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ABSTRACT
Cynomolgus macaques (Macaca fascicularis, Mafa) have been used as important
experimental animal models for carrying out biomedical researches. The results
of biomedical experiments strongly depend on the immunogenetic background of
animals, especially on the diversity of major histocompatibility complex (MHC) alleles.
However, there is much less information available on the polymorphism of MHC class
I genes in cynomolgus macaques, than is currently available for humans. In this study,
we have identified 40Mafa-A and 60Mafa-B exons 2 and 3 sequences from 30 unrelated
cynomolgus macaques of Vietnamese origin. Among these alleles, 28 are novel. As for
the remaining 72 known alleles, 15 alleles are shared with other cynomolgus macaque
populations and 32 are identical to alleles previously reported in othermacaque species.
A potential recombination event was observed between Mafa-A1*091:02 and Mafa-
A1*057:01. In addition, theMafa-A1 genes were found to be more diverse than human
HLA-A and the functional residues for peptide binding sites (PBS) or TCR binding sites
(TBS) in Mafa-A1 have greater variability than that for non-PBS or non-TBS regions.
Overall, this study provides important information on the diversity of Mafa-A and
Mafa-B alleles from Vietnamese origin, which may help researchers to choose the most
appropriate animals for their studies.

Subjects Evolutionary Studies, Molecular Biology
Keywords Major histocompatibility complex, Diversity, Cynomolgus macaque

INTRODUCTION
The MHC glycoproteins, usually known as MHC class I and class II molecules, play
important roles in the regulation of innate and adaptive immune response. The MHC
classical class I molecules contribute both to innate immunity, by engaging Natural Killer
(NK) cell receptors, and to adaptive immunity, by presenting antigens to CD8+ T cells to
induce their activation and cytotoxicity (Parham, 2005). Correlating with these functions,
the antigen-binding sites, which are mostly located throughout the α1 and α2 domains
encoded by the exons 2 and 3, exhibit the highest polymorphism within the full length
of MHC class I gene sequences. Scholars found that the polymorphism of MHC genes is
generated by a combination of mutation, recombination, and gene duplication and loss,
and is maintained over time by selection (Robinson et al., 2017; Steiner et al., 2002; Bahr &
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Wilson, 2012). Numerous infectious and autoimmune diseases are strongly associated with
particular MHC alleles and haplotypes (Nomura & Matano, 2012; Kuniholm et al., 2011;
Shiina et al., 2017; Lenz et al., 2015). For example, human susceptibility to rheumatoid
arthritis (RA) was found linked strongly with certain MHC class I and II alleles, including
HLA-DRB1, HLA-DPB1 and HLA-B (Raychaudhuri et al., 2012). In response to HIV,
human MHC class I genes, HLA-B*57 and HLA-B*27 exhibit strong and consistent
association with lower viral loads in the chronic phase and slow disease progression (Martin
& Carrington, 2013). In contrast, HLA-B*35 and HLA-B*58 associating with rapid disease
progression have also been reported (Nomura & Matano, 2012). The cynomolgus macaque
and the rhesus macaque (Macaca mulatta,Mamu), are both important nonhuman primate
animal models for the study of various human diseases such as acquired immunodeficiency
syndrome, tuberculosis, Alzheimer’s disease, Parkinson’s disease, diabetes, as well as
transplantation researches and pharmacodynamic evaluation (Vierboom et al., 2008; Smits
et al., 2011; Lin et al., 2009; Kisu et al., 2014; Walter & Ansari, 2015; Wang et al., 2007;
Emborg, 2007). The rhesus monkey model of collagen-induced arthritis (CIA) is widely
used to study the pathogenesis of human RA. It was reported thatMamu-B*001 is resistant
to CIA (Bakker et al., 1992). The CIA-susceptible rhesus monkeys need to be preselected
on the basis of absence of Mamu-B*001 (Vierboom et al., 2016). The Indian-origin rhesus
macaque of SIV infection is firstly used as an AIDS model. Mamu-A1*001, Mamu-
A3*13:03, Mamu-B*008 and Mamu-B*017 are known as protective alleles and macaques
possessing these alleles tend to show slow disease progression after SIVmac251/SIVmac239
challenge (Nomura & Matano, 2012; Walter & Ansari, 2015; Loffredo et al., 2007; Wambua
et al., 2011). Of note, several alleles, Mamu-A1*001, Mamu-B*001, and Mamu-B*017 are
distributed at high frequencies (Allen et al., 1998; Mothe et al., 2002). Additionally, anchor
residues of CTL epitopes presented by Mamu-B*017/Mamu-B*008 were indicated to be
similar to those restricted by HLA-B*57/HLA-B*27 (Loffredo et al., 2009). Due to the
extensive characterization of several of these alleles, Indian rhesus macaque is the most
widely utilizedmodel in AIDS research. Since the export of rhesusmacaques from India was
restricted in 1978, the use of cynomolgus macaques for biomedical research has become
increasingly prevalent. This species inhabits widely throughout Southeast Asia, including
the Philippines, Indonesia, Vietnam, Malaysia, Thailand, Cambodia, and Brunei (Gumert,
2011). In addition, it also had been introduced to Mauritius island located in the western
Indian Ocean about 400 years ago, where the Mauritius cynomolgus macaque had become
an insular population (Sussman & Tattersall, 1986). Previous studies have demonstrated
that most MHC class I alleles found in cynomolgus macaques are unique to animals from
particular regions. The distribution frequencies of MHC alleles in distinct population are
also different (Otting et al., 2007; Pendley et al., 2008; Campbell et al., 2009). For example,
the MHC diversity of the Mauritius cynomolgus macaque is more limited than that of
other populations (Budde et al., 2010). Hence, the information on MHC diversity from
different regions as well as their association with various disease susceptibility needs to be
considered carefully, when cynomolgus macaques were used in biomedical studies (Seekatz
et al., 2013).
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The human classical MHC class I genes, HLA-A, HLA-B, and HLA-C, exhibit high
polymorphism. 5018HLA-A and 6096HLA-B alleles have been included in the IMGT/HLA
database (Release 3.36.0, 2019-04-17), which is a module of The Immuno Polymorphism
Database (IPD) (Robinson et al., 2011). In comparison, the orthologues of theHLA-C gene
have not been identified so far inmacaques and theMHC-A andMHC-B genes inmacaques
have more complex organization than the human genes (Shiina et al., 1999; Shiina et al.,
2015; Wiseman et al., 2013). Only one copy of the HLA-A and HLA-B genes are present in
humans, whilst seven A-like genes and up to nine B-like genes are present in macaques.
Furthermore, a novel gene locus, Mafa-A8*01:01, was discovered recently in cynomolgus
macaque of Filipino origin. Both theMHC-A andMHC-B loci are duplicated in cynomolgus
macaque during evolution. Nevertheless, only 375Mamu-A and 513Mamu-B alleles, along
with 494 Mafa-A and 717 Mafa-B alleles, have been deposited in the IPD-MHC database
(Release 3.2.0.0.) (Shiina et al., 2015; Maccari et al., 2016). In comparison to their human
counterparts, the number and the detailed information on the polymorphism of MHC
classic class I genes in macaques are still lacking. The cynomolgus macaques bred in South
China mainly originated from Vietnam and have been exported to various places in the
world for biomedical research (Karl et al., 2017). To better understand the characteristics
of their MHC class I alleles, the polymorphism analysis of both theMafa-A and theMafa-B
exons 2 and 3 sequences were carried out simultaneously in 30 unrelated animals.

