis, ODC1 and
AMD1, have been developed and extensively tested in preclinical
and clinical trials. α-difluoromethylornithine (DFMO) acts as a
specific suicide inhibitor of ODC1 and is the most widely studied
inhibitor of polyamine metabolism both as a chemotherapeutic
and a chemopreventive agent (Meyskens and Gerner, 1999; Levin
et al., 2000; Takahashi et al., 2000; Fabian et al., 2002; Levin et al.,
2003). Exposure of a number of cancer cell lines, tumors and
tissues to DFMO has shown a considerable decrease in intracellu-
lar putrescine concentrations, subsequent decreases in spermidine
levels, and growth inhibition as a result of impaired synthesis
of RNA, DNA, and proteins (Mamont et al., 1982; Sunkara and
Rosenberger, 1987). Despite promising preclinical results, the anti-
tumor activity of DFMO has to date failed to translate to the
clinic. However, further investigations have shown additive and
synergistic activities when used in combination therapies for the
treatment of specific cancers in animal models (Bartholeyns and
Koch-Weser, 1981; Marton, 1987; Quemener et al., 1992) and the
potential for synthetic-lethal interactions in MYC-driven cancers
specifically has yet to be directly tested.

It has previously been shown that ODC1 heterozygosity or
treatment with DFMO impairs MYC induced lymphomagenesis
in the Eμ-Myc transgenic mice, and that this was achieved though
impairment of MYC’s ability to suppress p27KIP1, a CDK inhibitor
(Nilsson et al., 2005). A number of recent studies have investi-
gated the effect of DFMO in neuroblastoma cell lines and animal
models. A MYCN transgenic mouse model (TH-MYCN mice),
which faithfully recapitulates the features of human neuroblas-
toma with similar biochemical features and syntenic chromosomal
rearrangements to human neuroblastoma, was used (Weiss et al.,
1997). Tumor formation is dependent on the level of MYCN gene
dosage, with homozygous mice developing tumors with a short
latency and 100% tumor penetrance, and hemizygous mice dis-
playing longer tumor latency and only 20–30% penetrance. In
this model TH-MYCN tumors have up-regulated ODC1, AZIN,
AMD1, SRM, and SMS, and down-regulated OAZ2, SMOX, and

SAT1 compared with sympathetic ganglia (Evageliou and Hogarty,
2009). Since a similar pattern of polyamine deregulation is seen in
primary human neuroblastoma, this suggests that results using this
model are likely to be translatable to the human disease. DFMO
treatment in neuroblastoma cell lines inhibited proliferation, and
when extended to in vivo studies using the TH-MYCN transgenic
mouse, DFMO treatment from birth increased tumor latency and
overall survival (Hogarty et al., 2008). Interestingly, no tumors
developed after DFMO withdrawal, suggesting a finite period dur-
ing which embryonic tumors can develop and also supporting a
role for DFMO as a chemopreventive agent for neuroblastoma.
Giving hemizygous mice DFMO from birth resulted in reduced
tumor initiation. DFMO treatment of mice with detectable tumors
delayed tumor progression and extended survival time (Hogarty
et al., 2008). Similarly, Rounbehler et al. (2009) found that DFMO
selectively impaired the proliferative response of MYCN amplified
neuroblastomas, and delayed tumor incidence and onset in vivo.
However, once a tumor developed it had a similar aggressive phe-
notype as tumours in mice that had not received DFMO, and whilst
there was a reduction in putrescine, spermidine was only moder-
ately reduced and spermine levels remained unchanged (Hogarty
et al., 2008). Importantly, DFMO enhanced the effect of the anti-
cancer drugs, cyclophosphamide and cisplatin in vivo. Tumor-free
survival after cyclophosphamide treatment in combination with
DFMO was increased to 80% compared to 20% for cyclophos-
phamide alone, and DFMO significantly increased the survival
time of mice treated with cisplatin, although all of these mice did
eventually succumb to the disease (Hogarty et al., 2008).

