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Several machine learning algorithms have demonstrated high predictive capability in the identification of cancer
within digitized pathology slides. The Augmented RealityMicroscope (ARM) has allowed these algorithms to be seam-
lessly integratedwithin the pathologyworkflowbyoverlaying their inferences onto itsmicroscopicfield of view in real
time. We present an independent assessment of the LYmph Node Assistant (LYNA) models, state-of-the-art algorithms
for the identification of breast cancermetastases in lymph node biopsies, optimized for usage on the ARM.We assessed
the models on 40 whole slide images at the commonly used objective magnifications of 10×, 20×, and 40×. We
analyzed their performance across clinically relevant subclasses of tissue, including breast cancer, lymphocytes, histio-
cytes, blood, and fat. Each model obtained overall AUC values of approximately 0.98, accuracy values of approxi-
mately 0.94, and sensitivity values above 0.88 at classifying small regions of a field of view as benign or cancerous.
Across tissue subclasses, the models performed most accurately on fat and blood, and least accurately on histiocytes,
germinal centers, and sinus. The models also struggled with the identification of isolated tumor cells, especially at
lower magnifications. After testing, we reviewed the discrepancies between model predictions and ground truth to
understand the causes of error. We introduce a distinction between proper and improper ground truth for analysis in
cases of uncertain annotations. Taken together, these methods comprise a novel approach for exploratory model
analysis over complex anatomic pathology data in which precise ground truth is difficult to establish.
Introduction

The evaluation of lymph nodes is a critical component of the breast
cancer staging process which heavily informs treatment decisions.1,2 The
current diagnostic workflow, which involves microscopic review of the
biopsy sample by a certified pathologist, is both time-consuming and
error prone. Additionally, manual pathologist review of slides has been
shown to exhibit poor inter- and intra-observer reliability.3,4 While the re-
examination of slides and other techniques such as immunohistochemical
staining can reduce the probability of misdiagnosis, access to qualified ex-
perts to perform such analysis is often extremely limited.5,6 These shortages
have been exacerbated by the COVID-19 pandemic, which has put a strain
onmedical laboratories all across the world.7,8 A particularly stark example
of these trends occurs in the Military Health System, which is experiencing
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a policy-driven decline in pathologist staffing on top of the existing
shortage.9,10

Artificial intelligence may have the potential to address the limited
availability of medical personnel. Indeed, recent advances in the applica-
tion of deep learning-based computer vision techniques to digital pathology
data have enabled the creation of algorithms that have demonstrated high
predictive capability in the detection of breast and prostate cancer within
whole slide images (WSI).11–14 In particular, the diagnostic accuracy of
several deep learning algorithms designed to detect metastatic breast
cancer within lymph node biopsy WSIs has been found to be comparable
to that of pathologists without time constraint.15 Additionally, algorithm-
assisted pathologists have been found to have higher accuracy, sensitivity,
and speed than unassisted pathologists in the identification of micrometas-
tases on digitized slides of lymph node biopsies.16
ptember 2022
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These computer vision algorithms have been incorporated into the pa-
thologist microscopy workflow by integrating microdisplays into tradi-
tional light microscopes to produce Augmented Reality Microscopes
(ARMs). The ARM superimposes real-time inferences from amachine learn-
ing algorithm onto the current microscopic field of view (FOV), providing
its inference to the pathologist as decision support. Combinedwith an algo-
rithm with high predictive performance, the ARM has the potential to
increase both diagnostic accuracy and efficiency.17

Various deep learning models that have demonstrated success in the
diagnosis of WSIs have been modified for use on the ARM. One such algo-
rithm is the LYmph Node Assistant (LYNA) model, which is a state-of-the-
art algorithm for detecting cancer metastases within sentinel lymph node
biopsies.18 On the ARM platform, the LYNA models take a microscopic
FOV at a given resolution, divide it into small regions, and output a
cancer-likelihood prediction for each region within that FOV. These predic-
tions are then presented as outlines, superimposed onto the microscopic
FOV, that indicate the cancerous regions to the viewing pathologist.17

Similar to immunohistochemistry analysis, these algorithms have the
potential to become highly effective decision-support tools. However, un-
like immunohistochemistry, where issues have been identified (e.g. cross-
reactants and interfering substances) and mitigation strategies have been
developed (e.g. peroxidase blocking), the limitations of these algorithms
have not been quantified ormitigated.While these algorithms have demon-
strated high predictive performance on WSIs, the utility of an algorithm on
the ARM depends on its ability to delimit particular areas of cancer within
an FOV. The performance of an algorithm on this segmentation task re-
quires far greater precision than the classification of WSIs and has not
been extensively studied in the literature. Additionally, while machine
learning algorithms have shown promising performance on cancer classifi-
cation, we do not have a detailed understanding of the robustness or consis-
tency of their performance across the clinically relevant subclasses of tissue.
This gap is significant because machine learning models for medical imag-
ing commonly suffer from hidden stratification, i.e., highly variable perfor-
mance across the clinically relevant subclasses.19

In this paper, we present an independent assessment of the LYNA
models on a test set of FOVs derived from 20 benign and 20 cancer-
containing WSIs that were independently sourced and labeled from the
training data. In order to understand the models’ utility for decision sup-
port, we measured their ability to detect cancer within small regions of an
input FOV.We present detailedmetrics of themodels’ overall performance,
as well as their performance on operationally realistic subclasses of tissue
within the lymph node, including metastatic breast cancer, lymphocytes,
histiocytes, germinal centers, veins, arteries, and fat. We found that the
models performed best on fat and struggled most on histiocytes, which is
consistent with the experience of pathologists.

