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Abstract

Water resources are indispensable for all social-economic activities and ecosystem functions.

In addition, changes in water resources have great significance for agricultural production.

This paper uses five global climate models from CMIP5 to evaluate the future spatiotemporal

variation in water resources in China under four RCP scenarios. The results show that the

available precipitation significantly decreases due to evapotranspiration. Comparing the four

RCP scenarios, the national average of the available precipitation is the highest under the

RCP 2.6 and 4.5 scenarios, followed by that under the RCP 8.5 scenario. In terms of spatial

distribution, the amount of available precipitation shows a decreasing trend from southeast to

northwest. Regarding temporal changes, the available precipitation under RCP 8.5 exhibits a

trend of first increasing and then decreasing, while the available precipitation under the RCP

6.0 scenario exhibits a trend of first decreasing and then increasing. Under the RCP 2.6 and

4.5 scenarios, the available precipitation increases, and the RCP 4.5 scenario has a higher

rate of increase than that of RCP 2.6. In the context of climate change, changes in water

resources and temperature cause widespread increases in potential agricultural productivity

around Hu’s line, especially in southwestern China. However, the potential agricultural pro-

ductivity decreases in a large area of southeastern China. Hu’s line has a partial breakthrough

in the locking of agriculture, mainly in eastern Tibet, western Sichuan, northern Yunnan and

northwestern Inner Mongolia. The results provide a reference for the management and

deployment of future water resources and can aid in agricultural production in China.

1. Introduction

Water resources are a fundamental natural resource, and the variation in water resources is of

great significance for the existence and development of humankind. With rapid social and eco-

nomic development, water has become an important constraint for sustainable development.

Moreover, with global climate change, agricultural production is affected by water resources to

a great extent. Understanding the changes in water resources is not only beneficial to formulat-

ing plans for the utilization and protection of water resources but also helpful for agricultural

development.
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Water resource assessment has attracted the attention of scholars worldwide [1–3]. For

example, Geng et al. [4] calculated the total water resources and analysed the spatial distribu-

tion and temporal variation in northwestern China by using 40 years of synchronous data of

rainfall, evaporation and runoff. Ding et al. [5] explored the regional differences over western

China in terms of variations in climate and discharge using annual precipitation and discharge

data. Li et al. [6] analysed the changing trends and periods of renewable water resources in

China during 1956–2010 based on a national water resources assessment.

Climate change is one of the most significant challenges facing our generation and the next

generation[7–9]. In the context of climate change, changes in temperature and precipitation

are obvious. Climate change can drive changes in the water cycle, which further affect the sup-

ply and distribution of water resources in major river basins. The impact of climate change on

water resources has attracted the attention of scholars[10], and historical meteorological and

hydrological data have been utilized to analyse the relationship between climate change and

water resources. For instance, Chen et al. [11] analysed the impact of climate change on water

resources in the Tarim River Basin during the 1950–2000 period, and this study showed that

the streamflow from the headwater exhibited a significant increase during the 1980–2000

period. Zhang et al. [12] further showed that precipitation in the Tarim River Basin showed a

significant increasing trend, which in turn led to increasing streamflow. Miao et al. [13] identi-

fied the characteristics of streamflow change in the Yellow River by using approximately 50

years of natural and observed streamflow data from 23 hydrological stations. It is more realistic

to quantify the potential effect of future climate change on water resources.

The projected data under climate change scenarios are widely adopted to assess the future

variation in water resources. Gao and Huang [14] assessed the impact of future climate change

on water resources in North China and concluded that evaporation is greater than precipita-

tion, and water deficiency is very serious and often leads to severe droughts in spring. Zhang

et al. [15] predicted and analysed the amount of water resources in the Nanjing region in thirty

different future climate scenarios, concluding that climate change can greatly impact water

resources. Barnett et al. [16] assessed the effects of climate change on water resources in the

western United States and indicated that future water demand may not be satisfied. Arnell [17]

simulated river runoff under current and future climate change scenarios and assessed the

pressure of climate change and population growth on future water resources on a global scale.