SAM486A is a derivative of the first generation AMD1 inhibitor
mitoguazone (MGBG), and exerts potent and specific inhibition of
AMD1 (Regenass et al., 1992,1994). Its efficacy has been assessed in
a number of cancer cells and animal systems, and has been tested in
phase I and II clinical trials in adult cancers. However, like DFMO,
when used as a single agent, results have been disappointing. In
neuroblastoma, in vitro studies found p53 wild-type cells to be
highly sensitive to SAM486A independent of their MYCN status
(Koomoa et al., 2009). In these cells SAM486A functions by induc-
ing p53, possibly through DNA damage induced by ATM, and by
reducing Akt/PKB expression to induce apoptosis and inhibit cell
proliferation (Koomoa et al., 2009). In addition, large increases
in intracellular putrescine levels correlated with increased p53.
SAM486A treatment of p53 mutant neuroblastoma cells inhibited
polyamine-dependent cell growth and caused a G1 arrest, which
was further enhanced upon combination with DFMO. Neither
compound, either alone or in combination, induced apoptosis
(Wallick et al., 2005). Following removal of these inhibitors in the
p53 mutant cells, the proliferative capacity of the cells was slow
and only partially restored, but this was shown to be largely due
to DFMO and not SAM486A. DFMO has been shown to induce
cell cycle arrest in a p53 mutant neuroblastoma cell line via induc-
tion of two contradictory pathways; cell survival via PI3K/PKB
signaling, and cell cycle arrest through p27KIP1 phosphorylation
(Wallick et al., 2005; Koomoa et al., 2008).

The disappointing clinical trials with either DFMO or
SAM486A as single agents are likely due to activation of com-
pensatory mechanisms following DFMO or SAM486A exposure.
This allows intracellular polyamine levels to be maintained in a
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cell upon loss of a single biosynthetic enzyme activity. Polyamines
may be imported from extracellular pools, and compensatory
induction of other biosynthetic enzymes or reduced polyamine
catabolism may be involved.

AMD1 has been shown to be up-regulated following ODC1
inhibition (Wallick et al., 2005) and it has been reported that
combined DFMO and SAM486A therapy is synergistic in neu-
roblastoma (Evageliou and Hogarty, 2009). This indicates that
attacking the polyamine synthesis pathway with multiple com-
pounds may be a more effective approach, particularly if the
two rate-limiting enzymes are simultaneously inhibited. DFMO
and SAM486A are of particular interest because clinical trials in
other cancer types have shown both inhibitors to be well toler-
ated, even at high doses, with only the occasional occurrence of
reversible ototoxicity (DFMO only), nausea and mild neutrope-
nia. In addition, DFMO is already FDA approved as it is used in
the treatment of African trypanosomiasis (Van Nieuwenhove et al.,
1985; Sjoerdsma and Schechter, 1999).

As well as being tested as a chemotherapeutic agent, DFMO has
demonstrated promising results in human trials as a chemopreven-
tive agent. This polyamine inhibitor has been shown to suppress
skin carcinogenesis in patients with moderate to severe actinic ker-
atosis (Alberts et al., 2000), and also slowed prostate cancer growth
in men with a family history of prostate cancer (Simoneau et al.,
2008). In addition, DFMO in combination with sulindac, a SAT1
inducing COX2 inhibitor, resulted in a remarkable decrease in
colon adenomas in patients with previous disease (Meyskens et al.,
2008). There were no significant toxicities in any of these studies.
Whilst chemopreventive approaches are not currently practical in
neuroblastoma, the use of polyamine antagonists could prove use-
ful in managing minimal residual disease (MRD) post-autologous
stem cell transplantation in order to reduce the risk of relapse.

Another compound that targets polyamine biosynthesis is the
SRM inhibitor, trans-4-methylcyclohexamide (4MCHA). This
inhibitor has been tested in a B-cell lymphoma mouse model where
4MCHA had chemopreventive effects in vivo, but was not effec-
tive against established lymphomas (Shirahata et al., 1993; Forshell
et al., 2010). SRM is a MYC target and interestingly, it was found to
be more potently induced by MYC than ODC1 suggesting it may
be important in MYC-induced oncogenesis.