Drawing annotations with sufficient fidelity to evaluate performance on
these small regions is both time-consuming and extremely difficult, since
tumor and tissue boundaries may be too complex to reasonably delineate.
These challenges compound upon the already poor inter-observer reliabil-
ity between pathologists.3,4 In order to analyze this and other cases of un-
certain ground truth, we introduce the concept of proper and improper
ground truth annotations. Using this distinction, we analyze both model
performance and ground truth as a source of potential error. Our analysis
of ground truth uncovered common classes of annotation errors, such as
the over-labeling of cancer around complex tumor margins, which should
be noted for future studies.

Materials and methods

Model details

We tested 3 versions of the LYNA model which were optimized for the
commonly used objective microscope magnifications of 10×, 20×, and
40×. Eachmodel was trained to perform inference on FOVs at its correspond-
ingmagnification. Thesemodels areARM-specific adaptations of a deep learn-
ing model that operates on WSIs which was trained on the CAMELYON16
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dataset.17,15 Testing of the LYNA model before its adaptation into the ARM
modality can be found in Steiner et al. (2018) and Liu et al. (2019).16,18

Each of the LYNA models takes a microscopic FOV of the appropriate
magnification and subdivides the FOV into a 14 × 14 grid of smaller
squares. Each square, which we will refer to as a region of interest (ROI), is
128 × 128 pixels in size and makes up 1/196th of the area of an FOV.
An ROI is analogous to a “patch” from Chen et al. (2019) and Liu et al.
(2019).17,18 The model performs inference on each ROI in a sliding-
window fashion, taking context from the neighboring ROIs to inform its
predictions. Ultimately, the model outputs a two-dimensional matrix of
cancer predictions for each input FOV, with each entry of the matrix corre-
sponding to an ROI. On the ARM, thismatrix of cancer predictions is used to
build a semantic segmentation of the FOV into cancerous and benign
regions which is superimposed on the microscopic view.

For each ROI within an FOV, the output cancer prediction is a value
from 0.0 to 1.0, with 0.0 representing the lowest confidence that an ROI
contains cancer, and 1.0 representing the highest confidence that an ROI
contains cancer. This value is transformed into a binary classification of
“cancer” or “benign” using the default cancer threshold of 0.5. In other
words, an ROI with an output prediction of 0.5 or greater is classified as
“cancer”, while an ROI with an output prediction of less than 0.5 is classi-
fied as “benign”. This is the threshold that the model operates by when de-
ployed in the ARM system. Fig. 1 presents an example FOV, its constituent
ROIs, and the model’s predictions for each ROI.

Test data

We consider 2 test sets within this paper: the primary test set and the
out-of-domain test set. Unless otherwise indicated, results correspond to
the primary test set.

These test sets are completely independent of the datasets used to train
and validate the model: the test sets originated from different laboratories
than the training and validation sets and were annotated by unassociated
pathologists.

The primary test set consisted of 40 WSIs of lymph node sections from
breast cancer patients who underwent a mastectomy or a lumpectomy
with sentinel node biopsy. These WSIs were digitized with an Aperio
AT2 scanner with a pixel size of 0.252 × 0.252 μm2. Of the 40 WSIs,
20 contained metastatic breast cancer and 20 were entirely benign.
Macrometastases, micrometastases, and isolated tumor cells (ITCs) were
all represented in the 20 cancerousWSIs. EachWSI was selected at random
within its class (cancerous or benign) from separate cases at Naval Medical
Center San Diego.

A single board-certified anatomic pathologist digitally labeled all 40
WSIs. Pan-cytokeratin immunostainswere used to aid the pathologist label-
ing. These immunostains were produced by destaining and restaining the
previously digitized H&E slide. In the labeling process, each slide was ex-
haustively annotated by outlining regions of each of the following clinically
relevant subclasses of tissue: metastatic breast cancer (BrCA), histiocytes,
germinal center (GC), mantle zone, lymphocytes, fat, sinus, capsule,
nerve, artery, vein, and blood. Each tissue subclass was associated with its
respective SNOMED code. This level of annotation may be compared to
the 10 WSIs labeled with “detailed lesion annotations” in Bandi et al.
(2018) and the 159 WSIs with detailed metastases labeled in the Benjordi
et al. (2017), but with other tissue subclasses similarly annotated within
our test set.20,15

Due to practical time constraints, the labeling pathologist was restricted
to 4 h of annotation time per slide. In comparison, the time-constrained pa-
thologists annotating the CAMELYON16 dataset were given 2 h to label a
glass slide on a 5-point scale ranging from “definitely normal” to “definitely
cancer”, a comparatively simpler labeling process.15 Our highly detailed la-
beling process enabled the analysis of model performance across tissue sub-
classes but also produced some mislabeled data. We later analyzed the
dataset for potential errors in ground-truth annotations.