Chen and Clarke [18] predicted the change in water resources in the Jialing River catchment

in 2050 and 2100 based on different climate change scenarios. The results showed that the

annual runoff will decrease by 23.0–27.9% in 2050 and 28.2–35.2% in 2100 for the disadvan-

taged conditions. Li et al. [19] assessed the potential impact of climate change on water

resources, including precipitation, runoff, soil water content and evapotranspiration, in the

Heihe watershed under A2, B2 and GGa scenarios. On this basis, Li et al. [20] utilized the

CA-Markov model to develop land use scenarios and discussed the role of land use change in

the response of water resources to future climate change. Hao et al. [21] demonstrated that the

warming and drying trend of climate change in the past 50 years resulted in a significant

reduction in the total amounts of water resources in Hebei Province, and in the future, the

increased precipitation and temperature will cause the total amounts of water resources to

increase. Sun et al. [22] used the projected precipitation and temperature data in Jinjiang

Basin, China, under the A1B emission scenario and showed that runoff in summer to early

autumn exhibits an increasing trend, while during the rest of the year, runoff shows a decreas-

ing trend, especially in the spring season. Kopytkovskiy et al. [23] utilized future climate

change models to drive hydrologic models and evaluate the future water resources and hydro-

power potential of the Upper Colorado River Basin. Mourato et al. [24] assessed the impacts of

different climate change scenarios on water availability in Mediterranean watersheds using the
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SHETRAN hydrological model. Devkota and Gyawali [25], based on the IPCC-SRES A1B sce-

nario, assessed the hydrological regime of the Koshi River Basin in Nepal under climate

change. Based on 43 projection results of the IPCC GG, GS, A2 and B2 scenarios, Wang and

Zhang [26] predicted that from 2000, both the temperature and precipitation in China will rise

in the next 50 years, and runoff in the main river basins will also increase.

Agriculture is the sector most strongly affected by climate change. Climate change alters the

light, temperature, and water in the process of crop growth and development, which directly

affects the potential productivity of crops. To explore the effect of climate conditions on poten-

tial agricultural productivity from the perspective of economics, climate factors, such as tem-

perature and precipitation, should be considered [27]. Theoretically, potential agricultural

productivity is positively related to temperature and sunshine hours. Precipitation is beneficial

to crop growth within a certain range, while it is not conducive to crop growth beyond the

appropriate range. Among the factors linked to climate change, the impact of precipitation on

agriculture is considered to be the most important [28].

Many studies have been conducted to quantify the influences of climate change on agricul-

ture. For example, Chavas et al. [29] examined the potential impacts of climate change on the

productivity of five major crops in eastern China. Gornall et al. [30] analysed the possible

impact of climate change on the net primary production potential of global agricultural land

during 2020–2050. Lobell et al. [31–32] discussed the effects of climate change on global crop

production during 1980–2008. Yuan et al. [33] analysed and predicted the change in the agricul-

tural climate resources and the effects of climate change on the variety distribution and climatic

potential productivity of spring maize from 1951 to 2100 under the future A1B climatic scenario

in Northeast China. Baldos and Hertel [34] examined how agricultural productivity and climate

change affect the future of global food security, and the results showed that global food security

has improved in 2006–2050, mainly due to the growth in agricultural productivity.

Research on the impact of climate change on regional water resources and agricultural pro-

ductivity has yielded rich results. The fifth IPCC report proposed new scenarios for carbon

emissions. The current literature includes few assessments of water resources under the new

climate change scenario. How will water resources and potential agricultural productivity

change in the future? It is important to clarify the impact of climate change on water resources

and potential agricultural productivity, which is related to ecological functions, agricultural

production, and human survival and development. Based on the latest four climate change sce-

narios (RCP 2.6, 4.5, 6.0 and 8.5), this paper considers both precipitation and evapotranspira-

tion and analyses the variation in the available precipitation and its influences on agricultural

productivity under different climate change scenarios.

