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Metastatic prostate cancer is incurable, and novel methods to detect the disease earlier

and to direct definitive treatment are needed. Molecularly specific tools to localize

diagnostic and cytotoxic radionuclide payloads to cancer cells and the surrounding

microenvironment are recognized as a critical component of new approaches to

combat this disease. The implementation of theranostic approaches to characterize and

personalize patient management is beginning to be realized for prostate cancer patients.

This review article summarized clinically translated approaches to detect, characterize,

and treat disease in this rapidly expanding field.
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INTRODUCTION

Prostate cancer (PCa) is the most common malignancy in men. In 2019 there were ∼175,000 new
cases of PC with >30,000 deaths, yielding enormous personal, societal, and economic costs (1).
For many low-risk patients with primary PCa, “active surveillance” to monitor indolent disease by
serial biopsy and prostate specific antigen (PSA) measures is an appropriate option. If treatment is
desired for primary PCa, standards of care may involve surgical resection, external beam or proton
radiotherapy, and brachytherapy and often are curative. For patients diagnosed with primary PCa,
5-year survival rates exceed 90%. However, for patients with advanced prostate cancer with tumor
cells present at distant sites outside of the prostate there are severe impacts on quality of life and
a low (<30%) 5-year survival rate. Upon metastasis to the bone, the most common site of PCa
metastasis, the 5-year survival rate falls to a dismal 3–5%, making the disease essentially incurable
and the second leading cause of cancer death in men (2–6). Conventional treatments for later-
stage and metastatic disease can involve anti-hormonal therapies, chemotherapies, further use of
radiation, and the use of bone-targeted agents.

An emerging area with significant potential to combat this lethal disease is the use of
theranostic agents that detect PCa with exquisite sensitivity and can precisely ablate these
sites. The implementation of an expanding array of nuclear medicine approaches to accurately
characterize disease status enabling personalized patientmanagement for prostate cancer patients is
beginning to be realized. Advances in radionuclide production and availability, chemical synthesis,
and clinical trial implementation are rapid and ongoing, and new tools and approaches will
undoubtedly emerge in the near future.

In this review, we concisely present molecular imaging and theranostic tools that have been
developed to better delineate, monitor, and treat prostate cancer, with a focus on clinically
implemented radionuclide theranostics. There have been numerous changes in the management
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for prostate cancer patients and the options for treatment in
the previous decade. In Figure 1A, a general schematic for the
progression of disease in a patient is presented, by following
their hypothetical disease burden as measured by their secreted
PSA (prostate specific antigen) values. Focal treatment options
are available for primary disease sites, followed by different
systemic treatments at different disease states (Figure 1B). Recent
approvals of several different pharmacological and radiological
entities by the FDA/EMA, often for the same indications,
underline the value for molecularly targeted imaging and
therapeutics to guide and enhance patient outcomes.

The present review helps provide context and an overview of
the new options and methods leveraged to detect, characterize,
and combat disease in this evolving clinical landscape. First,

FIGURE 1 | Contemporary prostate cancer states and systemic treatments. (A) Adenocarcinoma arising in the prostate gland is the second most common cancer in

males, and can be cured with local intervention if detected when still localized to the organ. Disease is often detected by serum PSA measures which also enable

tracking of disease recurrence should initial therapy and subsequent lines of treatment fail. Most commonly, disease control is attempted with hormonal control of the

androgen receptor signaling access through (chemical) castration and the use of androgen receptor inhibitors. (B) The last decade has seen the approval of 8 new

agents for prostate cancer across different disease states. These approvals result from significant survival benefits for patients at multiple lines of treatment. However,

the eventual progression on novel antiandrogens, Radium-223, and chemotherapies leave considerable room for improvement. Despite the number of existing

treatment options, efforts with molecularly targeted radiotherapies are under intense, global, evaluation; as well as to use new imaging agents to better guide drug

development and more accurately characterize disease.

we describe methods using molecular imaging tools for the
central oncological driver of the disease, the androgen receptor,
to read out pharmacological properties of candidate hormonal
therapy. Next, we describe efforts to target radiopharmaceuticals
to receptors overexpressed on the surface of prostate cancer
cells. Finally, we discuss efforts to target imaging and to
direct treatment to the microenvironment of the bone-tropic
metastases of this disease.

