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We study statistics of the knockout tournament, where only the winner of a fixture progresses to the next.
We assign a real number called competitiveness to each contestant and find that the resulting distribution of
prize money follows a power law with an exponent close to unity if the competitiveness is a stable quantity
and a decisive factor to win a match. Otherwise, the distribution is found narrow. The existing observation of
power law distributions in various kinds of real sports tournaments therefore suggests that the rules of those
games are constructed in such a way that it is possible to understand the games in terms of the contestants’
inherent characteristics of competitiveness.

C
ompetition is a ubiquitous form of social interaction for distributing limited resources among a number of
individuals, often regarded as the opposite of cooperation. Competition has been a main tenet in eco-
nomics where a perfectly competitive equilibrium is proven Pareto-efficient as long as there are no

externalities and public goods. Moreover, the notion of natural selection in biological evolution is often under-
stood as proving competition ‘natural’. For these reasons, although competition results in growing tension across
a society, most people have taken it for granted as an organising principle of our society.

Recently, Deng et al.1 claimed universal power-law distributions of scores and prize money by observing
various kinds of sports such as tennis, golf, football, badminton, and so on. According to their extensive data
analysis, the probability to find scores or prize money greater than k always decays as a power law P.(k) , k2(c21)

with an exponential cutoff where the power-law exponent c 2 1 ranges between 0.01 and 0.39 depending on
sports. In addition, they presented a knockout-tournament model to explain the observations. This is an intri-
guing approach since the most organised forms of competition are usually found in sports. It is also popular to run
a knockout tournament, consisting of successive rounds where only a winner in each fixture progresses to the next
round, because it is an efficient procedure to find who is the best with a small number of fixtures. In other words,
Deng et al. hinted a direct connection between the structure of competition and its consequences. Physicists have
already recognised sports as a fruitful research field: Statistics of athletic records has been pioneered by Gembris et
al.2 and Wergen et al.3, for example, and there have been attempts to even predict the limiting performances in the
long run4. Sports ranking combinatorics has also been considered by Park and Newman5,6. If we are to understand
the dynamics governing high achievements in sports careers, in particular, one famous theory along this direction
is called the Matthew ‘‘rich get richer’’ effect7–9: It says that a higher position leads to a better chance to progress
further in career, resulting in an extremely skewed distribution. The spatial Poisson process to model this effect
indeed explains such behaviour with c # 1, which is found in some empirical data sets. However, we should point
out that many factors of competition are hidden in the probability of progress, and that the stochastic process is
totally indifferent to individual characteristics as written in Ecclesiastes: ‘‘the race is not to the swift, but time and
chance happenth to them all’’.

In this work, we instead focus on statistical analysis of a specific system of competition, i.e., the knockout
tournament among inhomogeneous participants. Our main point is that a large part of statistics is universal in the
sense that it is independent of most details of the game but already determined by the tournament structure. Let us
consider a player’s number of wins denoted by n, for example. When the tournament has been finished, the
distribution of n denoted by P(n) is always an exponentially decreasing function of n. It is a purely geometric
property of the tournament tree independent of any details of the game, loosely mapped to the critical percolation
on a binary tree10. If the prize money is highly skewed towards the best players, similarly to real sports tourna-
ments, one can assume that the prize money kn after winning n rounds is also an exponential function of n, that is,
kn , zn (Fig. 1). Combining these two, one finds that the distribution P(k) , k2c with
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c~ log2 z
� �{1

z1, ð1Þ

and this mechanism belongs to combination of exponentials accord-
ing to Newman11. If z gets very large, c converges to unity, yielding
P(k) , k21. As z R 1, on the other hand, c diverges because P(k)
approaches the distribution function of n, which is an exponential
function. In fact, if z , 2, the total amount of prize money gets
unbounded as the number of contestants grows, which means that
the organiser of this tournament has a risk of bankruptcy. This
explains why kn has to be such a rapidly increasing function of n,
and we see that the feasible range of c is between one and two.
Moreover, if there is a typical number of prize winners, z is effectively
very large, driving c to unity. This is a simple prediction for a single
tournament. In other words, this analysis corresponds to gathering
data of prize money distributed over many tournaments without
identifying who was who. The actual statistics collected in this way,
however, will not be very interesting to us, and it is usually more
meaningful to consider individual-based statistics: Even for a team
sport, each team may be regarded as an individual. It is notable that
Deng et al. resolve this problem by introducing the notion of ranks,
belonging to individuals, and also by assuming that a player’s win-
ning probability against another is a function of their rank difference.
Following this approach, we will see how our simple prediction in
equation (1) can be reproduced on average in the individual-based
statistics.