2. Materials and methods

2.1 Data

This study employed the average value of five GCMs, namely, MIROC-ESM-CHEM, Nor-

ES1-M, IPSL-CM5A-LR, GFDL-ESM2M and HadGEM2-ES, which are all derived from the

Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP, https://www.isimip.org/).

These datasets were interpolated to a 0.5˚×0.5˚ latitude-longitude grid in space, and bias cor-

rection was performed. Hempel et al. [35] provided the detailed processing procedure. The

projected data are provided under four RCP climatic scenarios (including RCP 2.6, RCP 4.5,

RCP 6.0 and RCP 8.5). The time coverage is from 2006 to 2099 at daily time steps. The vari-

ables involved in this study include daily average temperature, daily maximum temperature,

daily minimum temperature, precipitation, relative humidity and wind speed. To verify the

accuracy of the projected climatic data, historical observational data from 2006–2016 were
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utilized, which were provided by the Climatic Data Center, National Meteorological Informa-

tion Center, China Meteorological Administration (http://data.cma.cn).

2.2 Calculation of reference evapotranspiration

The Penman-Monteith formula recommended by the Food and Agriculture Organization

(FAO) of the United Nations was used to calculate the reference evapotranspiration (ET0),

which has been widely used and proven to be of high accuracy and practicability [36–40]. The

Penman-Monteith formula is as follows:

ET0 ¼
0:408DðRn � GÞ þ g 900

Tþ273
U2ðea � edÞ

Dþ gð1þ 0:34U2Þ
; ð1Þ

where ET0 is in millimetres per day (mm d-1); Δ is the saturation vapor pressure/temperature

curve (kPa ˚C-1); Rn is the net radiation from the canopy (MJ m-2 d-1); G is the soil heat flux

(MJ m-2 d-1); T is the average daily temperature (˚C); U2 is the wind velocity (m s-1); ea is the

saturation vapor pressure (kPa); ed is the actual water vapor pressure (kPa); and γ is the psy-

chometric constant (kPa ˚C-1). The details are as follows.

(a) Saturation vapor pressure:

ea ¼ 0:611 � expð
17:27T

T þ 237:3
Þ ð2Þ

(b) Actual water vapor pressure:

ed ¼ RH=
50

eaðTminÞ
þ

50

eaðTmaxÞ

� �

ð3Þ

where RH is the relative humidity (%) and Tmax and Tmin are the daily maximum and mini-

mum temperatures, respectively.

(c) Saturation vapor pressure/temperature curve:

D ¼
4098ea

ðT þ 237:3Þ
2

ð4Þ

(d) Soil heat flux:

G ¼ 0:38 � ðTd � Td� 1Þ ð5Þ

where Td and Td-1 are the average daily temperatures on the dth and d-1th days, respectively.

(e) Psychometric constant:

g ¼ 0:00163 � P=l ð6Þ

P ¼ 101:3 �
293 � 0:0065Z

293

� �5:26

ð7Þ

l ¼ 2:501 � ð2:361� 10� 3Þ � T ð8Þ

where P is the air pressure (kPa); λ is the latent heat (MJ�kg-1); and Z is the altitude (m).

(f) Net radiation:

Rn ¼ Rns � Rnl ð9Þ

where Rns is the net shortwave radiation (MJ/m2�d), and Rnl is the net longwave radiation (MJ/
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m2�d). Rns and Rnl are calculated as follows.

