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Abstract

Background: Studies in mothers of Down syndrome individuals (MDS) point to a role for polymorphisms in folate
metabolic genes in increasing chromosome damage and maternal risk for a Down syndrome (DS) pregnancy,
suggesting complex gene-gene interactions. This study aimed to analyze a dataset of genetic and cytogenetic data
in an Italian group of MDS and mothers of healthy children (control mothers) to assess the predictive capacity of
artificial neural networks assembled in TWIST system in distinguish consistently these two different conditions and
to identify the variables expressing the maximal amount of relevant information to the condition of being mother
of a DS child.

The dataset consisted of the following variables: the frequency of chromosome damage in peripheral lymphocytes
(BNMN frequency) and the genotype for 7 common polymorphisms in folate metabolic genes (MTHFR 677C>T and
1298A>C, MTRR 66A>G, MTR 2756A>G, RFC1 80G>A and TYMS 28bp repeats and 1494 6bp deletion). Data were
analysed using TWIST system in combination with supervised artificial neural networks, and a semantic connectivity
map.

Results: TWIST system selected 6 variables (BNMN frequency, MTHFR 677TT, RFCT 80AA, TYMS 1494 6bp +/+, TYMS
28bp 3R/3R and MTR 2756AA genotypes) that were subsequently used to discriminate between MDS and control

[talian women.

mothers with 90% accuracy. The semantic connectivity map provided important information on the complex
biological connections between the studied variables and the two conditions (being MDS or control mother).

Conclusions: Overall, the study suggests a link between polymorphisms in folate metabolic genes and DS risk in

Background

Folates are essential nutrients required for one-carbon
biosynthetic and epigenetic processes. After intestinal
absorption, folate metabolism requires reduction and
methylation into the liver to form 5-methyltetrahydrofo-
late (5-methylTHF), release into the blood and cellular
uptake; then it can be used for the synthesis of DNA
and RNA precursors or for the conversion of homocys-
teine (Hcy) to methionine, which is then used to form
the main DNA methylating agent S-adenosylmethionine
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(SAM) [1,2]. A diagram illustrating folate metabolism is
shown in figure 1. Deficiencies in cellular folates result
in aberrant DNA methylation, point mutations, chromo-
some breakage, defective chromosome recombination
and aneuploidy [3]. Therefore, in 1999 James and cow-
orkers suggested that impairments in folate metabolism
due to genetic polymorphisms of metabolic enzymes
could increase the risk for having an infant with Down
syndrome (DS) [4]. That paper stimulated considerable
investigation into the possible role of folate metabolism
in the risk of having a DS child and we recently
reviewed all the genetic association studies performed
from 1999 to 2009 [2]. Few additional papers have been
produced after the publication of that review [5-8] for a
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Figure 1 Overview of the folate metabolic pathway. Folates require several transport systems to enter the cells, the best characterized being
the reduced folate carrier (RFC1). Methylenetetrahydrofolate reductase (MTHFR) reduces 5,10-methylenetetrahydrofolate (5,10-MTHF) to 5-
methyltetrahydrofolate (5-MTHF). Subsequently, methionine synthase (MTR) transfers a methyl group from 5-MTHF to homocysteine (Hcy)
forming methionine (Met) and tetrahydrofolate (THF). Methionine is then converted to S-adenosylmethionine (SAM) in a reaction catalyzed by
methionine adenosyltransferase (MAT). Most of the SAM generated is used in transmethylation reactions, whereby SAM is converted to S-
adenosylhomocysteine (SAH) by DNA methyltransferases (DNMTs) that transfer the methyl group to the DNA. Vitamin B12 (or cobalamin) is a
cofactor of MTR, and methionine synthase reductase (MTRR) is required for the maintenance of MTR in its active state. If not converted into
methionine, Hcy can be condensed with serine to form cystathionine in a reaction catalyzed by cystathionine B-synthase (CBS), which requires
vitamin B6 as a cofactor. Cystathionine can be then utilized to form the antioxidant compound glutathione (GSH). Another important function of
tetrahydrofolate derivatives is in the de novo synthesis of DNA and RNA precursors, where they are used by thymidylate synthase (TYMS) and
methylenetetrahydrofolate dehydrogenase (MTHFD) for the synthesis of nucleic acid precursors. MTHFD is a trifunctional enzyme that
interconverts tetrahydrofolate derivatives for purine, methionine and thymidylate synthesis. TYMS requires 5,10-MTHF and deoxyuridine
monophosphate (dUMP) for the production of to deoxythymine monophospate (dTMP) and dihydrofolate (DHF) in the de novo synthesis of
pyrimidines. Other enzymes participate in folate metabolism, among them phosphoribosylglycinamide transformylase (GART) which is a protein