OTHER MECHANISMS OF POLYAMINE DEPLETION
POLYAMINE ANALOGS AND INDUCTION OF POLYAMINE CATABOLISM
Polyamine analogs have a multistep role in depleting polyamine
pools. They function by mimicking natural polyamines and sub-
sequently lowering intracellular polyamine levels by feedback
inhibition. The result is down-regulation of synthetic enzymes
such as ODC1 and AMD1, but also induction of catabolic enzymes
such as SAT1 and SMOX. Elevated levels of SAT1 increases export
of acetyl-polyamines due to co-localization with a polyamine
transporter (such as SLC3A2), and induction of SMOX results
in a subsequent production of H2O2 (Wang et al., 2001; Casero
et al., 2003; Pledgie-Tracy et al., 2009). The resulting accumulation
of non-functional analogs competitively inhibits polyamine func-
tion, and the depleted intracellular polyamine pool reduces cell
proliferation and induces growth inhibition (Reddy et al., 1998;
Casero and Marton, 2007). A number of these compounds have

been developed and have shown promising results in in vitro and
in vivo models.

N1, N11-diethylnorspermine (DENSpm) is a spermine analog
that induces growth inhibition in a number of cancer cell lines
(Kramer et al., 1997; Gabrielson et al., 1999; Schipper et al., 2000;
Myhre et al., 2008). When tested in neuroblastoma cell lines, the
compound induced G1 arrest and apoptosis in p53 wild-type cells,
but similar to SAM486A treatment, only induced growth inhi-
bition in p53 mutant cells (Soderstjerna et al., 2010). DENSpm,
as well as the related compound, BENSpm, and the second-
generation CPENSpm, have all been tested in phase I and II clinical
studies but were not successful as single agents (Creaven et al.,
1997; Hahm et al., 2002; Wolff et al., 2003). BENSpm has been
shown to synergistically induce growth inhibition in combination
with standard chemotherapy agents in cell lines (Davidson et al.,
1993; Pledgie-Tracy et al., 2009). In addition BENSpm combined
with cisplatin produced synergistic cell death in cisplatin resis-
tant ovarian carcinoma cells (Marverti et al., 1998). This resulted
in a synergistic increase in SAT1 activity, and the subsequent
polyamine pool depletion by this combination was significantly
greater than either agent alone (Tummala et al., 2011). How-
ever, in vivo studies using breast cancer cell xenografts found that
BENSpm in combination with paclitaxel did not further reduce
tumor growth compared to either agent alone. In vitro, syn-
ergy between BENSpm and various chemotherapeutic agents was
dependent on the cell line and the combined chemotherapeutic
used (Pledgie-Tracy et al., 2009). Surprisingly, whereas some stud-
ies report induction of SMOX by polyamine analogs, BENSpm and
CPENSpm have been shown to bind the catalytic site of SMOX,
inhibiting activity and may explain why SMOX levels appear to be
induced, as a result of stabilization (Cervelli et al., 2010). The sub-
sequent reduction in H2O2 in the tumor mass may partly explain
the lack of activity observed in clinical trials.

PG11047 is a novel conformationally restricted analog of sper-
mine that competitively inhibits spermine function (Reddy et al.,
1998), and has recently been studied in phase I clinical trials for
adult cancers both as a single agent and in combination with
chemotherapy (Clinical Trial Identifier: NCT00705874). PG11047
inhibits cell proliferation in a range of cell lines, and inhibits
tumor growth in vivo in prostate and NSCLC xenografts (Hacker
et al., 2008; Dredge et al., 2009). However, whilst Ewings sar-
coma cell lines were particularly sensitive to PG11047-mediated
growth inhibition, neuroblastoma cells were less sensitive and
in vivo, a cytostatic effect similar to that seen with DFMO was
reported, with only a modest delay in tumor onset after treatment
(Smith et al., 2011).

INHIBITION OF POLYAMINE UPTAKE
Since tumor cells exhibit enhanced polyamine transport activity by
comparison with normal cells, and since the pharmacological inhi-
bition of polyamine biosynthesis leads to a compensatory increase
in polyamine salvaging activity (Pegg, 1988; Seiler et al., 1996),
another mechanism of inhibiting this pathway includes antago-
nizing polyamine uptake. A number of compounds are under
preclinical development, including D-lysine spermine (MQT-
1426), N1-spermyl-L-lysinamide (OR1202), and a spermine
analog D-Lys(C16acyl)-Spm (AMXT1501; Weeks et al., 2000;
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Chen et al., 2006; Burns et al., 2009). Despite a poor response to
D-Lys(C16acyl)-Spm alone, combination with DFMO had remark-
able efficacy against cutaneous squamous cell carcinomas (SCC)
in a transgenic ODC1 mouse model of skin cancer. The majority
of large aggressive SCCs underwent complete or near-complete
remission, even in the presence of extracellular spermidine, indi-
cating that D-Lys(C16acyl)-Spm in combination with DFMO
is successful in reducing intracellular polyamines (Burns et al.,
2009). Available evidence indicates that high levels of expres-
sion of SLC22A16, a polyamine transporter, are prognostic of
poor outcome in MYCN non-amplified metastatic neuroblastoma
(http://pob.abcc.ncifcrf.gov/cgi-bin/JK). Targeting this polyamine
transporter may be required to effectively reduce intracellular
polyamine levels.