Rns ¼ 0:77 � ð0:19þ 0:38n=NÞRa ð10Þ

Rnl ¼ 2:45� 10� 9 � ð0:9n=N þ 0:1Þ � ð0:34 � 0:14
ffiffiffiffi
ed
p
Þ � ðTkx

4 þ Tkn
4Þ ð11Þ

Ra ¼ 37:6 � dr � ðWs � sinφ � sindþ cosφ � cosd � sinWsÞ ð12Þ

dr ¼ 1þ 0:033 � cos
2p

365
J

� �

ð13Þ

N ¼ 7:64 � arccosð� tanφ � tandÞ ð14Þ

d ¼ 0:409 � sin
2p

365
J � 1:39

� �

ð15Þ

where n is the actual sunshine duration; N is the theoretical maximum sunshine duration (h);

Ra is the solar radiation at the edge of the atmosphere (MJ/m2�d); dr is the relative distance

between the sun and the earth; δ is the daily angle (rad); φ is the latitude (rad); Tks and Tkn are

the maximum and minimum absolute temperature, respectively (K); and J is the day series

(January 1 is assigned to 1, added day by day).

2.3 Calculation of the available precipitation

The available precipitation is defined as the difference between the actual precipitation and

actual evapotranspiration:

Pra ¼ Pr � ET; ð16Þ

where Pra is the available precipitation, Pr is the precipitation, and ET is the actual

evapotranspiration.

The actual evapotranspiration is difficult to estimate and predict [41]. Budyko [42] pro-

posed a relationship between the evapotranspiration ratio and potential evapotranspiration

ratio on the basis of the Schreiber formula [43] and Ol’dekop formula [44]. Subsequently,

researchers developed various non-parametric mathematical equations based on the func-

tional forms of Budyko-type curves to evaluate the water balance over the long term [45–47].

As one of the best-known classical studies, the Schreiber empirical formula was still verified to

be credible for China [48–49]. Therefore, this study employed the Schreiber formula to esti-

mate the actual evapotranspiration in the future:

ET ¼ Pr 1 � e�
ET0
Pr

� �
; ð17Þ

where ET is the actual evapotranspiration, and ET0 is the reference evapotranspiration, indi-

cating the power of evapotranspiration.

2.4 Calculation of the potential agricultural productivity

As early as the 1950s, Huang [50] studied the relationships between the potential agricultural

productivity and the accumulated temperature, precipitation and other climatic factors, which

has been widely adopted [27,51]. In this study, the method is used to explore the effect of

changes in water and temperature on the potential agricultural productivity. The calculation
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model, including the four elements of “light, temperature, water and soil”, is defined as:

PðQ;T;W; SÞ ¼ FðQÞ � FðTÞ � FðWÞ � FðSÞ ð18Þ

where F(Q,T,W,S) is the potential agricultural productivity (kg/hm2); F(Q) is the photosyn-

thetic potential productivity; and F(T), F(W) and F(S) are the effective coefficients of tempera-

ture, moisture and soil, respectively.

F(Q), F(T) and F(W) are calculated as follows.

FðQÞ ¼ 0:123Q ð19Þ

Q ¼ Q0ð0:248þ 0:752SÞ ð20Þ

FðTÞ ¼
X

T>10

T ð21Þ

FðWÞ ¼ Pr=ET ð22Þ

where Q is the total solar radiation; Q0 is the latitude; S is the ratio of actual sunshine duration

to theoretical sunshine duration; T is the average daily temperature; Pr is the precipitation; and

ET is the actual evapotranspiration.

F(S) was obtained by using the classic soil evaluation method proposed by Leng [52], who,

based on the 8 kinds of soil elements (including soil texture, pH value, nitrogen, phosphorus,

potassium, organic matter content, erosion status and salinization degree), took into account

the influence of the terrain altitude to evaluate the regional soil effective coefficient.

In this study, photosynthetic potential productivity does not vary with time, since it is less

affected by climate change. Additionally, due to the long-term nature of soil development, the

change in the soil effective coefficient under climate change is ignored. Precipitation and tem-

perature are the variables that cause changes in potential agricultural productivity.

2.5 Validation of the data

2.5.1 Precipitation. In this study, we employed 5 mainstream models from CMIP5: MIR-

OC-ESM-CHEM, NorES1-M, IPSL-CM5A-LR, GFDL-ESM2M and HadGEM2-ES [53]. The

data produced by the five models from ISI-MIP were used widely [54–56]. To validate the data

accuracy, the overlap of the observation data and simulated data during 2006–2016 was utilized.