MATERIAL AND METHODS
Animals
All cynomolgusmonkeyswere housed in the SouthChina Primate Research&Development
Center (Guangdong, China) and were clinically asymptomatic for known diseases.
Peripheral blood samples were collected from over 30 unrelated Vietnamese-origin
cynomolgus macaques. The experiments were reviewed and approved by the Institutional
Animal Care and Use Committee (IACUC) of Guangdong Landau Biotechnology Co. Ltd.
(project number: IACUC-003).

RNA extraction, cDNA cloning and sequencing of MHC class I genes
Total RNA was extracted from peripheral blood mononuclear cell samples of 30 animals
using E.Z.N.A.TM Blood RNA Kits (OMEGA bio-tek). cDNA was synthesized using
a PrimeScriptTM II 1st Strand cDNA Synthesis Kit (TaKaRa Bio, Kusatsu, Japan).
Amplification of the full length of exons 2 and 3 sequences was investigated using
specific primer pairs (Mafa-A: ‘A–F’ 5′-AACCCTCCTCCTGGTGCTCT-3′, and ‘A–R’
5′-GGAAGGTTCCATCTCCTGCAG-3′, Mafa-B: ‘B–F’ 5′-AACCCTCCTCCTGCTGCT-
3′, and ‘B–R’ 5′-TGGACTGGGAAGATGGCT-3′) The two upstream primers are both
located in exon 1 and the two downstream primers are located in exon 4. PCR employed
a denaturation process for 3 min at 94 ◦C, followed by 32 cycles at 94 ◦C for 30 s, 58 ◦C
(Mafa-A) or 56 ◦C (Mafa-B) for 30 s, 72 ◦C for 1min, with a final process at 72 ◦C for 8min.
Ex Taq DNA polymerase (TaKaRa) was used in this reaction. PCR products were purified
and cloned into the pMD18-T vector (TaKaRa). For each animal, about 30 clones were
selected for Mafa-A and Mafa-B respectively and then were sequenced bidirectionally by
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the service provider (Beijing Genomics Institute, Shenzhen, China). Nucleotide sequences
of cDNAs were assembled and processed using SeqMan (DNASTAR, Madison, WI, USA
Burland, 2000) and aligned using the Clustal W program (BioEdit (Hall, 2015)). To ensure
authenticity, each sequence was uniquely named if three or more identical clones were
observed from at least two individuals, or from two independent PCR for an individual.
These sequences were then submitted to the GenBank for accession numbers and to the
IPD–MHC database for allele nomenclature (Robinson et al., 2013; De Groot et al., 2012).

Phylogenetic analysis
Recombination analysis was performed using the Recombination Detection Program
version 4 (RDP4;Martin et al., 2015) with a window size of 20 nucleotides and P value less
than 0.000005, and using the Recombination Identification Program (RIP) with a window
size of 200 and 99% confidence intervals (http://www.hiv.lanl.gov/) (Zhao et al., 2013).
A phylogenetic tree was constructed using the neighbor-joining (NJ) method (Saitou &
Nei, 1987) in MEGA7 (Kumar, Stecher & Tamura, 2016) using exons 2 and 3. Evolutionary
distances were computed using the Kimura 2-parameter model (Kimura, 1981) and
assessed using 1,000 bootstrap replicates. Values greater than 50% were used as data-points
to construct the tree. The nucleotide polymorphic sites were analyzed by DnaSP. The
frequency for the second-most common nucleotide at each position was calculated by the
number of occurrences of a nucleotide divided by the number ofMafa-A1 sequences used
in this analysis. The frequency for the second-most common amino acid at each position
was also calculated by the number of occurrences of an amino acid divided by the number
ofMafa-A1 amino acid sequences used in this analysis (Robinson et al., 2017).

RESULTS AND DISCUSSION
Summary of the identified MHC class I alleles
cDNA clones were obtained by RT-PCR usingMafa-A andMafa-B specific primer pairs. A
total of 1965 clones were sequenced, and 882Mafa-A and 859Mafa-B cDNA sequences were
acquired. After sequence alignment and filtering out the sequences detected identical in
less than three clones, we identified 100 MHC class I alleles from 30 cynomolgus macaques
of Vietnamese origin, including 40 Mafa-A and 60 Mafa-B genes, of which 28 alleles (11
Mafa-A, 17 Mafa-B) were identified as new ones. Their allele names, accession numbers,
shared alleles in other cynomolgusmacaque populations and counterparts in othermacaque
species are listed in Tables 1 and 2, respectively. Among the 28 novel alleles, five of them,
namely Mafa-A1*048:01 (KT907348), Mafa-B*006:01:01 (KT895494), Mafa-B*112:01
(KT895480), Mafa-B*180:01 (KT895475) and Mafa-B*202:01 (KT895441), were newly
detected in cynomolgus macaque. The other 23 alleles are new at five- to seven-digit levels
of classification. In recent years, it has been found that the epitranscriptomic modifications
of mRNA play very important roles in the regulation of gene expression (Peer, Rechavi &
Dominissini, 2017). However, any kind of epitranscriptomic modification on MHC RNAs
hasn’t been reported currently (Grozhik & Jaffrey, 2017). Therefore, we need to further
study the existence of mRNA modifications in the transcripts of these 28 new alleles in the
future. The remaining 72 alleles have been reported previously in the IPD-MHC database,
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Table 1 40Mafa-A alleles detected in Vietnamese-origin cynomolgus macaques.