total of almost 30 research articles available in Pubmed
and aimed at addressing this issue. However, despite
considerable researches in the field, results are often
conflicting or inconclusive and the question is still
unsolved [2,9,10]. The current opinion is that the com-
bined presence of several polymorphisms in the folate
metabolic pathway in interaction with environmental

factors might increase the risk for a DS pregnancy,
rather than the presence of single polymorphic variants
alone. However, the major limit of all the studies per-
formed so far is the small sample size of the case-con-
trol groups which largely reduces the statistical power
to test for genetic associations and for gene-gene and
gene-environment interactions by means of traditional
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statistical approaches, such as logistic regression ana-
lyses [2]. Given the complexity of the folate metabolic
pathway and the number of genes and environmental
factors involved, we have estimated that the design of a
case-control study able to test the contribution of each
of these factors to DS risk with adequate power would
require several thousands individuals [2]. Unfortunately,
all the genetic association studies so far have been per-
formed in groups of 100-200 mothers of DS individuals
(MDS) or less, making it impossible to come to a defini-
tive conclusion [2].

We observed that MDS who had a DS child in young
age (35 years or before) have an increased frequency of
chromosome damage and malsegregation events in per-
ipheral blood lymphocytes, detectable by means of the
micronucleus assay coupled by fluorescence in situ
hybridization technique compared to women who gave
birth to healthy children [11]. Others have recently sug-
gested that women who have a DS child in young age
might have an increased tendency to chromosome mal-
segregation events beginning from the first embryonic
mitotic divisions of their body [12]. Subsequent studies
by us revealed association between folate gene poly-
morphisms and the frequency of binucleated micronu-
cleated lymphocytes (BNMN%o) in blood from MDS
and control mothers, providing an easily accessible bio-
marker (BNMN frequency) that can be measured to link
impaired folate metabolism to chromosome malsegrega-
tion [13,14].

Overall, genetic association studies as well as cytoge-
netic studies performed in MDS point to a possible role
of folate gene polymorphisms in affecting chromosome
malsegregation events, thus increasing the risk for a DS
pregnancy. Moreover, they all suggest complex interac-
tions between several factors within the folate metabolic
pathway [2].

We performed the present study using Artificial
Neural Networks (ANNs) to identify key factors linking
folate metabolism to chromosome malsegregation and
the risk of having a DS child. The method used by
ANNs aims to understand natural processes and recre-
ate those processes using automated models. These net-
works allow a method of forecasting with understanding
of the relationship between variables, in particular non-
linear relationships [15-17]. ANNs function by initially
learning a known set of data from a given problem with
a known solution (training) and then the networks,
inspired by the analytical processes of the human brain,
are able to reconstruct the imprecise rules which may
be underlying a complex set of data (testing). In recent
years ANNs have been used successfully in medicine,
for example they have been used to investigate the pre-
dictive values of risk factors on the conversion of
amnestic mild cognitive impairment to Alzheimer’s
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disease [18], to identify placental determinants of fetal
growth [19], to identify genetic variants essential to dif-
ferentiate sporadic amyotrophic lateral sclerosis cases
from controls [20], and to distinguish between Alzhei-
mer’s disease patients and controls [21], among others.

This study aimed to analyze a dataset of genetic and
cytogenetic data obtained from MDS and mothers of
healthy children (control mothers) [13,14] to assess the
predictive capacity of artificial neural networks
assembled in TWIST system [22] in distinguish consis-
tently these two different conditions and to identify the
variables expressing the maximal amount of relevant
information to the condition of being mother of a DS
child. A series of supervised multilayer perceptrons with
four hidden units were then employed to validate the
choice of variables made by TWIST system. Moreover,
we constructed a semantic connectivity map to offer
some insight regarding the complex biological connec-
tions between the studied variables and the two condi-
tions (being MDS or control mother).