From the perspective of future greenhouse gas emission trends, emissions will peak in 2040

and stabilize in 2080 under RCP 4.5 [57], which is consistent with future development trends

in China [58]. Therefore, the precipitation under RCP 4.5, the medium radiation force level,

was selected for comparison with the actual precipitation.

In terms of annual precipitation, the observed average precipitation of stations is 877.9 mm

yr-1, and the simulated average precipitation under the RCP 4.5 scenario is 850.54 mm yr-1,

with a relative error of -3.12%. From the point of view of monthly precipitation (Fig 1), the

gaps in the monthly precipitation in May, June and November are somewhat large, with differ-

ences of 9.13 mm yr-1, 8.77 mm yr-1 and 8.34 mm yr-1, respectively. The gaps in other months

are small, especially in March, April, and October, where the simulated values are substantially

equal to the observed values. According to the regression through the origin model, the regres-

sion coefficient between the observed value and the simulated value is 1.02, and R2 is 0.988,

which has satisfactory goodness of fit. The precipitation between the simulated and observed

values in each year also showed a good fit (Table 1). All the goodness of fit values were greater

than 0.74, and the majority exceeded 0.8.
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2.5.2 Available precipitation. For the validation of available precipitation, the concept of

runoff depth is used. The annual runoff depth refers to the total annual runoff through a cer-

tain section of a river in one year divided by the basin area above the section. For many years,

on average, the annual runoff depth is equal to the difference between the annual precipitation

and annual evapotranspiration.

The actual observed runoff depths of the hydrological stations distributed in the main-

stream and tributaries of the Yangtze and Yellow rivers (Fig 2) are adopted to model the esti-

mated runoff depth, namely, the available precipitation. The goodness of fit of the linear

regression model is 0.7197 (Fig 3), which is significant at the 0.01 level. This result indicates

that the estimated available precipitation has a certain degree of credibility, and its change in

the future is representative.

3. Results

3.1 Precipitation

Fig 4 shows the temporal variation in the average annual precipitation in mainland China. The

average annual precipitation fluctuates between 2020 and 2099. Under RCP 2.6, the annual

precipitation can be divided into three stages. Before 2056, the annual precipitation shows an

upward trend, increasing from 571 mm to 607 mm, then begins to decrease, and after falling

to 588 mm in 2067, it gradually becomes stable. Under RCP 4.5, the annual precipitation

shows an overall growth trend. During the period of 2035–2050, there is a rapid increase and

Fig 1. Relationship of the estimated and observed monthly precipitation.

https://doi.org/10.1371/journal.pone.0231671.g001

Table 1. Goodness of fit between the observed and simulated precipitation.

Years 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

R2 0.791 0.8015 0.8463 0.8413 0.8522 0.7675 0.8488 0.7447 0.7525 0.7988 0.8476

https://doi.org/10.1371/journal.pone.0231671.t001
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decrease, and a small peak appears in 2040, reaching 599 mm. Under RCP 6.0, the change in

the annual precipitation is divided into two phases by the year 2065. The early stage is a steady

state, and the latter stage is a rapid increase stage. The annual precipitation obviously increases

under RCP 8.5. After 2056, the annual precipitation is significantly higher than that of the

other three scenarios.

To analyse the trend of change, the whole study period is divided into four periods: 2010s

(2006–2019), 2030s (2020–2049), 2060s (2050–2079) and 2090s (2080–2099).

Fig 5 compares the changes in the precipitation over the four time periods, taking the RCP

4.5 scenario as an example. The spatial distribution of precipitation is regressive from the

southeastern coast to the northwestern inland.

For the temporal variation between the 2010s and 2030s, most regions show an increasing trend

of precipitation. For example, the southwestern region, central southern region and the Bohai Rim

region show obvious humidification. The areas characterized by aridification are mainly located in

the northwestern region, such as western Inner Mongolia and northern Xinjiang.