Allele name Accession number Other origin Macaque counterpartsa

Mafa-A1*001:01:02 KT907313 A1*001:01:01 (MacM)c Mamu-A1*001:01 (U50836-I)
Mafa-A1*003:03 KT907312 Mamu-A1*003:01:01 (U41379-Unk)
Mafa-A1*003:06:01 KT907326
Mafa-A1*003:06:02 KT907327
Mafa-A1*007:01 KT907328
Mafa-A1*007:07 KT907316 Mamu-A1*007:02 (AF157397-Unk)
Mafa-A1*015:01 KT907351 Mamu-A1*015:01 (AB551785-Bu)
Mafa-A1*018:01 KT907329
Mafa-A1*018:08 KT907330
Mafa-A1*022:05 KT907331
Mafa-A1*022:06 KT907309
Mafa-A1*022:09:01 KT907332
Mafa-A1*027:01 KT907333
Mafa-A1*028:01 KT907334
Mafa-A1*036:02 KY073130
Mafa-A1*040:01:02 KT907315
Mafa-A1*040:03 KT907321
Mafa-A1*040:04 KT907322
Mafa-A1*042:01 KT907324
Mafa-A1*045:01 KT907335 Mamu-A1*045:01 (EU262741-Ch)
Mafa-A1*048:01 KT907348
Mafa-A1*053:01 KT907336 Mamu-A1*053:02 (EU551177-Ch)
Mafa-A1*056:03:01 KT907337 Mamu-A1*056:02:01 (AM295922-Ch)
Mafa-A1*056:03:02 KT907338
Mafa-A1*064:03 KT907325
Mafa-A1*065:03 KT907339
Mafa-A1*065:04:01 KT907340 Mamu-A1*065:01 (AB430441-Bu,

EU418506-Ch)
Mafa-A1*070:01 KT907341 ICMb

Mafa-A1*078:03 KT907344
Mafa-A1*079:02 KT907342 ICMb

Mafa-A1*091:02 KT907319
Mafa-A1*091:03 KT907320
Mafa-A1*097:01 KT907318 ICMb Mamu-A1*109:01 (AB444902-Bu)
Mafa-A1*099:02 KT907323
Mafa-A1*130:01 KT907343 Mane-A1*130:01 (LN875412-Unk),

Mamu-A1*130:01 (HG813262-Unk)
Mafa-A2*01:01 KT907314 Mamu-A2*01:03 (AB444917-Bu, GQ902066-Ch)
Mafa-A2*05:46 KT907345 Mamu-A2*05:21 (AM295935-Ch)
Mafa-A3*13:07 KT907347

(continued on next page)
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Table 1 (continued)

Allele name Accession number Other origin Macaque counterpartsa

Mafa-A4*14:03 KT907349 PCMb Mamu-A4*14:03:01 (AB444876-Bu/I, GU080236-Ch)
Mafa-A4*14:17 KT907350 A4*14:04 (MaCM)b

Notes.
The 40Mafa-A alleles identified from Vietnamese-origin cynomolgus monkeys are listed. The bold and underlined ones indicate newly identified alleles. IPD name, GenBank
accession number, other origin and counterpart(s) in other macaque species are listed for each allele.

aFor alleles shared with other macaque species, the names of their counterparts, accession numbers, as well as regional populations are also listed. I, Indian rhesus macaque; Bu,
Burmese rhesus macaque; Ch, Chinese rhesus macaque; Unk, Unknown-origin rhesus macaque.

bFor alleles shared identical exons 2 and 3 nucleotide sequences with other populations. ICM, Indonesian origin; PCM, filipino origin; MaCM, Malaysian origin.
cFor alleles shared identical deduced amino acid sequences encoding α1 and α2 domains with other populations. ICM, Indonesian origin; PCM, filipino origin; MaCM,
Malaysian origin.

with 41 of them (17 Mafa-A, 24 Mafa-B) being identified in our laboratory (Zhang et al.,
2012; Zhou et al., 2011; Wang et al., 2011).

Among the 40 Mafa-A alleles, 35 sequences originated from the Mafa-A1 locus, with
the other 2, 1, and 2 alleles originating fromMafa-A2, -A3, and -A4 loci, respectively. This
means that most Mafa-A alleles are expressed in the Mafa-A1 locus (Pendley et al., 2008;
Campbell et al., 2009). As forMafa-B alleles, the locus number designation has not yet been
introduced for them because the macaqueMHC-B genes greatly differ in number between
haplotypes (Shiina et al., 2015; De Groot et al., 2012). Amongst the 30 animals analyzed,
each individual expressed 1 to 5 Mafa-A genes and 2 to 7 Mafa-B genes. On average each
monkey expressed 6.8Mafa-A/-B genes. Especially, 11 animals were found to express more
than 2 Mafa-A sequences. And 14 macaques were found to have more than 4 Mafa-B
alleles. These data showed that both MHC-A and -B, especially -B genes, were duplicated
in cynomolgus macaque of Vietnamese origin. Many of the macaques may contain at least
twoMafa-A and threeMafa-B genes loci. This is similar to the finding of previous articles,
which proved that the most frequent Mafa haplotype in the Filipino macaque population
contains twoMHC-A and threeMHC-B loci (Shiina et al., 2015; Kita et al., 2009).

Among the 100 MHC class I alleles, the most frequently shared Mafa-A molecules,
containing the same amino acid sequences in exons 2 and 3 with distribution frequency
greater than 10%, were Mafa-A1*007:01 (8/30, 26.7%), Mafa-A1*056:03 (7/30, 23.3%)
and Mafa-A1*040:03 (4/30, 13.3%). Similarly, the most frequently shared Mafa-B alleles
with distribution frequency greater than 10% were Mafa-B*007:01 (12/30, 40%), Mafa-
B*039:01 (8/30, 26.7%), Mafa-B*060:13 (7/30, 23.3%), Mafa-B*093:02 (5/30, 16.7%),
Mafa-B*101:02 (5/30, 16.7%) , Mafa-B*030:17 (4/30, 13.3%), Mafa-B*144:01 (4/30,
13.3%) and Mafa-B*145:01 (4/30, 13.3%). A summary of the shared alleles and the
number of allele clones identified in each macaque are shown in Fig. 1. All of the Mafa-
A1*007:01,Mafa-B*007:01:01,Mafa-B*039:01 andMafa-B*060:13 were detected to express
in individuals 4, 11, and 29, respectively, which indicates that some of them may segregate
on one haplotype. MacaqueMHC class I allele haplotypes contain variable numbers of loci,
which makes them more difficult to characterize than their human counterparts. Although
the next-generation sequencing (NGS) techniques have been reported to be effective for
high-throughput genotyping of MHC genes and for the detection of low-level-expressed
MHC alleles (Budde et al., 2010; Wiseman et al., 2009), the new technologies are error-
prone because it can be more difficult to discriminate between sequencing errors and true
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Table 2 60Mafa-B alleles detected in Vietnamese-origin cynomolgus macaques.