Methods

Database

We aimed to re-analyze from a completely new perspec-
tive most of the data obtained from our previous studies
[13,14]. From a previously described database [13,14]
containing data from MDS (35 years or less; range 19-
35) that gave birth to a DS child and data from control
mothers (35 years or less; range 20-35) that gave birth
to healthy children and had no miscarriages or compli-
cations during pregnancies, we have selected 29 MDS
and 32 control mothers for whom all the following
information was available: 1) BNMN frequency, 2) geno-
type for the MTHFR 677C>T polymorphism (CC, CT or
TT), 3) genotype for the MTHFR 1298A>C polymorph-
ism (AA, AC or CC), 4) genotype for the MTRR 66A>G
polymorphism (AA, AG or GG), 5) genotype for the
MTR 2756A>G polymorphism (AA, AG or GG), 6) gen-
otype for the RFC1 80G>A polymorphism (GG, AG,
AA), 7) genotype for TYMS 28bp repeats (2R2R,
2R3R,3R3R) and 1494 6bp deletion (+/+, +/-, -/-) poly-
morphisms. Table 1 shows the distribution of these vari-
ables among MDS and control mothers. As detailed
elsewhere [13,14] all MDS and control mothers included
in the database were Caucasians of Italian origin (Tus-
cany and neighbouring areas). Concerning MDS, full
trisomy 21 of the children (primary trisomy) was con-
firmed by cytogenetic analysis. Control mothers had no
miscarriages or children affected by genetic disorders in
their life, and at least one healthy child before age 35
years; they were recruited by us among women
employed in the University Hospital of Pisa. All the sub-
jects included in the study were matched for age either
at time of delivery and at sampling (Table 2). The
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Table 1 Distribution of studied variables among MDS and
control mothers

Variable MDS (n = 29) Controls (n = 32)
MTHFR 677C>T CcC5 ceGn
CT: 19 cT17
TT. 5 T 4
MTHFR 1298 A>C AA: 14 AA: 13
AC: 15 AC: 19
cCo cco
MTRR 66 A>G AA: 9 AA: 12
AG: 14 AG: 14
GG: 6 GG: 6
MTR 2756 A>G AA: 20 AA: 24
AG: 9 AG: 6
GG: 0 GG: 2
RFCT 80 G>A GG: 12 GG: 10
GA: 16 GA: 12
AA: 1 AA: 10
TYMS 28bp repeat 2R/2R: 5 2R/2R: 6
2R/3R: 19 2R/3R: 14
3R/3R: 5 3R/3R: 12
TYMS 1494 6bp deletion 6bp +/+: 5 6pb +/+: 8
6bp +/- 21 6bp +/- 19
6bp -/~ 3 6bp -/~ 5
BNMN%o (mean + SD) 165+ 76 93 + 3.1

individuals included in the database have been selected
after the administration of a detailed questionnaire,
designed to document their previous conditions, dietary
habits, smoking habits, working environment and phar-
macological treatments in order to exclude those sub-
jects exposed to environmental factors known to
interfere with the BNMN frequency. Additional infor-
mation can be found in our previous publications
[13,14].

The database analyzed in the present study is provided
as additional material (see additional file 1: database, .csv

Table 2 Demographic characteristics of the study
population

Study group  Number of Age at Age at
subjects delivery sampling
mean = S.D. mean % S.D.
MDS 29 282 + 47 496 £ 112
Control 32 285+£52 473 +69

mothers
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record variant MTRR66_AA [MTRR66_AG [MTRR66_GG
record 1 |MTRR66_AA 1 0 0
record 2 [MTRR66_GG 0 0 1
record 3 |MTRR66_AG 0 1 0

Figure 2 Method of coding the polymorphisms in the
database. The code assigned to the polymorphisms transformed
each polymorphism in three genotype classes: major homozygous,
heterozygous and minor homozygous. For each class a binary
coding was applied: 0 if variable absent; 1 if variable present. So for
example considering the polymorphism MTRR 66A>G which can
exist in three variants: AA (major homozygous), AG (heterozygous)
and GG (minor homozygous). Supposing that three records are AA,
GG and AG, the coding has been applied as shown in the figure.

format). Figure 2 explains how genotypes were coded in
the database.

Genotyping and BNMN frequency

The database data concerning the BNMN frequency and
the genotype for all the 7 studied polymorphisms had
been previously obtained by means of the cytokinesis-
block micronucleus assay (BNMN frequency) and vali-
dated PCR/RFLP techniques as described elsewhere
[13,14]. All the samples were coded and data were pro-
cessed by blinded operators. All individuals gave
informed consent for inclusion in the database, whose
creation was performed in accordance with the Helsinki
Declaration and approved by the “Stella Maris” L.R.C.C.
S. Ethics Committee as described elsewhere [13,14].

Artificial neural networks analysis

Advanced intelligent systems based on novel coupling of
artificial neural networks and evolutionary algorithms
have been applied. In this study we applied TWIST sys-
tem [22] and supervised ANNs in order to develop a
model able to predict with high degree of accuracy the
diagnostic class starting from genotype data alone.
Supervised ANNs are networks which learn by exam-
ples, calculating an error function during the training
phase and adjusting the connection strengths in order
to minimize the error function [23]. The learning con-
straint of the supervised ANNs makes their own output
coincide with the predefined target. The general form of
these ANNS is: y = f(x, w*), where w* constitutes the set
of parameters which best approximate the function.