Fig 2. Maps of the main hydrometric stations in the Yangtze River and Yellow River.

https://doi.org/10.1371/journal.pone.0231671.g002
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In the 2060s, the annual precipitation further increases. The increase in annual precipita-

tion exceeds 30 mm in most areas. The annual precipitation increases by 60 mm in most areas

of Tibet, Sichuan, Chongqing, Yunnan, Guizhou, Guangxi and Guangdong, and the increase

in some areas even exceeds 120 mm. In northwestern China, the increase in precipitation is

small, and parts of northern Xinjiang show a downward trend in precipitation.

By the 2090s, almost all of the country shows an increasing trend in annual precipitation.

Especially in the southern region, the increase is mainly above 60 mm. The change in the

annual precipitation in the northwestern region is relatively small, with an increase of less than

30 mm.

3.2 Evapotranspiration

Fig 6(A) shows that the spatial variation in evapotranspiration is consistent with that of precip-

itation, decreasing from southeast to northwest. Evapotranspiration varies slightly under dif-

ferent RCP scenarios (Fig 6B–6D). Among these scenarios, a significant increase in

evapotranspiration appears under the RCP 8.5 scenario. The spatial characteristics of evapo-

transpiration variation in China show greater increases in the southeast and smaller increases

in the northwest.

Fig 3. Relationship of the observed and estimated runoff depth.

https://doi.org/10.1371/journal.pone.0231671.g003
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Fig 7 shows the temporal variation in evapotranspiration under the RCP 4.5 scenario, with

the 2010s as a baseline. Overall, the increasing trend of evapotranspiration is the main charac-

teristic for the whole country, and with the passage of time, the evapotranspiration intensity

increases. Spatially, evapotranspiration in the southeast region is high, and the increase in

evapotranspiration is also higher.

3.3 Available precipitation

Under the combined action of precipitation and evapotranspiration, the available precipitation

is significantly lower than the precipitation. The difference in the available precipitation under

different scenarios is obvious (Fig 8). Regarding the national average, the available precipita-

tion under RCP 6.0 is the smallest because the precipitation is relatively small while the evapo-

transpiration significantly increases. The precipitation and evapotranspiration under RCP 8.5

are relatively high, which results in low available precipitation. The available precipitation is

high under the RCP 2.6 and 4.5 scenarios, among which the available precipitation under RCP

4.5 is slightly higher than that under RCP 2.6.

The temporal variation in the available precipitation varies widely in space (Fig 9). Under

RCP 2.6, the available precipitation is mainly increased. The regions with substantial increases

in the 2030s are mainly located in Sichuan, Chongqing, Guizhou, Jiangxi, Zhejiang and Fujian,

Fig 4. Average annual precipitation in China under the four RCPs.

https://doi.org/10.1371/journal.pone.0231671.g004
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and the increase amplitude is generally above 25 mm. Areas with a large decline are found in

Guangxi and western Guangdong, with a decrease of more than 25 mm. In addition, most of

Xinjiang shows a downward trend in the available precipitation with a decrease of less than 25

mm. In the 2060s, the spatial extent of the decrease in available precipitation in northwestern

China expands, including large areas in Xinjiang, northwestern Gansu and western Inner

Mongolia. The available precipitation in the Sichuan-Chongqing region increases by more

than 50 mm. The humidification trend is obvious in the southern region. In the 2090s, the arid

area of the northwestern region extends to the southeast. The aridification trend is obvious in

the southeastern coastal area and the at junction of Henan and Anhui, while the degree of

humidification in the Sichuan-Chongqing region increases, indicating that the available pre-

cipitation becomes more uneven over time.

Fig 5. Temporal variations in the average annual precipitation under RCP 4.5.

https://doi.org/10.1371/journal.pone.0231671.g005
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Under RCP 4.5, the amount of available precipitation also shows an increasing trend. In the

2030s, the areas with an increase of more than 25 mm are mainly distributed in southeastern

Sichuan, Chongqing, western Hubei, Guizhou, Yunnan, western Guangxi, southern Guang-

dong, and Liaoning. Areas with a downward trend are mainly located in Xinjiang in the north-

west, western Inner Mongolia, western Tibet, Henan, northern Anhui, and northern Jiangsu.