Results
Decisiveness of competitiveness. Imagine a tournament with N 5

2m contestants to construct a simple binary tree. Each person is
assigned a real number r, which we refer as competitiveness
instead of a rank, and reserve the latter term for denoting an
outcome of competition, which may or may not reflect an
individual’s genuine competitiveness depending on how much luck
comes into play. By defining r as a real number, the competitiveness
is automatically assumed to be transitive, which means that if
contestant A is more competitive than B who is more competitive
than C, then A is also more competitive than C. Since we can always
rescale the highest competitiveness as unity and the lowest one as null
without loss of generality, the real number r belongs to a closed
interval from zero to one.

Under total uncertainty about the contestants, we may assume as
our initial condition that the distribution of r is uniformly random at
the starting point. We thus denote the initial probability density

distribution of r as p0(r) 5 1 with normalisation
ð1

0
p0 rð Þdr~1.

Then, we introduce a function f(r, r9) that defines the probability
for a contestant with competitiveness r to defeat another with r9. As
was done by Deng et al.1, it can be assumed to be a function of x ; r 2

r9 only, and it is plausible in such a case that f(x) is a nondecreasing

function of x g [21, 1] with f(x) 1 f(2x) 5 1. In words, the former
condition means that a more competitive player has a higher prob-
ability to defeat a less competitive player, whereas the latter condition
is merely a simple reflection of the trivial fact that one of the two
players must win, irrespective of their values of r. Let us check some
examples of f(x).

Perfect resolution. One of the simplest choices is

f r, r’ð Þ~H r{r’ð Þ, ð2Þ

where H is the Heaviside step function. This means that the compe-
titiveness decides the outcome deterministically. In Methods, we
have derived the following nonlinear recursive relation

pnz1 rð Þ~2pn rð Þ
ð1

0
dr’f r, r’ð Þpn r’ð Þ, ð3Þ

where pn(r) means the distribution of r after the nth round. With the
Heaviside step function, this equation is solvable at any arbitrary n
and we obtain

pn rð Þ~2nr2n{1, ð4Þ

with a corresponding cumulative distribution cn rð Þ:
ðr

0
pn r’ð Þdr’

~r2n
. As explained in Methods, cn(r) is identical to the winning

chance for the contestant with r at the (n 1 1)th round, denoted
by wn(r), when we have chosen the step function in equation (2).

We can extract various useful information from this probability
density function. For example, the average competitiveness after the
nth round is

rh in~
ð1

0
dr rpn rð Þ~ 1

1z2{n
, ð5Þ

and therefore the width of pn(r) decreases as s , 22n. A contestant
with r passes the nth round but not the next one with probability

qn rð Þ~ P
n{1

k~0
wk rð Þ

� �
1{wn kð Þ½ �~r2n{1 1{r2n� �

, ð6Þ

where we have used wk 5 ck and the sum over n is normalised to unity
for any r between zero and one. The average prize money for this
person with r can thus be calculated as

�k rð Þ~
X?
n~0

knqn rð Þ: ð7Þ

As shown in Fig. 2, qn has a peak at n�~log2 {
1

log2 r

� �
and the

summations above can be approximated as

Figure 1 | Schematic illustration of a tournament with four contestants
A, B, C, and D. Contestant B has competitiveness rB and gets prize money

kB 5 z2 because she has defeated A and C. Likewise, C gets kC 5 z1 because

she has won only a single match against D.
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Figure 2 | Conditional probability to progress only to the nth round for
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�k rð Þ<kn�qn�~
kn�
4r
: ð8Þ

If kn 5 zn, it means that �k rð Þ< 1
4

zn�! {
1

ln r

� �log2 z

< 1{rð Þ{log2 z

in the vicinity of r 5 1. Note that we have approximated r as unity at
the denominator of equation (8). Therefore, Zipf ’s plot shows a
power law with slope 2log2 z, leading to P(k) , k2c with c 5 (log2

z)21 1 1 due to the relationship between Zipf ’s plot and P(k)12. This
exactly coincides with equation (1) derived for a single tournament.
We have numerically performed tournaments and the results con-
firm validity of our analysis as shown in Fig. 3, where the numerical
calculations of c5(r) and Æræn agree perfectly with the analytic results.
The detailed procedure of our simulation is explained in Methods.