Allele name Accession number Other origin Macaque counterpartsa

Mafa-B*001:01:01 KT895485 Mamu-B*001:01:01 (AB477408- Bu, U42837-I)
Mafa-B*006:01:01 KT895494 Mamu B*006:01 (U41828-Unk)
Mafa-B*007:01:01 KT895444 PCMb Mamu-B*007:03 (AB477412-Bu, EU682528-Ch, AJ556876-I)
Mafa-B*007:01:05 KT895442
Mafa-B*007:05 KT895443
Mafa-B*007:08 KT895446 Mamu-B*007:04:01 (GQ902078-Ch)
Mafa-B*007:09 KT895445
Mafa-B*013:03 KT895451
Mafa-B*013:06 KT895447
Mafa-B*013:09 KT895448 B*013:08 (PCM & ICM)c

Mafa-B*013:10 KT895449
Mafa-B*013:13 KT895450

Mamu-B*018:01 (AM902534-Ch)
Mafa-B*018:01:01 KT895490 ICMb

Malo-B*018:01 (KT214460-Unk)
Mafa-B*021:02 KT895452 Mamu-B*021:02 (AM902536-Bu/Ch)

Mane-B*028:01 (FJ875264.1-Unk)
Mafa-B*028:02 KT895487

Mamu-B*028:02:01 (AM902532.1-Ch)
Mafa-B*028:03 KT895486 PCMb

Mafa-B*028:04 KY131948 ICMb

Mafa-B*030:01:01 KT895454 Mamu-B*030:03:02 (AM902546- Ch)
Mafa-B*030:02 KT895489 MaCMb Mamu-B*030:03:03 (AM902547- Ch)
Mafa-B*030:12 KT895438 Mane-B*030:04 (FJ875259-Unk)
Mafa-B*030:17 KT895453
Mafa-B*031:01 KT895491
Mafa-B*034:03 KT895455
Mafa-B*038:01:02 KT895456 Mamu-B*038:02 (AB477391-Bu)

Maas-B*039:01 (KF012951-Ch)
Mafa-B*039:01 KT895457

Mamu-B*039:01 (AB477411-Bu, EF580146-Ch,
AJ556890-I)

Mafa-B*039:02 KT895436
Mafa-B*039:03 KT895437
Mafa-B*048:04 KT895458
Mafa-B*050:05 KT895459
Mafa-B*051:08 KT895460
Mafa-B*056:01 KT895488 ICMb Mamu-B*056:01 (GQ902079-Ch)
Mafa-B*056:05:01 KT895461
Mafa-B*060:13 KT895462
Mafa-B*061:02 KT895464 MaCMb

Mafa-B*061:04:01 KT895463 Mamu-B*061:02 (AM902564-Bu/Ch)
Mafa-B*068:02 KT895466

(continued on next page)
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http://www.ncbi.nlm.nih.gov/nuccore/KT895486
http://www.ncbi.nlm.nih.gov/nuccore/KY131948
http://www.ncbi.nlm.nih.gov/nuccore/KT895454
http://www.ncbi.nlm.nih.gov/nuccore/KT895489
http://www.ncbi.nlm.nih.gov/nuccore/KT895438
http://www.ncbi.nlm.nih.gov/nuccore/KT895453
http://www.ncbi.nlm.nih.gov/nuccore/KT895491
http://www.ncbi.nlm.nih.gov/nuccore/KT895455
http://www.ncbi.nlm.nih.gov/nuccore/KT895456
http://www.ncbi.nlm.nih.gov/nuccore/KT895457
http://www.ncbi.nlm.nih.gov/nuccore/KT895436
http://www.ncbi.nlm.nih.gov/nuccore/KT895437
http://www.ncbi.nlm.nih.gov/nuccore/KT895458
http://www.ncbi.nlm.nih.gov/nuccore/KT895459
http://www.ncbi.nlm.nih.gov/nuccore/KT895460
http://www.ncbi.nlm.nih.gov/nuccore/KT895488
http://www.ncbi.nlm.nih.gov/nuccore/KT895461
http://www.ncbi.nlm.nih.gov/nuccore/KT895462
http://www.ncbi.nlm.nih.gov/nuccore/KT895464
http://www.ncbi.nlm.nih.gov/nuccore/KT895463
http://www.ncbi.nlm.nih.gov/nuccore/KT895466
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Table 2 (continued)

Allele name Accession number Other origin Macaque counterpartsa

Mafa-B*068:04 KT895468 MaCMb Mamu-B*068:04 (AM902571-Bu/Ch)
Mafa-B*068:06 KT895467 Mamu-B*068:02 (EF219482-Unk)
Mafa-B*068:11 KT895465
Mafa-B*068:12 KT895469 B*068:08 (PCM)c

Mafa-B*069:04 KT895470
Mafa-B*073:02 KT895472 Mamu-B*073:01 (AB477404-Bu, AM902578-Ch)
Mafa-B*081:03 KT895473
Mafa-B*081:04 KT895474 B*081:01 (ICM)c

Mafa-B*082:02 KT895495
Mafa-B*085:01 KT895484 PCMb

Mafa-B*092:02 KT895471 B*092:01 (MaCM)c Mamu-B*092:02 (AB477386-Bu)
Mafa-B*093:02 KT895476
Mafa-B*101:02 KT895493
Mafa-B*104:01:02 KT895477 Mane-B*104:02 (FJ875231-Unk)
Mafa-B*110:01:01 KT895478
Mafa-B*112:01 KT895480
Mafa-B*137:03 KT895439 PCM, ICMb

Mafa-B*137:06 KT895440
Mafa-B*138:02 KT895479 MaCMb

Mafa-B*144:01 KT895482
Mafa-B*145:01 KT895483
Mafa-B*161:02:02 KT895481
Mafa-B*180:01 KT895475
Mafa-B*202:01 KT895441

Notes.
The 60Mafa-B alleles identified from Vietnamese-origin cynomolgus monkeys are listed. The bold and underlined ones indicate newly identified alleles. IPD name, GenBank ac-
cession number, other origin and counterpart(s) in other macaque species are listed for each allele.

aFor alleles shared with other macaques species, the name of their counterparts, the accession numbers, as well as regional populations are also listed. I, Indian rhesus macaque;
Bu, Burmese rhesus macaque; Ch, Chinese rhesus macaque; Unk, Unknown-origin rhesus macaque.

bFor alleles shared identical exons 2 and 3 nucleotide sequences with other populations. ICM, Indonesian origin; PCM, filipino origin; MaCM, Malaysian origin.
cFor alleles shared identical deduced amino acid sequences encoding α1 and α2 domains with other populations, ICM: Indonesian origin. PCM, filipino origin; MaCM,
Malaysian origin.

rare alleles. Nevertheless, this problem can be overcome by applying the conventional
Sanger sequencing methods. The combined use of the conventional Sanger sequencing
methods and the NGS techniques can make the characterization of the highly duplicated
macaqueMHC-A/-B alleles easier to perform (Shiina et al., 2015).