In the 2060s, areas undergoing aridification narrow in the northwestern region. The North

China Plain still shows an aridity trend, and the spatial extent of drought in Zhejiang, Jiangxi,

and Hunan expands. The increase in the available precipitation in northwestern and southern

China is obvious, with an increase of more than 50 mm in most areas. By the 2090s, the

increase in the available precipitation exceeds 50 mm in almost the entire southern region, and

even the increase in Guizhou and Guangxi exceeds 100 mm. Areas of aridification further

decrease in the northwestern region. Overall, the available precipitation increases over time.

Fig 6. Changes in evapotranspiration under RCP scenarios.

https://doi.org/10.1371/journal.pone.0231671.g006
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Under RCP 6.0, the available precipitation shows a downward trend in the middle and

lower reaches of the Yangtze River and an upward trend in the southwestern and southern

regions. In the 2030s, approximately half of the country exhibits a downward trend in the

available precipitation, mainly in the northwestern, northeastern, and southern parts of central

and eastern China. The available precipitation in southern China is on the rise, and the

increase is more than 25 mm. In the 2060s, areas with downward trends noticeably expand,

covering almost all of northern, central and eastern China. Among these regions, an obvious

decline appears in central and eastern China with a drop of more than 50 mm. South China

still shows an upward trend. In the 2090s, areas with a downward trend decrease. The north-

eastern region has changed from a downward trend to an upward trend. Although areas with

downward trends in central and eastern China decrease, the decline in the available precipita-

tion increases. The available precipitation in the Sichuan-Tibet and South China regions obvi-

ously increases. The results show that the spatial differentiation increases.

Under RCP 8.5, the available precipitation mainly shows an increasing trend. In the 2030s,

the increasing trend is obvious in southeastern China, with an increase above 25 mm.

Fig 7. Evapotranspiration during different periods under RCP 4.5.

https://doi.org/10.1371/journal.pone.0231671.g007
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Northwestern China, northern China and Yunnan mainly show a downward trend, and the

decline amplitude is mainly less than 25 mm. In the 2060s, the available precipitation further

increases. Most of the southern regions show an upward trend with an increase of more than

25 mm. In the 2090s, areas with downward trends expand greatly. The available precipitation

decreases in eastern China and the provinces of Guizhou and Guangxi. The areas where the

available precipitation increases significantly are mainly located in the Sichuan-Chongqing

region, the Qinghai-Tibet border, and Guangdong with increases of more than 50 mm. In

summary, the available precipitation mainly shows an upward trend in the early stage and

then a downward trend. The reason is likely that the evapotranspiration greatly increases over

time, and the precipitation does not receive enough supply. As a result, the available precipita-

tion decreases in most areas.

3.4 Potential agricultural productivity

Changes in precipitation, coupled with rising temperatures in the context of climate change,

are likely to affect changes in potential agricultural productivity. According to the four ele-

ments of “light, temperature, water and soil”, the potential agricultural productivity in the

2060s under the RCP 4.5 and 8.5 scenarios is calculated and compared with that of the period

of 1980–2000.

Fig 8. Average annual available precipitation in China under different scenarios.

https://doi.org/10.1371/journal.pone.0231671.g008
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Fig 9. Changes in the average annual available precipitation under RCP scenarios.

https://doi.org/10.1371/journal.pone.0231671.g009
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The results show that the potential agricultural productivity exhibits an obvious geographi-

cal differentiation in China. In the historical phase, bounded by Hu’s line, areas east of the line

have a higher potential agricultural productivity, primarily over 6500 kg/hm2, while productiv-

ity is principally lower than 2000 kg/hm2 in areas west of Hu’s line (Fig 10(A)). Hu’s line is the

basic lock of potential agricultural productivity in China, and the contour of 5000 basically

coincides with the line. East of the line, areas with higher potential agricultural productivity

are mainly distributed in the Sichuan Basin, the middle and lower reaches of the Yangtze

River, and southern and northeastern China.