For a given magnification (10×, 20×, or 40×), we obtained FOVs by
partitioning the WSIs into 1800 × 1800-pixel squares, matching the



Fig. 1.ROI and FOV examples at 20×magnification. 1A.Within this FOV, each box designates an ROI. The blue border of each box indicates that the bounded ROI is ground
truth “benign”. 1B. Within this FOV, each red box indicates an ROI with a ground truth of “cancer”. A green circle within an ROI represents an area where the model’s
classification diverged from the ground truth. Thus, an ROI with a green circle inscribed in a blue box is a false positive, while an ROI with a green circle inscribed in a
red box is a false negative. This FOV contains a significant amount of false-positive ROIs.
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magnification and pixel size of the corresponding microscopic FOV. We
partitioned WSIs to emulate microscopic FOVs in order to produce a large
amount of data with cancerous regions and other tissue types outlined
and annotated. Digital pathology and corresponding slide immunostains
were necessary to create sufficiently detailed annotations, thus preventing
access to the original glass slides from which to capture microscopic FOVs.

This approach is not without limitations. In particular, our test FOVs
lacked microscope artifacts such as vignetting and fisheye which do exist
when observing slides on the ARM.21 For each FOV, each ROI was given
a subclass and ground-truth label with the following procedure. ROIs con-
taining breast cancer were given the subclass label “BrCA”. Other ROIs
were given their subclass label based on the primary tissue type within
their region. These subclasses were then rolled up into ground-truth anno-
tations of “benign” or “cancer”. The ROIs in subclass “BrCA”were classified
as “cancer”, while the ROIs in other subclasses were classified as “benign”.
ROIs whose region was unlabeled (primarily due to whitespace) were not
mapped to a ground-truth annotation and thus not included in the test
set. In total, the primary test set included 358 285 ROIs at 10× magnifica-
tion, 1 448 284 ROIs at 20× magnification, and 5 802 458 ROIs at 40×
magnification.

Each FOV was also given a ground-truth annotation. An FOV was
assigned ground-truth “cancer” if any of its constituent ROIs
were ground-truth “cancer” andwas assigned ground-truth “benign” other-
wise. In total, the primary test set included 2905 FOVs at 10× magnifica-
tion, 10 018 FOVs at 20× magnification, and 35 554 FOVs at 40×
magnification.

The out-of-domain test set consisted of common types of contaminant
tissue (“floaters”), including papillary thyroid cancer, papillary urothelial
carcinoma, endometrial carcinoma, embryonal carcinoma, high-grade car-
cinoma, and serous borderline tumor. For each of the 6 aforementioned tis-
sue types, a representative WSI was selected by the labeling pathologist.
The cancer tissue within each WSI was outlined and annotated by the
same pathologist. After annotation, the WSIs were partitioned into FOVs
at 10× magnification and then further partitioned into ROIs. The out-of-
domain test set was the subset of these ROIs which contained cancer tissue.

More information about the test sets, data labeling procedure, and FOV
creation procedure can be found in the supplementary materials.

Test methodology

The testing procedures for the 10×, 20×, and 40× LYNA models were
performed independently from each other using the test sets of correspond-
ing resolutions. Testing of the LYNA models on the primary and the out-of-
domain test sets was also performed separately.

For the primary test set, we computed performance metrics over the set
of ROIs and over the set of FOVs. Since the LYNA models do not return a
3

classification for a FOV, the model classification for each FOVwas obtained
by aggregating the values of its constituent ROIs. An FOV was classified as
“cancer” if any of its ROIs were classified as “cancer”, otherwise it was clas-
sified as “benign”. This aggregation procedure is the same as the one used
by Chen et al. (2019).17

For the ROI and FOV-level tasks, we computed the accuracy, sensitivity,
specificity, positive-predictive value (PPV), and negative-predictive value
(NPV) for each model across its corresponding test set. We also generated
receiver operating characteristic (ROC) curves and computed area under
the curve (AUC) values. Within the ROI-level task, we computed the same
metrics for each model across each of the clinically relevant subclasses.
We also performed an ablation study, removing the extremely common
and distinguishable “Fat” subclass in order to demonstrate its impact on av-
erage performance metrics.

For the out-of-domain test set, we computed performancemetrics at the
ROI level at 10×magnification. All ROIs within the test set were cancerous,
so we computed the proportion of ROIs that eachmodel correctly classified
as cancer over the entire test set and over each type of cancer.