Analysis of alleles shared with other populations or with other species
The 72 known alleles identified in this study were compared with other populations from
Filipino, Indonesian, Malaysian and Mauritian origin. We found that the majority of them
(57) were reported previously in Vietnamese origin population (Zhang et al., 2012; Zhou
et al., 2011; Wang et al., 2011; Krebs et al., 2005), while the remaining 15 alleles share the
same exons 2 and 3 sequences with other populations. One of the 15 alleles, namelyMafa-
B*137:03, was identical to sequences previously described in both Filipino and Indonesian
origin populations (Pendley et al., 2008; Shiina et al., 2015). For the other 14 alleles, 6 of

Huang et al. (2019), PeerJ, DOI 10.7717/peerj.7941 8/22

https://peerj.com
http://www.ncbi.nlm.nih.gov/nuccore/KT895468
http://www.ncbi.nlm.nih.gov/nuccore/KT895467
http://www.ncbi.nlm.nih.gov/nuccore/KT895465
http://www.ncbi.nlm.nih.gov/nuccore/KT895469
http://www.ncbi.nlm.nih.gov/nuccore/KT895470
http://www.ncbi.nlm.nih.gov/nuccore/KT895472
http://www.ncbi.nlm.nih.gov/nuccore/KT895473
http://www.ncbi.nlm.nih.gov/nuccore/KT895474
http://www.ncbi.nlm.nih.gov/nuccore/KT895495
http://www.ncbi.nlm.nih.gov/nuccore/KT895484
http://www.ncbi.nlm.nih.gov/nuccore/KT895471
http://www.ncbi.nlm.nih.gov/nuccore/KT895476
http://www.ncbi.nlm.nih.gov/nuccore/KT895493
http://www.ncbi.nlm.nih.gov/nuccore/KT895477
http://www.ncbi.nlm.nih.gov/nuccore/KT895478
http://www.ncbi.nlm.nih.gov/nuccore/KT895480
http://www.ncbi.nlm.nih.gov/nuccore/KT895439
http://www.ncbi.nlm.nih.gov/nuccore/KT895440
http://www.ncbi.nlm.nih.gov/nuccore/KT895479
http://www.ncbi.nlm.nih.gov/nuccore/KT895482
http://www.ncbi.nlm.nih.gov/nuccore/KT895483
http://www.ncbi.nlm.nih.gov/nuccore/KT895481
http://www.ncbi.nlm.nih.gov/nuccore/KT895475
http://www.ncbi.nlm.nih.gov/nuccore/KT895441
http://dx.doi.org/10.7717/peerj.7941


4 5 6 7 9 10 11 13 15 18 19 20 21 22 24 25 27 29 30 35 37 38 41 42 44 46 47 48 58 59