ANDROGEN RECEPTOR IMAGING WITH
[18F]-FDHT

The androgen receptor (AR), an intracellular DNA-binding,
hormone-responsive transcription factor, is the key molecular
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FIGURE 2 | Quantitative imaging of the androgen receptor. [18F]-FDHT, which annotates the AR, the central molecular driver of prostate cancer development and

progression, is an effective imaging tool to evaluate pharmacodynamic features of candidate therapies. MDV3100 treatment, a second-generation orally bioavailable

anti-androgen, was tested in men with castrate-resistant prostate cancer. (A) Chemical structure of positron-emitting 18F-FDHT and testosterone. (B) MDV3100

serum concentration by dose level. (C) Representative baseline and treatment scans showing marked decrease in radio-androgen uptake in skeletal metastases.

Reproduced from Scher et al. (16) (D) Change in standardized uptake value of [18F]-FDHT PET for men at baseline compared to 4 weeks of treatment.

driver for male organ development and is the oncological
driver of PCa (7). Activated by binding androgens such as
testosterone in the cytoplasm, the AR then translocates to
the nucleus and stimulates the expression of genes involved
in differentiation and proliferation (8). The effectiveness of
repressing this central AR pathway by androgen-deprivation
therapy was discovered by Huggins over 70-years ago (9,
10), and remains a mainstay of PCa treatment. However,
after an initial response, AR pathway reactivation inevitably
occurs, leading to disease progression. Recently developed, highly
potent anti-androgen molecules can be employed to some
effect, even in late-stage, castrate-resistant PCa [CRPC (11)].
This demonstrates that AR-signaling maintains its central role
over the entire course of disease progression (9, 12), rather
than CRPC becoming AR-signaling independent. Mechanisms

of resistance to anti-androgen therapy in CRPC include AR-
receptor gene amplification, AR-upregulation, local hormone
production, and/or constitutively active AR-mutations (13–15).
Counter intuitively, the term “castrate-resistant” most often
reflects continued androgen dependence, rather than evolved
AR-pathway independence. Thus, even in CRPC disease, the
AR pathway thus remains an appropriate therapeutic and
imaging target.

16β-[18F]-fluoro-5α-dihydrotestosterone ([18F]-FDHT)
is a positron-emitting analog of the native AR-binding
dihydrotestosterone with a conjugated positron-emitting
radionuclide ([18F]; Figure 2A) and has been used in small
animals studies (17, 18) and in clinical studies to evaluate AR-
expression levels and occupancy (19–21). [18F]-FDHT positron
emission tomography (PET) enables detection of metastatic
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lesions, as indicated by increased concentrations of AR, and is
being evaluated for its capacity to phenotype lesions in concert
with other conventional imaging modalities (22).

The majority of CRPC escape anti-androgen therapy by AR-
signaling amplification, and hormonal therapies that can inhibit
AR-signaling are a mainstay of treatment for CRPC. Thus,
imaging the expression levels of AR is a viable strategy tomeasure
receptor density and the pharmacological response to these anti-
androgen therapies (22, 23) (Figures 2B–D). These features have
been exploited in the clinical evaluation of next generation
anti-androgens in early clinical trial to directly quantitate AR-
blockade. Reduction in [18F]-FDHT uptake and a plateau,
consistent with saturation of AR binding, can be quantitated
directly on a lesional or patient basis (16, 24).

PROSTATE SPECIFIC MEMBRANE
ANTIGEN IMAGING

Prostate Specific Membrane Antigen (PSMA) has emerged as
the pre-eminent prostate cancer target for diagnostic imaging,
assisting efforts to detect disease earlier, monitor recurrence, and
track the progression of disease. PSMA is a robust target for PCa,
with numerous pathological studies reporting elevated PSMA
expression on 85–100% of prostate cancers (25–28). The number
of clinical trials that use PSMA-targeted agents for diagnostic or
therapeutic purposes is large and continues to expand: in the
clinicaltrials.gov database, there are currently over 100 clinical
trials that utilize PSMA for imaging or therapy.