Re-review methodology

After computing the models’ performance over the primary test set, we
manually reviewed the ROIs where the models’ predictions diverged from
the ground truth. We considered not only the models’ predictions, but
also the ground truth as a potential source of error. The complexities of
tumor boundaries, time constraints on labeling, and the difficulty of de-
tailed ROI-level annotations (especially in the case of scattered tumor
cells) all may contribute to potential error in the ground truth labels. This
is not out of the ordinary, as individual pathologists often disagree about
which regions on a slide are cancerous.3

Due to the difficulty of accurately labeling ROI-level ground truth, we
introduce the concept of proper and improper ground truth annotations. In
a proper annotation, ground truth is judged to be correct on detailed re-
review. In an improper annotation, the ground truth is judged to be incorrect
on detailed re-review. For instance, a proper false negative is an ROI that the
model classified as negative, is ground-truth positive, and on re-review, the
ground truth is judged to be correct. On the other hand, an improper false
negative is an ROI that the model classified as negative, is ground-truth pos-
itive, but on re-review, the ground truth is judged to be incorrect.

The [proper / improper] distinction adds another dimension to the tra-
ditional [true / false] - [positive / negative] paradigm. It is particularly use-
ful to describe results obtainedwith uncertain ground truth and can help to
characterize the performance of an annotator. For instance, a tissue subclass
found to have a large percentage of improper false positives may indicate a
subclass for which the annotator is underperforming, and the AImodelmay
provide value.
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Due to the labeling challenges mentioned above, a proportion of the
models’ errors are improper.

The original labeling pathologist empirically selected a subset of the
false negative containing FOVs for re-review, spanning errors from each tis-
sue subclass. In order to classify an ROI’s annotation as proper or improper,
3 board-certified pathologists, including the original labeling pathologist,
each independently re-classified the ROI using the corresponding area
on the slide’s immunostain. Within the examination of errors section, we
present a number of illustrative examples and characterize each as proper
or improper.

Software and hardware

Model inference was performed using the Themis test harness devel-
oped by MORSE Corp to support testing and evaluation at the Department
of Defense Joint Artificial Intelligence Center. Themis is designed to take in
models and perform inference on test sets in a way that is repeatable and
standardized in order to compare models of different versions or from
different developers.

The partitioning of each WSI into FOVs and the generation of ground-
truth classifications for each ROI was performed using the Norm software
library developed at The Henry M. Jackson Foundation for the Advance-
ment of Military Medicine. Norm enables the rapid conversion of WSIs to
annotation-associated FOVs from both XML and protobuf-specified annota-
tions in a highly parallelized fashion, using OpenSlide 3.4.1 for SVS slide
processing and OpenCV 3.2 for image processing.

Model inference was performed on a Google Cloud Platform instance
running Debian 10 with 120GB of memory and 4 NVIDIA K80 GPUs.
Debian 10 was selected due to limitations of an OpenSlide dependency.
During testing, the GPUs were run in parallel, each running a single infer-
ence task independently from the others. In comparison, the ARM is pow-
ered by a single NVIDIA Titan Xp.17 The NVIDIA K80 contains 4992
CUDA cores, while the NVIDIA Titan Xp contains 3840 CUDA cores.

Results

ROI-level results

We evaluated each model on the corresponding test set and computed
the results at the ROI level. The performance of an ARM model on these
small ROIs is crucial for its ability to accurately outline cancer and function
as a decision-support tool for pathologists.

The results over the entire set of ROIs for each resolution are presented
in Table 1. The ROC curves for each resolution are presented in Fig. 2A. All
models attained accuracy values of approximately 0.94 and AUC values of
approximately 0.98. Across the models, specificity increased slightly with
magnification while sensitivity decreased. Each model yielded an NPV of
over 0.98 and a PPV of over 0.6.

We also computed eachmodels’ results across the clinically relevant tis-
sue subclasses. The models’ results across each subclass are presented in
Table 2 and Fig. 2C. The prevalence of each subclass within the test set is
presented in Table 2 and Fig. 2D. All models performed best on fat and
blood, achieving accuracies of approximately 0.99. All models struggled
similarly with histiocytes, likely due to their visual similarity with cancer,
achieving accuracies of approximately 0.55. When restricted to ROIs of
the metastatic breast cancer subclass, the models’ performance decreased
Table 1
ROI and FOV level results summary.

Model Mode AUC Accuracy Sensitivity Specificity PPV NPV

LYNA 10x ROI 0.981 0.938 0.930 0.938 0.604 0.993
FOV 0.938 0.746 0.939 0.716 0.342 0.987

LYNA 20x ROI 0.978 0.939 0.897 0.943 0.601 0.990
FOV 0.959 0.792 0.956 0.771 0.347 0.993

LYNA 40x ROI 0.976 0.947 0.878 0.954 0.641 0.988
FOV 0.948 0.823 0.948 0.809 0.354 0.993
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with magnification, attaining an accuracy of 0.93, 0.90, and 0.88 at the
10×, 20×, and 40× magnifications, respectively. However, the 40×
model performed better than the 10× and 20× models for most of the be-
nign subclasses, with the exception of germinal center and mantle zone.
Performance on sinus tissue drastically improved with increasing magnifi-
cation, with accuracy rising from 0.44 at 10× to 0.61 at 20× and finally
to 0.78 at 40× magnification. For each metric, we computed a 95%
confidence interval which is presented in the supplementary materials.