Imperfect resolution. As an opposite extreme case, let us consider a
situation where individual competitiveness is totally irrelevant to the
outcome of a match and only luck decides. In other words, we assume
a constant function f(x) 5 1/2. If we start from p0 5 1, the winning

chance here is w0 rð Þ~
ð1

0
dr’ f r, r’ð Þp0 r’ð Þ~1=2. Note that w0 is not

identical to the cumulative distribution any more. The next round
has a distribution p1(r) 5 2w0(r)p0(r) 5 1, and this pattern is
repeated all the way leading to pn(r) 5 1 for every n. It is also
straightforward to obtain the same result by substituting the constant

f(x) 5 1/2 into the recursive equation (3). The resulting P(k) is just
the most likely distribution of the prize money among the N players,
so the maximum entropy principle tells us to maximize

H~{
X

k

P kð Þ ln P kð Þ{m
X

k

kP kð Þ, ð9Þ

where the first term is Shannon entropy and m represents a
Lagrangian multiplier for constraining the average prize money.
When H is maximised, it does not change under variation in P(k)
to the first order, and we thus have

0~dH~{dP kð Þ
X

k

1zln P kð Þzmk½ �, ð10Þ

which leads us to P(k) , exp(2k/kc) with a characteristic scale kc.
This implies a tendency that P(k) usually exhibits a power law with

an exponent close to unity but that randomness makes the tail
shorter. Suppose that f(x) has a finite resolving power, quantified
by a characteristic width C over which f(x) rapidly increases. The
Heaviside step function corresponds to a limiting case of C R 0. We
can predict the followings when C is finite but sufficiently small: At
the beginning of the competition, the width s of pn(r) is much greater
thanC, so f(x) effectively serves as a step function. The above analysis
shows that s decreases as 22n so it becomes comparable withC after n
, log2(1/C) rounds. Thereafter, the decrease of s slows down.
Finally, when s=C after many rounds, the survivors’ competitive-
ness is irrelevant and the outcomes are mostly determined by pure
luck. Therefore, a natural guess for P(k) would be

P kð Þ*k{c exp {k=kCð Þ, ð11Þ

with kC , O(zn) and c in equation (1). This functional form is con-
firmed in our numerical simulations (Fig. 4). This distribution can
also be derived from the maximum entropy principle as in equation
(10) but with an additional constraint on Sk ln k13,14, which corre-
sponds to the total number of fixtures in this context. The above
argument can be pursued further by employing the following f(x):

f xð Þ~
1{

1
2

e{x=C for xw0,

1
2

ex=C otherwise,

8><
>: ð12Þ

where the exponential functions make it possible to explicitly evalu-
ate the integral. Then, the winning chance is given as

c0 rð Þ~
ð1

0
dr’ f r, r’ð Þp0 r’ð Þ ð13Þ

~

ðr

0
dr’ f r, r’ð Þp0 r’ð Þz

ð1

r
dr’ f r, r’ð Þp0 r’ð Þ ð14Þ
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Figure 3 | (a) Probability distribution of r at the 5th round when f(x) is the Heaviside step function, equation (2). The data points are obtained
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~rz
C

2
e{r=C{

C

2
e r{1ð Þ=C, ð15Þ

which approaches c0(r) 5 r as C R 0 and c0(r) 5 1/2 as C R ‘, as
expected. As above, this yields

p1 rð Þ~2c0 rð Þp0 rð Þ~2rzCe{r=C{Ce r{1ð Þ=C, ð16Þ

which is normalised to unity as
ð1

0
dr p1 rð Þ~1. This result is quite

suggestive, because equation (16) modifies equation (4) at n 5 1 by
adding O(C) when r *v C and subtracting the same amount when
1{rð Þ *v C [Fig. 5(a)]. In short, p0(r) becomes flatter when r is close

to 0 or 1. If we take one step further, the low-r correction becomes less
important and we find

p2 rð Þ<4r3{6Cr e r{1ð Þ=C, ð17Þ

where we have left only the dominant correction of O(C) [Fig. 5(b)].
For general n, the result up to the correction of O(C) is inductively
found as

pn rð Þ<2nr2n{1{2n{1 2n{1ð ÞCr2n{1{1e r{1ð Þ=C: ð18Þ

This implies that the finite resolution is most noticeable among
highly competitive players with 1{rð Þ *v C, whereas the story looks
similar to the case of perfect resolution when (1 2 r) is small but still
much larger than C.