PSMA is a type II transmembrane protein present on the
cell surface, and, interestingly, PSMA contains an extracellular
domain with glutamate carboxypeptidase activity (29). Although
neither the exact physiological role of PSMA nor the reason for
its overexpression on PCa cells is known, it has been used utilized
in the targeting of multiple PSMA-binding small molecules,
many of which are urea based and bind to the enzymatic site. We
note that the use of PSMA as nomenclature to refer to this protein
can be confusing, as this receptor is expressed in multiple non-
prostate-derived tissues including the brain, peripheral nerves,
salivary glands, gut, and kidney. Due to its independent discovery
inmultiple tissues, this protein, which we will refer to as PSMA, is
also identified in the literature as glutamate carboxypeptidase II
(GCPII) in the gut and as N-acetyl-L-aspartyl-L-glutamate
peptidase I of NAAG peptidase I (NAALADase I) in
the brain.

An array of agents have been developed that target
PSMA with high affinity, including antibodies and small
molecules. PSMA imaging agents for use in PET imaging and
single-photon emitting computed tomography (SPECT) have
been evaluated in preclinical and clinical settings, using an
array of positron emitting radionuclides such as Fluorine-18,
Gallium-68, Scandium-44 and Zirconium-89, or single-photon
emitting radionuclides such as Technetium-99m and Iodine-125.
Examples of widely tested structures and antibodies are found
in Figure 3. Multiple PSMA imaging agents have been tested in
humans and several have been evaluated in late stage, multicenter,
clinical trials (Table 1).

The first effort to target and image PSMA involved the 7E11-
C5.3 murine antibody, which targets an intracellular epitope of
PSMA (30, 31). Labeled with Indium-111, permitting imaging
by SPECT, this agent was known as capromab pendetide or
ProstaScint and was approved in 1996 for the detection of PCa
lesions (32, 33). This initial PSMA-targeting agent found limited
clinical implementation due to low contrast imaging, likely
resulting from low accessibility in vivo to the intracellular PSMA
epitope, concerns over human anti-murine immune responses,
and competing conventional imaging methods.

A substantial improvement in PSMA imaging was achieved
with the generation of J591, a humanized antibody targeting
an epitope on the extracellular region of PSMA. J591 has been
labeled with radionuclides for both PET and SPECT imaging
of PCa lesions in humans (34–36). However, as antibody and
antibody-fragment derived agents require administration of the
radiolabeled agent several days before effective PSMA/tumor
imaging can be performed, as this time is required for clearance of
the tracer and optimal tumor/background signal. This relatively
longer time frame from administration to imaging, which
requires a return visit of the patient, has reduced enthusiasm for
J591-based PSMA imaging.

Instead, much of the current intense interest in PCa-lesion
imaging using PSMA revolves around PSMA-targeting small
molecules (37). Small molecules can have exquisite targeting
sensitivity and specificity, and they allow a much more rapid
turnaround from agent injection to imaging (minutes to
hours) than do antibodies (days). Also, small molecule agents
that rapidly target PSMA allow the use of short-lived PET
radionuclides, permitting high resolution, and sensitive detection
with a reduced radiation dosed compared to antibody-based PET
imaging methods (38, 39).

A large number of PSMA-targeted small molecules have been
tested for PCa imaging in preclinical models and in humans. An
example of a patient scan with the high affinity fluorinated agent
is shown in Figure 4A. Multiple prospective clinical trials with
targeted small-molecule PSMA imaging agents are underway,
with encouraging results on the sensitivity of detection and
the utility of these tracers in clinical settings (42–44). The
most widely reported clinical imaging has been performed
with PET imaging using radiometal-labeled [68Ga]PSMA 617
or [68Ga]PSMA-11 or using fluorinated [18F]-DCFPyL (45).
There are currently many options for radionuclide and PSMA-
targeting ligand, and several studies to compare imaging features
have been undertaken. Optimal uptake time, magnitude of
tumor and background organ uptake, and imaging resolution
are dependent on ligand and radionuclide. Logistical and cost
issues are also a consideration. Multiple doses of Fluorine-18
radiolabeled inhibitor are available at institutions with a medical
cyclotron, with the ability to ship agent at greater distances.
Lower upfront costs are required for Gallium-68 isolation on a
68Ge/68Ga generator system, however fewer doses are produced
with lower specific activity, and decreased resolution (46–49).