We also considered the performance of each model after removing the
“fat” subclass from the test set. The fat subclass was the most prevalent sub-
class by far, making up approximately 69% of ROIs at each magnification,
and it was also a subclass on which each model performed extremely
well. The removal of the fat subclass dropped the AUC, accuracy, specific-
ity, and NPV significantly compared to the overall test sets. For example,
the AUC values decreased from 0.98 to 0.94 at 10× magnification, 0.98
to 0.92 at 20× magnification, and 0.98 to 0.92 at 40× magnification. For
each model, the PPV without fat was slightly increased from the overall
test sets due to the removal of over 70% of the negative instances. A
detailed comparison of the results on the overall ROI test set and the test
set without the fat subclass is presented in the supplementary materials.

FOV-level results

An algorithm does not need to correctly outline all the cancer on an FOV
to be useful; it may suffice that it detects enough cancer to give the pathol-
ogist pause. Within this section, we present metrics regarding the model’s
performance at the task of classifying an FOV as “cancer” or “benign”.

The results over the entire set of FOVs for each resolution are presented
in Table 1. The ROC curves for each resolution are presented in Fig. 2B.
Across all magnifications, the FOV-level sensitivity and NPV metrics
are comparable or better than their ROI-level counterparts. However, the
models obtain worse performance across all other metrics. Notably, the
models obtain low PPVs between 0.34 and 0.36.

Out-of-domain performance

Contaminant tissue (also known as “floaters”) may appear on a micro-
scope slide during slide preparation andmay impact a patient’s diagnosis.22

In order to understand the performance of the LYNAmodel on this source of
error, we studied the model’s behavior on several common tumor types
known to be friable or otherwise problematic. In particular, we considered
WSIs containing papillary thyroid cancer, papillary urothelial carcinoma,
endometrial carcinoma, embryonal carcinoma, high-grade carcinoma,
and serous borderline tumor. Fig. 3 presents several example FOVs of the
models’ inferences on these types of tissue.

For each tissue type, we evaluated the model on the ROIs which were
labeled as cancer at 10× magnification. The model obtained positive pre-
dictive values of 0.95 for high-grade carcinoma, 0.90 for papillary thyroid
cancer, 0.73 for papillary urothelial carcinoma, 0.67 for embryonal carci-
noma, 0.58 for endometrial carcinoma, and 0.09 for serous borderline
tumor. More details about the performance on the out-of-domain test set
is presented in the supplementary materials.

Examination of errors

We present a number of illustrative examples of FOVs containing errors
in order to give insight into the ARM models’ performance. We categorize
each of these examples as proper or improper and explain the hypothesized
cause behind the divergence of prediction and ground truth. See Materials
and Methods for definitions of proper and improper ground truth.

Within the context of the decision-support task, themost impactful class
of errors are false negatives since amodel’s non-detection of a cancerous re-
gion may have far worse consequences than its wrongful detection of can-
cer. For this reason, we empirically selected a subset of the LYNA models’
false-negative classifications in order to understand the underlying causes
of these errors.



Fig. 2.ROC curves and subclass performance graphs. 2A. ROI-level ROC curves. 2B. FOV-level ROC curves. 2C. The accuracies of each subclass within the 10×, 20×and 40×
datasets. The subclasses are divided into the 3 categories of cancer, immune cells, and connective tissue. 2D. The prevalence of each subclass within the 10×, 20×, and 40×
datasets.
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Proper and improper false-negative classifications are presented in
Fig. 4A and 4C respectively. In the case of Fig. 4A, all reviewing pathologists
agreed that the model missed a large region of cancer within the center of
the FOV. This is further illustrated by the immunostain in Fig. 4B. In the
case of Fig. 4C, the ground-truth annotation of cancer was drawn around
the entire region of dark tissue. The labeling pathologist drew this annota-
tion around this entire region at lowmagnification instead of the individual
5

clusters of cancer, as correctly shown in the immunostain in Fig. 4D. In this
case, a higher-resolution annotation would have been more correct but
would have also been significantly more difficult and time-consuming. All
reviewing pathologists agreed that the areas of disagreement were due to
annotator error. One independent reviewing pathologist noted that the
areas of disagreement would not make a difference in diagnosis, because
the tissue is a macrometastasis.



Table 2
Results per subclass per magnification.