Stability of competitiveness. We have assumed that competitive-
ness is each individual’s inherent characteristic, which changes in a
much longer time scale compared to outcomes of competition, and
we relate the latter to ranks. The idea is that although a contestant’s
rank fluctuates over tournaments, it will correctly reflect her true
competitiveness in the long run. Even if the competitiveness may
interact with actual tournament results, it will usually be related to
a cumulative measure of performance that mainly reflects low-
frequency, i.e., long-term behaviour. For example, we have
calculated the Kendall tau rank correlation coefficient15, denoted
by t, to see how the accumulated amounts of prize money change
their relative positions between two successive tournaments (Fig. 6).
If a certain pair of contestants keep their relative positions, they are
said to be concordant, and discordant otherwise. The coefficient t is
defined as the number of concordant pairs minus that of discordant
pairs, divided by the total number of possible pairs. Beginning with
the same initial amount of money for every contestant, which is set to
zero, we run fifty tournaments in a row, accumulating the prize
money for each individual. A contestant’s accumulated money
from a series of tournaments determines her performance in the
next tournament in such a way that r 5 (N 2 i)/(N 2 1) is as-
signed to the contestant when she has the ith largest accumulated

amount. The relative positions of two equal amounts are random. In
spite of this variability, the ranks of the accumulated money get
stabilised after 20 or 30 tournaments in all the cases considered
(Fig. 6), and the resulting P(k) is almost identical to the static-r
case for each C. Still, one may ask what happens if their time scales
approach each other so that a current rank directly affects perfor-
mance at the next tournament, provided that the tournaments are
regular events. Even if an individual’s rank fluctuates over time, it
might still be possible for this correlation between successive
tournaments to reproduce the power-law tail part of P(k). In fact,
this question is not really well-posed because a knockout tournament
leaves many contestants’ ranks undetermined except a few prize
winners, and this is the fundamental advantage of a knockout
tournament. We nevertheless suppose that a player’s competitive-
ness at the next time step is a nondecreasing function of the current
performance, say, rt11 5 R(nt), where nt is the number of wins in the
tournament at time t, and R is a nondecreasing function between zero
and one. Since r determines how many rounds the contestant can go
through, the distribution of nt11 is essentially a function of nt. The
situation is actually boring because the same contestant wins the first
place all the time, but we may exclude this exceptional contestant
from our consideration. We begin with noting that any tournament
results in a distribution of nt as p0 ntð Þ~2{nt{1, which is the initial
distribution of the next tournament at time t 1 1. The corresponding
cumulative portion of contestants with results below nt is thus
c0 ntð Þ~1{2{nt . As above, if f(x) is the Heaviside step function
with f(0) 5 1/2, the chance to win the first round for a contes-
tant that passed nt rounds at the previous tournament is
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w0 ntð Þ~ 1
2 p0 ntð Þzc0 ntð Þ. The first term represents the probability

to meet an opponent with the same nt, and the factor of one half
originates from f(0). The distribution of nt at the next round is p1(nt)
5 2w0(nt)p0(nt). We can repeat this procedure to obtain a general
expression as

ck ntð Þ~ 1{
1

g ntð Þ

� �g kð Þ
ð19Þ

with g(x) ; 2x. By definition, we have

pk ntð Þ~ck ntz1ð Þ{ck ntð Þ: ð20Þ

If k is not very small, pk(nt) converges to a certain function of y ; k 2

nt with a maximum around y < 0 [Fig. 7(a)]. The conditional
probability to reach k and stop there for given nt is found as

qk ntð Þ~ P
k{1

j~0
wj ntð Þ

� �
1{wk ntð Þ½ �, ð21Þ

with
P?

k~0 qk ntð Þ~1 [Fig. 7(b)]. We observe that qk(nt) can also be
described as a certain function V(y) when nt *w 3. Moreover, we find
that

Pnt
k~0 qk ntð Þw1=2 for any nt. In other words, the time series {nt

$ 0} can be roughly described as a biased random walk towards the
origin. Since this holds true for anyone, each contestant’s average
result will be rapidly equalised by the bias so we predict that the
probability distribution P(k) will be narrow. This prediction is well
substantiated by numerical results shown in Fig. 8, where P.(k) is
drawn in a semi-log plot. Therefore, in terms of the time scale of
competitiveness, the power-law shape of P(k) is observable when
competitiveness changes much more slowly compared to the
frequency of tournaments.