The capacity to perform highly sensitive molecular imaging of
PSMA to detect minute foci of metastatic disease, led by PET-
isotope labeled, PSMA-targeted small molecules, is motivating
a paradigm shift in prostate cancer patient management. For
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FIGURE 3 | PSMA Targeted radiopharmaceuticals. Examples of diagnostic and therapeutic agents targeting Prostate Specific Membrane Antigen. A common

urea-based motif (green) has been widely derivatized for localization at sites of prostate cancer metastases that over-express the membrane-localized PSMA

metalloenzyme. Antibody targeting vectors with high affinity for PSMA have also been labeled with positron, beta-particle and alpha-particle emitting radionuclides.

TABLE 1 | Selected prostate cancer trials for disease detection and radiotherapy treatment of metastatic disease.

CTID Abbreviated titles Purpose Phase Compound Patients Status

NCT02981368 18F-DCFPyL PET/CT imaging in patients with prostate cancer (OSPREY) Diagnostic II/III [18F]-DCFPyL 385 Completed

NCT03739684 18F-DCFPyL PET/CT imaging in patients with suspected recurrence of prostate cancer

(CONDOR)

Diagnostic III [18F]-DCFPyL 200 Active

NCT03392428 177Lu-PSMA617 theranostic Vs. cabazitaxel in progressive metastatic CRPC (TheraP) Therapy III [177Lu]-PSMA-617 201 Active

NCT03511664 177Lu-PSMA-617 in metastatic castrate-resistant prostate cancer (VISION) Therapy III [177Lu]-PSMA-617 750 Active

NCT03276572 225Ac–J591 in patients with mCRPC Therapy Ib [225Ac]-J591 42 Recruiting

NCT03939689 I-131-1095 radiotherapy in combination with enzalutamide in patients with mCRPC

(ARROW)

Therapy II [131I]-MIP-1095 175 Recruiting

NCT02552394 Radioimmunotheraspy in prostate cancer using 177Lu-J5912 antibody Therapy I [177Lu]-J591 54 Recruiting

example, the ability to rapidly determine lesion response on a
given treatment regimen (41, 50, 51), as shown in Figures 4B,C,
or to target external beam radiotherapy to sites of oligometastatic
disease (52, 53), are means of precise disease control not
previously possible. Of course, it should be noted that rigorous,
prospective, controlled and multi-center trials, and statistical
analyses are required before we can be confident that these new
tools provide real-world benefit for patients.

PROSTATE SPECIFIC MEMBRANE
ANTIGEN TARGETED RADIOTHERAPY

Concurrent with the development of the PSMA-targeted
diagnostic agents described above, the application of PSMA-
directed targeted radiotherapy of PCa is an ongoing area of
great potential. Here, PSMA-binding ligands are labeled with
radionuclides that produce potent cytotoxic decay products,
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FIGURE 4 | PSMA PET Imaging. (A) Detection of prostate cancer lesions with [18F]DCFPyL, along with uptake in kidneys, salivary gland and liver. (B) Pre-treatment

[68Ga]PSMA-11 and (C) post-treatment PET/CT, top, and CT, bottom, scans obtained on day 9 after initiating combined anti-androgen hormone therapy. Reproduced

from (A)(40) and (B,C) (41).

without or with the co-emission of imageable photons. Both
beta-particle (Lutetium-177, Copper-67, Iodine-131) and
alpha-particle (Bismuth-213 and Actinium-225) emitting
PSMA-targeted agents are at various stages of drug development
(54–58). It is noteworthy that PSMA-ligands are internalized
by endocytosis after PSMA binding, allowing increased
intracellular levels of residualizing therapeutic radionuclides and
improved potential for tumor-cell killing. Several PSMA-targeted
radiotherapeutic agents have begun to be applied in late stage
metastatic prostate cancer (PCa) patients (58–62); Table 1.