Class Subclass 10x 20x 40x

Accuracy % of ROIs Accuracy % of ROIs Accuracy % of ROIs

Cancer BrCA 0.930 9.19% 0.897 8.80% 0.878 8.61%
Immune cells Histiocytes 0.547 0.90% 0.532 0.98% 0.564 0.99%

GC 0.675 0.08% 0.758 0.09% 0.683 0.09%
Mantle 0.869 0.05% 0.943 0.06% 0.932 0.06%
Lymphocytes 0.777 17.81% 0.778 17.71% 0.821 17.74%

Connective tissue Sinus 0.437 0.06% 0.615 0.06% 0.783 0.06%
Capsule 0.746 1.28% 0.757 1.54% 0.827 1.59%
Nerve 0.914 0.02% 0.839 0.02% 0.948 0.02%
Artery 0.900 0.21% 0.923 0.24% 0.956 0.25%
Vein 0.930 0.66% 0.918 0.72% 0.954 0.79%
Blood 0.998 0.93% 0.997 0.94% 0.997 0.95%
Fat 0.989 68.81% 0.995 68.82% 0.996 68.89%
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Another FOV containing proper false-negative classifications is pre-
sented in Fig. 5A. On re-review, all reviewing pathologists agreed that the
FOV tissue was entirely composed of carcinoma and that the model there-
fore produced a large number of proper false negatives. This behavior is
limited to the 20×model; the 10× and 40×models confidently and accu-
rately classify the corresponding regions as cancer. The behavior of the
40× LYNAmodel is shown in Fig. 5B. The heatmaps in 5A and 5B illustrate
the different ranges of ROI predictions on the 2 FOVs.

An illustrative example of an area containing both proper false nega-
tives and improper true positives of isolated tumor cells (ITC) is presented
in Fig 6A and 6B at 20× and 40× magnifications, respectively. In these
FOVs, ITCs are the only tumor tissuewithin view. On examination of the an-
notation outlines and immunostains for both FOVs, 2 out of 3 reviewing pa-
thologists agreed that the ITCs were correctly identified by the annotating
pathologist. In the 40× FOV, the ROIs containing these ITCs are all proper
false negatives which were misclassified by the model. However, in the
Fig. 3. 10x magnification FOVs of common out-of-domain tumor tissues. In each FOV, e
this indicator to differentiate out-of-domain ROIs from the metastatic breast cancer
classifications. 3B. Papillary thyroid cancer FOV with model cancer classifications.
Endometrial carcinoma FOV with model cancer classifications. 3E. Embryonal carcino
model cancer classifications.
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20× magnification, many of the ITC-containing ROIs are mislabeled as be-
nign in the ground truth, due to the imprecision in converting from contin-
uous annotator outlines to discrete ROI-level ground truth. This can be seen
by comparing the ROI ground truthwith the immunostain in Fig. 6A. These
benign ROIs are examples of improper true positives, where the model’s
classifications and ground truth agree, but ground truth is judged to be in-
correct on re-review.

More examples of errors and their analysis can be found in the supple-
mentary materials.

Discussion

To the best of our knowledge, this is the first paper that attempts to un-
derstand how a deep learning model performs on the cell and tissue types
found in the lymphnode biopsy. Similar to how early studies in immunohis-
tochemistry identified biotin, peroxidase, and collagen as sources of non-
ach ROI with a red circle indicates a region that the ROI classified as cancer. We use
ROIs in the primary test set. 3A. High-grade carcinoma FOV with model cancer
3C. Papillary urothelial carcinoma FOV with model cancer classifications. 3D.
ma FOV with model cancer classifications. 3F. Serous borderline tumor FOV with



Fig. 4. 10× magnification FOVs with proper and improper false negatives. 4A. A 10× FOV which contains numerous false negative ROIs, which are indicated by the red
boxes (ground-truth cancer) inscribed with green circles (machine disagreement with ground truth). 4B. An immunostain of the FOV in 4A. Brown regions of the
immunostain indicate cancer. The immunostain confirms the ground truth of the central region, thus the ROIs within this region are proper false negatives. 4C. A 10×
FOV which contains improper false-negative ROIs due to the over-labeling of cancer by our annotating pathologist. On review, the annotating pathologist agreed that
many of the above false negatives were improper. 4D. An immunostain of the FOV in 4C. This immunostain confirms the over-labeling of cancer.
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specific binding, we have identified the subclasses of tissuewhich the LYNA
models have difficulty distinguishing from cancer. This is significant be-
cause models for medical imaging commonly suffer from hidden
stratification.19 For instance, the overall performance of a cancer detection
algorithm may be high, but its performance on an uncommon cancer sub-
classmay be extremely poor. This discrepancy in performancewould be ex-
tremely important for pathologists to be aware of but may go unnoticed if
the domain-relevant distinctions were not captured in testing.

We find that the LYNA models performed best on the blood and fat tis-
sue subclasses, likely due to their visual dissimilarity from cancer. The “fat”
subclass also demonstrates the importance of testing on other types of tis-
sue. The models’ high performance on fat tissue (approx. accuracy 0.99)
and its prevalence within our test set (approx. 70% of ROIs) greatly inflated
the overall performance metrics.