Mafa-A1*001:01:02 10 1

Mafa-A1*003:03 7 2 10 3

Mafa-A1*003:06:01 16 16 2

Mafa-A1*003:06:02 7 1

Mafa-A1*007:01 6 7 3 18 9 11 2 14 8

Mafa-A1*007:07 15 1

Mafa-A1*015:01 2 3 2

Mafa-A1*018:01 13 1 2

Mafa-A1*018:08 10 1

Mafa-A1*022:05 12 1

Mafa-A1*022:06 9 6 2

Mafa-A1*022:09:01 14 1

Mafa-A1*027:01 6 1

Mafa-A1*028:01 10 1

Mafa-A1*036:02 2 5 2

Mafa-A1*040:01:02 10 1

Mafa-A1*040:03 9 5 1 7 4

Mafa-A1*040:04 7 1

Mafa-A1*042:01 7 1

Mafa-A1*045:01 9 1

Mafa-A1*048:01 3 1

Mafa-A1*053:01 9 17 2

Mafa-A1*056:03:01 1 1 2 5 2 5

Mafa-A1*056:03:02 3 2 2

Mafa-A1*064:03 13 1

Mafa-A1*065:03 3 5 4 3

Mafa-A1*065:04:01 1 8 2

Mafa-A1*070:01 19 1

Mafa-A1*078:03 3 1

Mafa-A1*079:02 13 1

Mafa-A1*091:02 3 1

Mafa-A1*091:03 14 5 2

Mafa-A1*097:01 6 1

Mafa-A1*099:02 3 1

Mafa-A1*130:01 1 15 2

Mafa-A2*01:01 1 5 2

Mafa-A2*05:46 12 1 2

Mafa-A3*13:07 2 2 2

Mafa-A4*14:03 * 2 1

Mafa-A4*14:17 3 1

Mafa-B*001:01:01 1 2 6 3

Mafa-B*006:01:01 5 1

Mafa-B*007:01:01 2 2 4 2 1 5 6

Mafa-B*007:01:05 1 3 5 3 3 6 6

Mafa-B*007:05 3 1

Mafa-B*007:08 5 1

Mafa-B*007:09 5 1

Mafa-B*013:03 5 1

Mafa-B*013:06 2 2 2 3

Mafa-B*013:09 3 1

Mafa-B*013:10 3 1

Mafa-B*013:13 2 1 2

Mafa-B*018:01:01 5 3 2

Mafa-B*021:02 2 1 2

Mafa-B*028:02 1 2 2

Mafa-B*028:03 5 4 3 3

Mafa-B*028:04 * 1 1

Mafa-B*030:01:01 8 11 2

Mafa-B*030:02 3 5 5 3

Mafa-B*030:12 1 2 2

Mafa-B*030:17 7 3 1 1 4

Mafa-B*031:01 2 3 2

Mafa-B*034:03 1 1 3 3

Mafa-B*038:01:02 2 2 2

Mafa-B*039:01 15 8 3 31 9 4 5 1 8

Mafa-B*039:02 6 1

Mafa-B*039:03 3 1

Mafa-B*048:04 5 1

Mafa-B*050:05 3 1 1 3

Mafa-B*051:08 3 1

Mafa-B*056:01 3 1

Mafa-B*056:05:01 7 7 2

Mafa-B*060:13 3 1 5 3 1 1 1 7

Mafa-B*061:02 4 1

Mafa-B*061:04:01 7 8 2

Mafa-B*068:02 3 7 4 3

Mafa-B*068:04 6 1 2

Mafa-B*068:06 1 3 2

Mafa-B*068:11 6 1

Mafa-B*068:12 3 1

Mafa-B*069:04 5 1

Mafa-B*073:02 2 1 2 3

Mafa-B*081:03 7 1

Mafa-B*081:04 5 1

Mafa-B*082:02 2 1

Mafa-B*085:01 2 3 2 3

Mafa-B*092:02 4 1

Mafa-B*093:02 13 4 12 1 2 5

Mafa-B*101:02 8 12 5 1 1 5

Mafa-B*104:01:02 4 1

Mafa-B*110:01:01 2 2 1 3

Mafa-B*112:01 3 1

Mafa-B*137:03 3 8 2

Mafa-B*137:06 4 1

Mafa-B*138:02 6 1

Mafa-B*144:01 12 12 6 10 4

Mafa-B*145:01 5 6 7 2 4

Mafa-B*161:02:02 3 1

Mafa-B*180:01 4 1

Mafa-B*202:01 3 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Summary of MHC class I-A and -B alleles identified from 30 cynomolgusmacaques of Viet-
namese origin.

Full-size DOI: 10.7717/peerj.7941/fig-1
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them were found identical to Indonesian-origin counterparts (Pendley et al., 2008; Kita
et al., 2009; Saito et al., 2012), 4 shared with Filipino-origin population 34and 4 with
Malaysian-origin cynomolgus macaque (Saito et al., 2012). None allele was found similar
to Mauritian-origin population. Interestingly, two sequences of the Mafa-A4*14 lineage,
Mafa-A4*14:03 and Mafa-A4*14:17 identified in this study exhibit identical exon 2 and 3
sequences to Mamu-A4*14:03. Meanwhile, the same exon 2 and 3 sequences were shared
with Filipino-origin cynomolgus macaque and Malaysian-origin population (Aarnink et
al., 2011) (Table 1), which indicates that this fragment is conserved in macaque during
evolution. Surprisingly, the Mamu-A4*14:03 allele was reported to be expressed mainly
inside the cell, in contrast to Mamu-A-encoded molecules which are mostly found on the
cell surface. The different expression patterns were assigned to the antigen-binding α1 and
α2 domains (Rosner et al., 2010). It is possible that the two Mafa-A4*14 alleles take the
same expression pattern in cynomolgus macaque as those for the Mamu-A4*14:03 and
they have some important functions in the cell rather than presenting peptides on the cell
surface to T cells. Meanwhile, there are also 5 alleles possessing the same deduced amino
acid sequences encoding α1 and α2 domains as their counterparts from other populations,
including 2 from Malaysia, 1 from Philippines, 1 from Indonesia and the last one shared
with Philippines and Indonesia (Tables 1 and 2). No Mauritian origin sequences were
matched.

Hence, in this study, we discovered 15 sequences with perfect identity and 6 sequences
with identical amino acid sequences encoding α1 and α2 domains to previously defined
MHC class I alleles from Indonesian, Filipino, or Malaysian populations. The sharing of
alleles between these geographically distinct populations was consistent with the findings of
previous studies, i.e., there is considerable overlap between different populations for some
Mafa-A or -B lineages at the three-digit level of classification, despite the fact that most
Mafa-A or -B alleles are population specific (Kita et al., 2009). Therefore, the majority
of Mafa-A or -B alleles in distinct populations probably fine-tuned their sequences to
cope with environmental pathogens, along with a few parts inherited conservatively. It is
believed that these shared alleles between continental (Vietnamese, Malaysian) and insular
(Filipino, Indonesian) subgroups had been generated before the migration of cynomolgus
macaques across land bridges between continental Asia and islands of Indonesia during
the late Pleistocene epoch (Kita et al., 2009).

On the other hand, of the 100 alleles identified, 13 Mafa-A and 19 Mafa-B sequences
were identical to previously reported alleles from other macaque species (Tables 1 and 2).
These included the rhesus macaque, the southern pig-tailed macaque (Macaca nemestrina,
Mane), the Northern pig-tailed macaque (Macaca leonina,Malo) and the Assam Macaque
(Macaca assamensis,Maas).M.assamensis inhabits the southern region of Yunnan province,
China (Yan et al., 2013) and this is the first report of a shared allele (MHC-B*039:01)
expressed in cynomolgus, rhesus and assamensis macaques. Another 3 lineages were also
shared among at least three macaque species, such asMHC-A1*130:01,MHC-B*018:01 and
MHC-B*028:02. Interestingly, the sharedMHC-B*039:01, was reported in rhesus macaque
that it contains a specific B pocket structural motif and has a unique peptide-binding
preference consisting of glycine at the second position. This pocket structure was reported
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in about 6% of rhesus macaque sequences but absent in human HLA genes (Sette et al.,
2012). Our data showed for the first time that the unique B pocket structural motif also
occurred in Mafa-B*039:01 of Vietnamese origin with high frequency. The biological
significance of this molecule needs to be further analyzed in the future and needs to be
concerned when using Vietnamese-origin cynomolgus macaques in biomedical researches.

As presented in Tables 1 and 2, five alleles were shared with Indian-origin rhesus
macaque. Meanwhile, 19 alleles were shared with Chinese-origin rhesus macaque. It
can be easily noticed that cynomolgus macaque shares more alleles with Chinese-origin
than with Indian-origin rhesus macaque. This may be explained by the overlap in the
geographical areas inhabited by both species in eastern Asia, where the two species are likely
to hybridize with extensive ancient introgression from Chinese rhesus macaque into the
Vietnamese-origin cynomolgus macaque population, as reported previously (Bonhomme
et al., 2008; Stevison & Kohn, 2009; Kanthaswamy et al., 2008). This theory, i.e., ancient
hybridization and admixture in macaques, can be also used to explain the fact that the
Vietnamese-origin cynomolgus macaque shares more alleles with other macaque species
than with other cynomolgus macaque populations (Fan et al., 2018). Of these shared
alleles between cynomolgus and rhesus macaques, some of them have been found to be
associated with diseases in rhesus macaques. For example, Mamu-B*001 was reported to
be resistant to CIA (Bakker et al., 1992). Our study showed that the distribution frequency
of Mafa-B*001 is 10% (3/30). It is better to screen out animals containing this allele
before building the CIA models with cynomolgus macaques. The other five alleles, Mafa-
A1*001:01,Mafa-A1*065:04,Mafa-A3*13:02,Mafa-B*008:01 andMafa-B*017:02 identified
in our laboratory (Bonhomme et al., 2008; Kanthaswamy et al., 2008), are homologous
genes of Mamu-A1*001:01, Mamu-A1*065:01, Mamu-A3*13:03, Mamu-B*008:01 and
Mamu-B*017:01, which are protective alleles against SIV infection in rhesus macaques. In
particular, the distribution frequency of Mafa-A1*065:04 in this cohort is not low (3/30,
10%). This indicates that cynomolgus macaques with these protective alleles may exhibit
delayed AIDS progression and longer survival time after SIV infections. The accumulation
of cynomolgus macaques carrying these protective alleles is helpful to analyze the virus-
host immune interaction and to gain insights into immune protection against the SIV
infection (Mudd et al., 2012).