The most developed agent in the PSMA-targeted
radiotherapeutic class is [177Lu]PSMA-617. [177Lu]PSMA-
617 is inherently theranostic in that the decay pathway of
177Lu emits both tumor-cell-killing beta particles and imageable
photons, detectable by planar scintography, and SPECT imaging.
Thus, [177Lu]PSMA-617 allows both therapy and imaging
of agent distribution and uptake with the same agent. The
majority of response data for this agent have been accrued
from retrospective trials that have shown efficacy in reducing
PSA levels with manageable hematological, renal, and salivary
gland toxicity (63–69). Patient characteristics varied to a large
degree with respect to previous treatment, disease stage, and
radiographic and biochemical features (70). Thus, these results
are encouraging as they indicate that there may be a benefit for
patients along the spectrum of disease burden and stage, but
also present a problem as informing to how these agents can be
wielded most effectively. To aid in answering these questions,
well-powered prospective trials with [177Lu]PSMA-617 are
now underway.

Great interest has also been generated by the application
of PSMA-617 labeled with 225Ac, which emits four cell-killing
alpha particles. This agent has been studied in small cohorts
of men in Germany and in South Africa and clinical findings
have generated great interest, Figure 5 (58, 71, 72). Alpha
particles emitted from heavy isotopes, such as Actinium-225 and
Radium-223 (described below), have high energies, in the 5-8
MeV range, that produce extremely cytotoxic genomic damage.
Alpha particles also exhibit a much shorter path length than
β-particles, such as those emitted by Lutetium-177. Together,
the radiobiological properties of alpha-particle emitting agents
mean that even small deposits of cancer cells could be eradicated
with appropriate uptake (57), while largely sparing adjacent and
distant tissues because of their short path length. Investigations
with additional alpha-particle emitting theranostics, including
with generator-produced [213Bi]PSMA-617 and [212Pb]PSMA-
617 (57, 73), are also being evaluated, which may alleviate
sourcing issues regarding 225Ac.

However, the expression of PSMA on non-prostate-derived
cells as noted above leads to a major concern in the
application of PSMA-targeted therapies: the on-target but off-
tumor localization. Dosimetric evaluation of the distribution
of the diagnostic and theranostic ligands provides a means to
predict absorbed doses to sites of both healthy and diseased tissue
uptake. Radiosensitive organs, such as the hematopoietic niche of
the bone marrow, kidneys, nerves, and intestine often account
for the dose-limiting activity that can safely be administered
to a patient (74, 75). The major side-effect producing sites of
undesired localization of PSMA-targeted agents identified at
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FIGURE 5 | [68Ga]PSMA-11 Imaging Response to [225Ac]PSMA-617. Alpha-particle emitting Ac-225 bound to the DOTA chelator-bearing PSMA-617 scaffold was

used to treat a patient following disease progression after several lines of conventional treatment and [177Lu]PSMA-617. Serial images during the treatment course

reveal significantly less PSMA expression and potential lesion eradication. A decrease in salivary gland uptake is also noted, as it is a site of PSMA expression

inadvertently treated by these agents. Reproduced from (71).

this time include the salivary glands and kidney, which highly
express PSMA, are radiosensitive and are critical for survival
and quality of life. Xerostomia from non-repairable damage to
the salivary glands has been reported with 225Ac-PSMA-617,
with varying degrees of glandular damage observed with 177Lu-
PSMA-617. Interestingly, biological targeting vectors such as
177Lu-J591 which do not apparently accumulate in the salivary
glands may have additional utility with the potential for a
favoragle therapeutic window (76, 77). The much longer-onset
effect of severe kidney toxicity has not yet been clinically noted
(63). However, studies to date generally lack rigorous patient
enrollment and follow-up criteria and have not followed patients
for long periods of time. Prospective and randomized trials
will be needed to compare patient benefit against conventional
treatments and the effectiveness of means to reduce these off-
tumor toxicities.

GRPR BOMBESIN

The gastrin-releasing peptide receptor (GRPR) is expressed on
a wide range of cell types in higher mammals, especially in
the nervous system and gastrointesinal tract (78, 79). Small
peptides interact with GPRP to modulate a wide range of cell
and organ functions (80). GRPR is aberrantly overexpressed on
the cell surface of many cancers, including lung, breast, and

prostate cancer (81, 82). The bombesin subfamily is the best
studied GRPR, and a large number ofmammalian and amphibian
bombesin peptide analogs have been radiolabeled for cancer
imaging and therapy (82).