In the 2060s, the spatial trends of potential agricultural productivity show little difference:

high in northwestern China and low in southeastern China. However, there is a large deviation

in the contour of 5000, moving to the northwest overall, especially in the southwest. This

observation indicates that areas around Hu’s line represent the increasing trend of potential

agricultural productivity due to the changes in water and temperature. The contour lines are

similar under the two scenarios, and the obvious differences are marked with ellipses in Fig 10,

10B and 10C.

Fig 10. Maps of potential agricultural productivity.

https://doi.org/10.1371/journal.pone.0231671.g010
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To highlight where the variations occur, the potential agricultural productivity during

1980–2000 is subtracted from that in the 2060s under the two scenarios. The differences

between the two periods are shown in Fig 11, showing an obvious spatial differentiation char-

acteristic. The potential agricultural productivity in the southeastern region exhibits a down-

ward trend. In the northwestern region, rising and falling trends coexist, but the magnitude of

change is relatively small. The potential agricultural productivity mainly shows an upward

trend in the northeastern and southwestern regions. As a whole, areas with a large increase in

the potential agricultural productivity are mainly located near Hu’s line. This finding indicates

that under the background of climate change, the combined effect of water resources and tem-

perature leads to a significant upward trend in the potential agricultural productivity in eastern

Tibet, western Sichuan, northern Yunnan and northwestern Inner Mongolia. There are partial

breakthroughs in Hu’s line locking potential agricultural productivity.

Comparing the changes in the potential agricultural productivity under the RCP 4.5 and 8.5

scenarios, the difference is not large in Southwest China, with an increase of more than 2000

kg/hm2. However, in Northeast China, areas with an increase of 2000 kg/hm2 under RCP 4.5

are significantly larger than those under RCP 8.5, which indicates that the RCP 4.5 scenario is

beneficial to agricultural development in Northeast China. Due to more available precipitation

on the Loess Plateau under the RCP 8.5 scenario, the potential agricultural productivity exhib-

its a greater increase compared with that under the RCP 4.5 scenario. Hu’s line does not show

a clear breakthrough and has a strong agricultural lock in these areas.

4. Conclusions

In this paper, five global climate models from CMIP5 were used to evaluate the temporal and

spatial variations in water resources in China under four RCP scenarios. Then, the potential

agricultural productivity, affected by changes in water and temperature, was analysed under

the RCP 4.5 and RCP 8.5 scenarios. The results show that the available precipitation is signifi-

cantly lower than the precipitation under the combined action of precipitation and

Fig 11. Changes in potential agricultural productivity and Hu’s line.

https://doi.org/10.1371/journal.pone.0231671.g011
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evapotranspiration, and the spatiotemporal characteristics of water resources under different

scenarios are significantly different. For the national average, the available precipitation is the

highest under the RCP 2.6 and 4.5 scenarios, followed by that under the RCP 8.5 scenario. In

terms of spatial distribution, the amount of available precipitation shows a decreasing trend

from southeast to northwest. Regarding the temporal change, the available precipitation under

RCP 8.5 exhibits a trend of first increasing and then decreasing, while the available precipita-

tion under the RCP 6.0 scenario shows a trend of first decreasing and then increasing. Under

the RCP 2.6 and 4.5 scenarios, the available precipitation is rising, where the RCP 4.5 scenario

has a higher rate of increase than that of RCP 2.6. In the context of climate change, potential

agricultural productivity varies due to changes in water resources and temperature. The con-

tour line of 5000 in the 2060s moves to the northwest, especially in the southwest. The poten-

tial agricultural productivity decreases in the southeastern region and increases in the

northeastern and southwestern regions. Hu’s line has a partial breakthrough in the locking of

agriculture, mainly in eastern Tibet, western Sichuan, northern Yunnan and northwestern

Inner Mongolia.
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