Analysis of recombination in Mafa-A and Mafa-B alleles
Recombination event is one of the proposed mechanisms to explain the diversity of
MHC alleles. It has been reported that the Mafa-B*099 allele lineage was generated by
the recombination of the Mafa-B*054 and the Mafa-B*095 allele lineages in cynomolgus
macaque mostly originated from the Philippines (Orysiuk et al., 2012). In order to detect
the presence of other recombination events in Vietnamese origin cynomolgus macaque,
we analyzed 77 Mafa-A and 99 Mafa-B sequences discovered in our laboratory, including
data in this study and those previously reported (Zhang et al., 2012; Zhou et al., 2011;Wang
et al., 2011). Using the RDP program, four possible recombination events in Mafa-A and
Mafa-B alleles, as shown in Table S1, were detected by at least four different recombination
detection methods. Among them, three recombinants showed lower sequence similarity
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Exon 2 
                                                                    50                                                    100 
Mafa-A1*036:04  GGCTCCCACT CCATGAGGTA TTTCTACACC TCCATGTCCC GGCCCGGCCG CGGGCAGCCC CGCTTCATCG CCGTGGGCTA CGTGGACGAC ACGCAGTTCG 
Mafa-A1*057:01  -----G---- ---------- ---------- ---------- ---------- ----G----- ---------- ---------- ---------- ---------- 

Mafa-A1*091:02  -----G---- --T------- ---------- G--G------ ---------- ---------- ---------T ---------- ---------- ---------- 

                                                                   150                                                    200 

Mafa-A1*036:04  TGCGGTTCGA CAGCGACGCC GCGAGCCAAA GGATGGAGCC GCGGGCGCCG TGGGTGGAGC AGGAGGGTCC AGAGTATTGG GACTCGCAGA CACGGATCAT 

Mafa-A1*057:01  ---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- 
Mafa-A1*091:02  ---------- ---------- -A---T-CG- -AGA------ ---------- ---------- -------G-- G--------- ---CG-G--- --------TC 
                                                                                         270 

Mafa-A1*036:04  GAAGGCCGAC ACACAGACCT ACCGAGAGAG CCTGCGGAAC CTGCGCGGCT ACTACAACCA GAGCGAGGCC  
Mafa-A1*057:01  ---------- ---------- ---------- ---------- ---------- ---------- ----------  
Mafa-A1*091:02  C--------G -------A-- ---------- ---------- --T------- ---------- ---------T  

 

Exon 3 
                                                                   320                                                    370 

Mafa-A1*036:04  GGGTCTCACA CCATCCAGTG GATGTACGGC TGCGACCTGG GGCCCGACGG GCGCCTCCTC CGCGGGTATG ACCAGTCCGC CTACGACGGC AGGGATTACA  
Mafa-A1*057:01  ---------- --G-----A- ---------- ---------- ---------- -----G---- ---------- -A----T--- ---------- -A--------  
Mafa-A1*091:02  ---------- --TA----AC ---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------  

                                                                   420                                                    470 

Mafa-A1*036:04  TCGCCCTGAA CGAGGACCTG CGCTCCTGGA CCGCCGCGGA CATGGCGGCT CAGAACACCC AGCGGAAGTG GGAGGCGGCG GGTGCGGCGG AGCAGATGAG  
Mafa-A1*057:01  --T------- ---------- ---------- ---------- -T-------- ---------- ---------- ---------- ----T----- -----GAC--  

Mafa-A1*091:02  ---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------  

                                                                                                546 

Mafa-A1*036:04  AGCCTACCTG GAGGGCGAGT GCCTGGAGTG GCTCCGCAGA TACCTGGAGA ACGGGAAGGA GACGCTGCAG CGCGCG 

Mafa-A1*057:01  --T------- ------CG-- --G------C ---------- ---------- ---------- ---------- ------ 
Mafa-A1*091:02  ---------- ---------- ---------- ---------- ---------- ---------- ---------- ------ 
 

 

 

 

Figure 2 The nucleotide sequences alignment ofMafa-A1*036:04,Mafa-A1*057:01 andMafa-
A1*091:02.

Full-size DOI: 10.7717/peerj.7941/fig-2

with their parents hence require further investigation. Only Mafa-A1*036:04 was detected
as a potential recombinant by five recombination detection methods and exhibited over
98% sequence similarity with the counterparts from its parents. As shown in Fig. 2, the
Mafa-A1*036:04 and the Mafa-A1*091:02 contain very similar sequences in exon 3, with
minor variation of four nucleotides in their 5′ regions. However, the exon 2 sequences
of these two alleles differ considerably, with 24 nucleotides being mismatched. We also
found that the exon 2 sequence of Mafa-A1*036:04 is very similar to the Mafa-A1*057:01
allele, with only two nucleotide differences present in their 5′ regions. To determine
whether theMafa-A1*036:04 was created by a recombination event, we further conducted
analysis using RIP (Fig. S1). The result indicates that the Mafa-A1*036:04 allele was
possibly generated by a crossover event between Mafa-A1*091:02 and Mafa-A1*057:01.
The exact breakpoint cannot be defined because their intron sequences are not available
in this study. Additionally, we further performed phylogenetic analysis of all reported
sequences belonging to the A1*036, A1*057 and A1*091 lineages from cynomolgus and
rhesus macaques. The phylogeny map of exon 2 sequences presented in Fig. 3A showed
that Mafa-A1*036 cluster more closely to Mafa-A1*057 than the Mafa-A1*091. While in
the phylogenetic tree of exon 3 presented in Fig. 3B,Mafa-A1*036 separatesMafa-A1*057
in different branches and groupsMafa-A1*091 in a cluster. We also found that the -A1*057
and -A1*091 lineages are grouped together in these two trees regardless of the species, while
the -A1*036 lineages are separated according to species. Mamu-A1*036 exhibits higher
sequence similarity with Mamu-A1*091 than with Mamu-A1*057. It is possible that the
-A1*036 allele generated by crossover recombination between -A1*091 and -A1*057 just
occurred recently in cynomolgus macaque, but not yet in rhesus macaque.
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Figure 3 Phylogenetic analysisof exon 2 (A) and exon 3 (B) of A1*036,A1*57 and A1*091 alleles from
cynomolgus and rhesusmacaques.