Because of the frequent overexpression of GRPR in prostate
cancer, several bombesin radiopharmaceuticals have been tested
in humans for PCa disease detection, including [68Ga]RM2,
[68Ga]BAY86-7548, and [64Cu]-CB-TE2A-AR06, among others.
Studies reveal high-contrast detection of disseminated and
primary disease (83–86). While GRPR expression may not
be as ubiquitous on prostate cancer cells as PSMA, there is
no background target expression in the kidneys or salivary
glands. Thus, there may be utility for other prostate cancer
targeted theranostics in addition to PSMA (87), especially in the
GRPR class.

THERANOSTICS FOR THE BONE
METASTASIC MICROENVIRONMENT

The skeletal compartment is the most frequent site of metastases
in prostate cancer patients. These lesions are often painful, and
may also further degrade quality of life through fracture, spinal
cord compression, hypercalcemia, and impaired mobility (3, 88).
Bone metastases occupy a nutrient-rich niche that enhances the
treatment-resistant nature of disseminated tumor cells (89). Early
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detection and specific localized treatment of these disseminated
sites are recognized as necessary components of a successful
strategy to combat bone metastatic prostate cancer.

Conventional imaging modalities for PCa bone metastases
include magnetic resonance and X-ray computed tomography,
which are commonly applied in concert with nuclear
medicine scans for accurate bone lesion detection. [99mTc]-
bisphosphonates and [18F]-NaF are both bone-seeking agents
that are incorporated at sites of active bone remodeling
adjacent to metastatic foci and are used for imaging. Approved
beta particle-emitting agents for bone pain palliation are
[89Sr]chloride and [153Sm]EDTMP, an ion and phosphonic
acid ligand, respectively, which are taken up at or near sites of
bone metastasis. Both produce imageable emissions for planar
imaging in order to evaluate uptake. Unfortunately, the long
path length of these energetic beta particle emissions result in
irradiation of the bone marrow, a dose limiting organ, and these
agents have not produce survival improvements when evaluated
in clinical trial.

The first bone-targeted radionuclide that aids in pain
palliation and also achieves an overall survival benefit over
standard of care is the alpha-particle emitting [223Ra]Cl2 citrate,
tradename Xofigo (90). Radium-223 is a calcium-mimetic and
localizes to sites of active bone turnover, where it subsequently
decays, irradiating nearby prostate cancer cells. The short path
lengths of the alpha particles do not result in anemic responses
and the drug is well-tolerated. While difficult to image, efforts
are underway to provide quantitative assessment of 223RaCl2
distribution to inform absorbed dose measures at sites of disease
and background organs (91–94).

CONCLUSION

Agents that specifically and sensitively target molecular features
of prostate cancer are being brought to bear to detect, guide,

and deliver treatments for men with advanced prostate cancer.
The underlying initiator of PCa, the androgen receptor, is
the driver of prostate adenocarcinoma development, can be
visualized with [18F]-FDHT. This imaging tool can evaluate the
pharmacological impact of anti-androgens and their efficacy. Cell
surface antigen targeted agents, in particular PSMA targeted
urea-based ligands and antibodies, have now been assessed
in a wide range of scenarios to detect and treat metastatic
prostate cancer. Prospective clinical trials that are currently
recruiting or underway will provide clearer information on the
utility of these new theranostic approaches to improve quality
of life and overall survival. These agents have the capacity
to deliver ablative doses to sites of disease throughout the
body with the potential to overcome this currently incurable
disease. Differences in the imaging properties and therapeutic
niche for different molecular entities and radionuclides are of
continuing research interest to provide optimal patient-specific
diagnostic information and therapeutic outcome. These ongoing
trials may also shed light on the important question of how
these novel imaging and therapy agents will integrate with
current treatment modalities and approved imaging methods,
including conventional imaging and imaging of prostate cancer
cell metabolism with established agents such as [11C/18F]-
choline, [18F]-fluorodeoxyglucose and [18F]-fluciclovine.
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