The use of NSAIDs such as celecoxib and sulindac, has also been
investigated, which function by influencing polyamine acetylation
and export through up-regulation of SAT1 (Babbar et al., 2003).
Celecoxib combined with anticancer agents induces synergistic
and anti-proliferative effects (Shirode and Sylvester, 2010), exert-
ing their chemopreventive action by affecting SAT1. DFMO in
combination with NSAIDs has been shown to suppress colorec-
tal carcinogenesis in murine models and in phase II clinical trials
(Fischer et al., 2003; Gerner et al., 2007).

POLYAMINE-CHEMOTHERAPY CONJUGATES
Polyamines conjugated to cytotoxic drugs, such as naphthalim-
ide, anthracene, or anthraquinone, can be transported into cancer
cells via the polyamine transporter system, and have been shown
to exert potent anti-tumor effects (Tian et al., 2009; Xie et al.,
2011a). Since the polyamine transporter is up-regulated in many
tumor cells, these compounds may provide a targeted therapy,
inhibiting cell proliferation through simultaneously delivering a
cytotoxic drug, and also depleting intracellular polyamine con-
tent. A number of preclinical studies have shown promising
results in a variety of cancers, although no studies have been
carried out in neuroblastoma. In colorectal cancer cell lines, a
naphthalimide-polyamine conjugate (NPC-16) in combination
with celecoxib produced enhanced apoptosis as a result of elevated
NPC-16 uptake due to up-regulated SAT1 activity, and decreased

intracellular polyamine levels (Xie et al., 2011b). A putrescine con-
jugated with anthracene, Ant 4, was shown to induce cytotoxicity
and subsequent apoptosis in a promyelogenous leukemia cell line
(Palmer et al., 2009). Putrescine uptake was significantly reduced,
demonstrating that this conjugate could successfully compete with
its native polyamine for uptake. The spermine-podophyllotoxin
conjugate F14512 has shown exceptional cytotoxicity in cells with
enhanced polyamine uptake in vitro, as well as inhibiting breast
carcinoma in a xenograft model (Barret et al., 2008). Whilst pre-
clinical data using this class of compound look promising, to
date no clinical trials have taken place. It is attractive to speculate
that combining a polyamine-chemotherapy conjugate with other
polyamine depleting agents will facilitate the uptake of these con-
jugates and provide a more active targeted approach in reducing
polyamines.

CONCLUSION
Many compounds targeting the polyamine pathway have been
developed or are under development. However, those that have
made it to clinical trials have produced limited effects, most likely
as a result of compensatory mechanisms that allow a cell to circum-
vent polyamine depletion. Polyamine depletion compounds have
been well tolerated clinically, and in combination with chemother-
apeutic agents have produced synergistic effects. It is likely that
optimization of polyamine depletion, by using compounds that
decrease polyamine synthesis and eradicate compensatory mech-
anisms, in combination with chemotherapeutic agents may have
significant clinical potential in improving the outcome of patients
with aggressive neuroblastoma. Furthermore, these compounds
are likely to be effective in both MYCN amplified and non-MYCN
amplified patients since polyamine deregulation has been observed
in both tumor groups. A phase I clinical trial, coordinated by
the New Approaches to Neuroblastoma Therapy (NANT) con-
sortium, for the treatment of refractory neuroblastoma using
high dose DFMO and celecoxib in combination with standard
chemotherapy (cyclophosphamide and topotecan) is in develop-
ment, and results from this study will be invaluable in determining
the potential use of polyamine depletion for the treatment of
neuroblastoma.
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