Discussion
In summary, we have investigated statistics resulting from knockout
tournaments. It is basically the rules of the game that define compe-
titiveness, so the distribution of prize money is dependent on how
much the rules take individual competitiveness as a decisive and
stable factor. But other details of the game are found irrelevant,
and the statistics is universal in this sense. More specifically, if com-
petitiveness is a static parameter and any tiny difference of it can be
distinguished by the rules, the distribution is predicted to take a
power-law shape P(k) , k2c with c close to unity. If the difference
is indistinguishable below a certain resolution limit C, we find an
exponential cutoff at the tail, whose location is a function of C. We
have also argued that the distribution P(k) becomes narrow again
when competitiveness changes with a time scale comparable to the
frequency of tournaments. In this respect, the broad distributions
observed across many sports suggest that their rules are already
stabilised in such a way that one can readily compare contestants’
competitiveness in a consistent way over a long time span and that

the result of competition sensitively reflects the difference indeed.
Since our analysis relates certain internal parameters of a given tour-
nament such as z and C to the final distribution of prize money,
which is somewhat more easily accessible, it will an interesting ques-
tion to verify such detailed relationships directly on empirical
grounds.

Methods
Recursive relation for pn(r). In case of perfect resolution, i.e., f(r, r9) 5H(r 2 r9), it is
straightforward to obtain the winning chance for the contestant with r at the first
round of the tournament as

w0 rð Þ~
ð1

0
dr’ f r, r’ð Þp0 r’ð Þ~r, ð22Þ

where p0(r9) 5 1. This happens to be identical to the cumulative distribution c0(r) and
it represents the simple fact that the contestant with r should meet an opponent with
r9 , r in order to win and progress to the next round. When the first round has been
finished, the distribution of their competitiveness is

p1 rð Þ~2w0 rð Þp0 rð Þ~2r, ð23Þ

which is again normalised to unity. The factor of two in front is needed because the
number of survivors has become one half of N. Note that we have used independence
between a player’s competitiveness and her opponent’s in equation (23), which is the
case when the initial condition contains no correlations in competitiveness. As in the
first round, the corresponding cumulative distribution,

c1 rð Þ~
ð1

0
dr’ f r,r’ð Þp1 r’ð Þ~r2, ð24Þ

is identical to the winning chance w1(r) at the second round. In the same way, the
distribution after the second round is p2(r) 5 2w1(r)p1(r) 5 4w1(r)w0(r)p0(r) 5 4r3,
and so on. For general f(r, r9), we can use essentially the same argument to derive the
following nonlinear recursive relation:

10-4

10-3

10-2

10-1

100

 0.2  0.4  0.6  0.8  1

P
>
(k

)

Rescaled prize money k
Figure 8 | Cumulative distribution of prize money, when each
contestant’s tournament result at time t determines her competitiveness
at t 1 1. We have numerically simulating 104 tournaments with N 5 212

and z 5 2. We have used the Heaviside step function as f(x), and this plot

has excluded the one that always wins the first place.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  2  4  6  8  10  12

p k
 (

n t
)

nt

a

k=0
1
2
3
4
5
6

 0

 0.2

 0.4

 0.6

 0.8

 0  2  4  6  8  10  12

q k
 (

n t
)

nt

b

k=0
1
2
3
4
5
6

Figure 7 | (a) The horizontal axis means the result of a tournament at time t, and the vertical axis means probability to find a contestant with nt at the kth

round of the next tournament at t 1 1. Note the similarity in shape at k *w 4, which means that pk(nt) < U(y) with y ; k 2 nt. (b) Conditional probability

qk(t) also converges to a certain function V(y) (see text).

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 3198 | DOI: 10.1038/srep03198 5



pnz1 rð Þ~2pn rð Þ
ð1

0
dr’ f r, r’ð Þpn r’ð Þ, ð25Þ

which is explicitly solvable for a few special cases as above.

Numerical procedures. First, we generate a tournament tree with N 5 2m contestants
at the terminal nodes and assign to each of them a real random number r inside the
unit interval as competitiveness. One may require the minimum and maximum of the
random numbers to be strictly zero and one, respectively, but it does not make a
visible difference when N is large enough. The resulting uncorrelated random number
sequence {r1, r2, …, rN} means absence of a seeding process, so number one and
number two seeds may face each other in the first round. Second, when two
contestants A and B meet with rA and rB, respectively, we draw a random number r g
[0, 1) and choose A as the winner of this fixture if r , f(rA, rB), and choose B
otherwise. This is repeated for every match in this first round, and the winner
progresses to the parent node. When we have filled all the parent nodes with 2m21

winners, the second round starts among them in the same way as before. As the
tournament proceeds round by round, the number of survivors decreases rapidly
until the final winner is left alone after the mth round. Each player defeated at the nth
round receives prize money zn21, whereas the final winner acquires zm. When a
tournament is over, we start a new one with randomly shuffling {r1, r2, …, rN} at the
terminal nodes, so that the competitiveness is identified as an individual characteristic
preserved across the tournaments. We have performed 104 shuffles, hence the same
number of tournaments, to obtain statistical averages for each ri with N 5 212.
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