The models struggled most with the traditionally difficult subclasses of
histiocytes and germinal centers, but also performed poorly on the lympho-
cytes, capsule, and sinus tissue. In the case of the sinus subclass, the models’
performance significantly increased with magnification. We hypothesize
that thiswas because the sinus subclass ROIs came to contain fewer resident
histiocytes and more sinus endothelial cells as magnification increased.
Conversely, themodels’ performance onmetastatic breast cancer decreased
with magnification. Variable performance among models operating on dif-
ferent magnifications may present an issue for the usage of AI models for
decision support. At the very least, it is critical for operational users to un-
derstand the limitations of the model at a given resolution. Fig. 5 presents
an example of the LYNA models’ variable performance across 20× and
40× magnification FOVs.
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It is important to note that these results obtained at the ROI level do not
have a good point of comparison within the literature; they are not directly
comparable to results found for models which detect cancer on a coarser
resolution, such as on WSIs. On the other hand, the FOV-level task we per-
formed is directly comparable to the task in Chen et al. (2019). On this task,
we obtained values of 0.94 (95% CI, 0.920–0.951) and 0.96 (95% CI,
0.953–0.964) AUC at 10× and 20× magnifications respectively, which
aligns well with the values of 0.92 and 0.97 AUC which they reported.17

The LYNA models on our FOV-level task obtained sensitivities and NPVs
which were comparable or higher than the values obtained at the ROI
level. These metrics indicate that the models’ ability to correctly classify ac-
tual cancer is similar at both levels and consistent with previous perfor-
mance.

In addition, the models’ performance on some types of friable tumors in
the out-of-domain test set, such as high-grade carcinoma, indicates the po-
tential for the LYNA models to detect more types of clinically relevant can-
cer. The comparatively lower positive-predictive value of the models on
endometrial carcinoma and germ cell tumor (0.58 and 0.67, respectively)
can partially be attributed to the existence of benign tissue within the
ROIs: entrapped benign endometrium in the case of endometrial carcinoma
and desmoplastic stroma in the case of the mixed germ cell tumor. The low
positive-predictive value on borderline tumors compared to other cancers is
consistent with the findings of Liu et al. (2019), which described the LYNA
model’s tumor detection response to large, disordered nuclei, but not
smaller, non-malignant nuclei.18

After testing, we examined ROIs where model classifications diverged
from ground truth to understand common sources of error within both



Fig. 6. 20× & 40× magnification FOVs with ITC proper false negatives. 6A. A 20× FOV with model predictions, annotations, and immunostain. ITCs are the only tumor
tissue in the FOV and are annotated with small orange circles in the annotations. All false negatives in this FOV are proper. Some ITC-containing ROIs are also mislabeled
as benign in the ground truth. These are examples of improper true positives. 6B. A 40× FOV with model predictions, annotations, and immunostain. This FOV is the
upper left quadrant of the above 20× FOV. All false negatives in this FOV are proper.

Fig. 5. 20×& 40×magnification FOVswith proper false negatives. 5A. A 20×FOVwithmodel predictions, immunostain, and prediction heatmap. This FOV contains a large
number of proper false negatives. Despite the visual uniformity of this FOV, the set of ROI predictions are extremely varied, as indicated in the heatmap. 5B. A 40× FOVwith
model predictions, immunostain, and prediction heatmap. This FOV is the upper left quadrant of the above 20× FOV. The ROIs in this FOV are confidently classified as
cancer.
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model performance and ground-truth annotations. We classified each of
these errors as proper or improper, as defined in the Materials and Methods.

We found that improper false-negative errors were most commonly due
to the over-labeling of cancer by the annotating pathologist. As demon-
strated in Fig. 4C, over-labeling occurred when the annotations were
drawn at a low magnification around regions of tissue which contained
large amounts of cancer. These imprecise annotations produced ROIs
which were improperly labeled as cancer, especially at the higher magnifi-
cations of 20× and 40×. This over-labeling frequently occurred for large,
complex groups of tumor cells or clusters of isolated tumor cells. These re-
gions are widely recognized to be challenging for pathologists and have
been shown to be an area where AI models may be helpful in clinical
practice.16

In addition, we hypothesize that themodels’ decreasing performance on
breast cancer at higher magnifications may be partially attributable to im-
proper false negatives at the boundary. This is caused by the fact that can-
cerous regions were often annotated with a small “buffer” around the
cancer. This imprecision in our tumor annotations would penalize perfor-
mance at higher magnifications, since smaller ROI sizes would cause
more of these buffer regions to become improper cancer ROIs.

Our examination also found ITCs as a source of bothmodel and ground-
truth error. Although we did not separate ITC-containing ROIs into a sepa-
rate subclass of cancer, we found that the models had difficulty in detecting
these ROIs, especially at lower magnifications. This is consistent with the
performance of other successful deep learning models on ITCs; the best
model within the CAMELYON17 challenge was only able to identify ITCs
with an 11.4% accuracy.20 Our re-review also indicated that many ITC-
containing ROIs were improperly labeled as ground-truth benign at the
10× and 20× magnifications due to their vanishingly small size. Despite
both classes of errors, performance on ITCs did not significantly affect aver-
age performance metrics due to their relatively low occurrence and small
area. As such, they present an example of hidden stratification; if perfor-
mance over ITCs is not separately considered from performance over
other types of cancer, it can easily be lost in aggregate metrics. It is impor-
tant to note that ITCs are also difficult for pathologists to detect and do not
affect treatment decisions today.