Full-size DOI: 10.7717/peerj.7941/fig-3

Analysis of the diversity in Mafa-A1 locus
We have obtained 77 Mafa-A and 99 Mafa-B sequences in our laboratory, including 67
Mafa-A1. Since Mafa-A1 was the highest polymorphic gene compared to other Mafa-A
loci and the locus number designation for Mafa-B was not yet clear, here we only analyze
the diversity in Mafa-A1 locus of Vietnamese origin. The sequences of the 67 Mafa-A1
exons 2 and 3, encoding residues 2–182 of the MHC class I protein, were aligned and a
total of 157 nucleotide polymorphic sites (28.8%) were discovered by DnaSP (Table 3).
To distinguish positions presenting two or more nucleotides from sites dominated by
one nucleotide, we calculated the incidence for the second-most common nucleotide at
each position (Table S2). 97 variable sites were considered highly polymorphic with the
incidence greater than 5%, while the remaining 60 with the incidence less than 5% were
considered to exhibit rare variation. Analysis on the variability index of the second-most
common amino acid residue showed that 48 out of 181 sites (26.5%) were defined as highly
polymorphic, where the distribution frequency of the second-most common amino acid is
greater than 5% (Table S3). In comparison, only 70 nucleotide positions and 45 amino acid
residues in HLA-A were considered highly polymorphic (Robinson et al., 2017). These data
showed that cynomolgus macaque Mafa-A1 exhibit higher polymorphism than human
HLA-A and several polymorphic sites are macaque-specific (Kita et al., 2009). The α1 and
α2 domains of MHC class I glycoproteins contains many functional sites that bind peptide
antigens and engage T cell receptors. According to previous studies (Lafont et al., 2003),
the deduced 36 PBS and 26 TBS were determined. Among these binding sites, 8 residues
were both involved in the interaction with the peptides and the receptors. The diversity of
nucleotide sequences encoding PBS or TBS (Pi= 0.162) in theMafa-A1was predominantly
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Table 3 Polymorphism of exons 2 and 3 sequences forMafa-A1 of Vietnamese origin.

Site Ns S N Pi K

All 546 157 218 0.073 39.886
PBS or TBS 162 81 127 0.162 26.316
Non-PBS or TBS 384 76 91 0.035 13.570

Notes.
Ns, the number of nucleotides; S, the number of polymorphic sites; N, the number of mutations; Pi, the nucleotide diver-
sity; K, the average number of nucleotide differences.

Figure 4 The diversity of amino acid residues at 54 functional positions relativeto PBS or TBS in 67
Mafa-A1 of Vietnamese origin.

Full-size DOI: 10.7717/peerj.7941/fig-4

higher than that in non-PBS or non-TBS coding regions (Pi= 0.035) of the corresponding
alleles (Table 3). This is consistent with the observation that high polymorphism at these
functional residues is significant to increase the depth and breadth of the weaponry to
cope with variant pathogens during evolution (Robinson et al., 2017; Lian et al., 2016).
All of these 54 functional residues were listed in Fig. 4, including 34 positions with high
polymorphism. On the other hand, 16 out of the 54 functional residues are completely
conserved in the 67Mafa-A1 sequences. 8 of the 16 residues are also conserved in human,
including Y7, Y59, and Y159. The three tyrosine residues were located at an end of the
peptide binding groove and may contribute to the recognition of a constant feature of
processed antigens (Bjorkman et al., 1987) which indicates that these conserved residues
are also important to maintain some constant features for presenting peptide and for
lymphocyte recognition during evolution.

CONCLUSION
In this study, we have identified 40 Mafa-A and 60 Mafa-B alleles from 30 unrelated
cynomolgus macaques of Vietnamese origin. 28 of these alleles were found to be novel
ones. Each monkey expressed 1 to 5 Mafa-A genes and 2–7 Mafa-B genes. These data
showed that both MHC-A and -B, especially -B genes, were duplicated in cynomolgus
macaque of Vietnamese origin. We also identified some alleles with distribution frequency
greater than 10% and four alleles (Mafa-A1*007:01,Mafa-B*007:01:01,Mafa-B*039:01 and
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Mafa-B*060:13) were detected to express simultaneously in three individuals. Whether
these four alleles segregate on one haplotype need to be verified in future study. Among the
72 known alleles, 15 alleles share the same exons 2 and 3 sequences with other populations,
including Filipino, Indonesian and Malaysian origin populations. The sharing of alleles
between these geographically distinct populations indicates that a few alleles preserved
conservatively in evolution may exercise vital immune functions, and many of theMafa-A
or -B alleles in distinct populations probably fine-tuned their sequences to cope with
environmental pathogens. On the other hand, 32 sequences were identical to previously
reported alleles fromothermacaque species, including 19 sharedwithChinese-origin rhesus
macaque. The fact that the Vietnamese-origin cynomolgus macaque shares more alleles
with Chinese-origin rhesus macaque than with other cynomolgus macaque populations
may be explained by ancient hybridization and admixture in macaques. The five alleles
identified in our laboratory are homologous genes of protective factors after SIV challenge
in rhesus macaque. In this regard, cynomolgus macaque of Vietnamese origin carrying
these protective alleles will be a good alternative model to study the immune protection
mechanism of SIV infection. To further explain the diversity of Mafa-A and -B genes,
recombination events and the variability in Mafa-A1 locus were analyzed, the Mafa-
A1*036:04 allele was possibly generated by a crossover event between Mafa-A1*091:02
and Mafa-A1*057:01, which occurred recently in cynomolgus macaque, but not in rhesus
macaque yet. 97 variable nucleotide positions in Mafa-A1 exons 2 and 3 sequences and
48 amino acid sites in the α1 and α2 domains were considered highly polymorphic. In
comparison to human, the exons 2 and 3 sequences from cynomolgus macaque exhibit
higher polymorphism. The information on the diversity of these MHC class I alleles will
facilitate the use of Vietnamese-origin cynomolgusmacaques to test the therapeutic efficacy
and potential side effects of vaccines or other drugs.
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