This detailed level of analysis that we performed, such as ROI-level per-
formance across subclasses, was only enabled by the extremely detailed level
of annotation that digital pathology allows. It is difficult to imagine building
and annotating a dataset with 48 477 FOVs captured directly from tradi-
tional photomicrographs, especially a dataset that annotated each tissue sub-
class. Digital labeling of WSIs allowed for the reduction of manual labor,
continuity of annotation between FOVs, and the ability to reuse labels be-
tween magnifications. Even with all of this, our main dataset consists of
only 40 WSIs, essentially the bare minimum needed for clinical validation.

Future assessments of decision-support algorithms may consider other
metrics for quantifying error. Within this paper, we treated the classifica-
tions of each ROI as independent and equal, disregarding the geometry of
the FOVs and their organization within the test set. A disadvantage of this
approach is that it ignores the contextual importance of a classification.
For example, 10 false negatives at the border of a macrometastasis which
was mostly detected may be less consequential than 10 false negatives
which constitute a micrometastasis. In practice, the former would result in
a smaller-than-correct outline on the ARM, while the latter would result in
an entirely missed tumor. In usage as decision support for a pathologist,
the latter has a much higher risk of complete misclassification than the for-
mer. Thus, an additional metric which considers the clinical context of each
classification would be extremely useful in indicating practical utility. An al-
ternative metric which would differentiate between the above cases is the
Intersection-Over-Union (IOU), whichmeasures the area of overlap between
the predicted region and the ground truth divided by the area of their union.

In order to compute IOU, each contiguous region of ground-truth cancer
ROIs can be treated as a single “tumor region”, which can then be classified
by size (e.g. ITC, small tumor, medium tumor, large tumor) using the num-
ber of ROIs in that region. For each size, the model’s performance can be
computed across all tumor regions of that size. This approach would give
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errors on smaller tumors proportionally equal weight to errors on larger
tumors. In particular, ITCs and small tumor regions, whose errors per
ROI were prone to being hidden among average performance metrics,
would likely have far worse performance than larger tumor regions.
In addition, this approach would reduce the impact of improper false
negatives caused by the over-labeling of cancer, as well as the impact of
false negatives at the boundary, which are a type of misclassification with
low clinical significance.

This metrics approach would be a great compliment to the ROI-based
metrics computed in this paper, which uniquely allow the characterization
of performance within tissue subclasses.

Overall, this paper provides a template for the analysis of an
ARM-optimized model’s performance. Examining metrics at the ROI level
(as opposed to at an FOV or WSI level) allows us to understand the model’s
suitability for usage in the decision-support capacity. Examiningmodel per-
formance across tissue subclasses uncovers previously hidden nuances
about the models’ performance characteristics. Finally, the analysis of
ground truth using the proper/improper distinction provides the ability to
understand annotator weaknesses and quantify uncertain ground truth.
We hope that this paper will be useful in the validation of other AI models
that are integrated onto the ARM platform to improve the microscopy
workflow for the diagnosis of cancer or other diseases.

Limitations & future work

This study has some important limitations.
First, all WSIs used within the testing set were sourced from a single

medical center and labeled by a single pathologist. The labeling pathologist
was aided with each slide's immunostain and was constrained to 4 h of la-
beling time per WSI. This limitation led to the lack of a second opinion or
additional resources to decide difficult diagnoses, as well as the labeling
at a lower than optimal resolution.

Second, this study used WSIs to emulate the magnification and pixel
size of microscopic FOVs instead of capturing the photos directly from ami-
croscope. This was necessitated by the detailed level of annotation, which
required digital pathology and corresponding slide immunostains, thus pre-
venting access to the original glass slides. While necessary for our use case,
the use of digitized FOVs limits the generalizability of this study. In partic-
ular, the FOVs used within this study differ from microscopic FOVs in their
lack of traditional microscope artifacts of vignetting, blur, and fisheye. Ad-
ditionally, the process of obtaining a ground-truth annotation from theWSI
magnification resulted in some inaccurate ground truth ROIs due to
thresholding.

Third, this study does not directly provide evidence to the efficacy of the
LYNA models on the ARM as a decision-support system. In order to estab-
lish such claims, one must consider the ARM-pathologist team, rather
than the model, as the primary object of study. This may be analogous to
the work in Steiner et al. (2018), which considered the performance of
the model-assisted pathologist, rather than just the model itself.16

Future work should include ground-truth annotations by multiple pa-
thologists, FOV data gathered from ARMs fielded in laboratories, prospec-
tive trials, and similar analysis on other deep learning models that have
been adapted for the ARM platform, such as models for Gleason grading,
mitosis counting, and cervical dysplasia grading.
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