TWIST system

Data analysis was performed using a re-sampling system
named TWIST developed by Semeion Research Centre.
The TWIST system consists in an ensemble of two pre-
viously described systems: T&T and IS [22]. The T&T
system is a robust data re-sampling technique that is
able to arrange the source sample into sub-samples that
all possess a similar probability density function. In this
way, the data is split into two or more sub-samples in
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order to train, test and validate the ANN models more
effectively. The IS system is an evolutionary wrapper
system able to reduce the amount of data while conser-
ving the largest amount of information available in the
dataset. The combined action of these two systems
allow us to solve two frequent problems in managing
Artificial Neural Networks, i.e. the optimal splitting of
the data set in training and testing subsets containing a
balanced distribution of outliers and the optimal selec-
tion of variables with maximal amount of information
relevant to the problem under investigation. Both sys-
tems are based on a Genetic Algorithm, the Genetic
Doping Algorithm (GenD) developed at Semeion
Research Centre [24]. The TWIST system has been pre-
viously applied in different medical contexts [25], addi-
tional data are given (see additional file 2: Twist System,
pdf file).

After this processing, the features that were most sig-
nificant for the classification were selected and at the
same time the training set and the testing set were cre-
ated with a function of probability distribution similar
to the one that provided the best results in the classifi-
cation. A series of supervised Multi Layer Perceptrons,
with four hidden units, were then used for the classifica-
tion task. The final ANNs which were trained and tested
on the new data set generated by TWIST system are
“virgin” and operate independently and blindly from
each other and from TWIST system.

Semantic connectivity map
An existing mapping method [26,27] was used to high-
light through a graph the most important links among
variables, using a mathematical approach based on an
artificial adaptive system called Auto Contractive Map-
Auto-CM algorithm. The Auto Contractive Map (Auto-
CM) is a special kind of Artificial Neural Network able
to find, by a specific data mining learning algorithm, the
consistent patterns and/or systematic relationships and
hidden trends and associations among variables. After
the training phase the weights developed by Auto-CM
are proportional to the strength of associations of all
variables each-other. The weights are then transformed
in physical distances. Variables couples whose connec-
tion weights are higher become nearer and vice versa. A
simple mathematical filter represented by minimum
spanning tree is applied to the distances matrix and a
graph is generated. This allows seeing connection
schemes among variables and detecting variables acting
ad “hubs”, being highly connected. This matrix of con-
nections preserves non linear associations among vari-
ables and captures connection schemes among clusters.
After the training phase, the weights matrix of the
Auto-CM represents the warped landscape of the data-
set. Subsequently, a simple filter to the weights matrix
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of the Auto-CM system was applied to obtain a map of
the main connections between the variables of the data-
set and the basic semantic of their similarities, defined
connectivity map as detailed by Buscema and Grossi
[26] and Buscema et al. [27]. The theory behind Auto-
CM system is provided as additional material (see addi-
tional file 3: Auto-CM System, pdf file).

Results

Classification performances with ANNs

The linear correlation index between the input variables
and the target variable was generally very low, with
exception of BNMN%o (r = 0.54). This gave the ratio-
nale to employ artificial neural networks.

The application of TWIST system allowed the selec-
tion of a subgroup of 6 variables described in table 3.
This new data set has been analyzed with Back propaga-
tion ANNs employing a rigorous validation protocol.
The validation protocol is a procedure to verify the
models’ ability to generalize the results reached in the
testing phase. Among the different protocols reported in
literature, the selected model is the protocol with the
greatest generalization ability on data unknown to the
model itself. The procedural steps in developing the
validation protocol are: 1) subdividing the dataset ran-
domly into two sub-samples: the first called Training
Set, and the second, called Testing Set; 2) choosing a
fixed ANN (and/or Organism) which is trained on the
Training Set. In this phase, the ANNs learns to associate
the input variables with those that are indicated as tar-
gets; 3) saving the weight matrix produced by the ANNs
at the end of the training phase, and freezing it with all
of the parameters used for the training; 4) showing the
Testing Set to the ANNSs, so that in each case, the
ANNs can express an evaluation based on the training
just performed. This procedure takes place for each
input vector but every result (output vector) is not com-
municated to the ANNSs; in this way, the ANNs are eval-
uated only in reference to the generalization ability that
it has acquired during the Training phase; 5) construct-
ing a new ANN with identical architecture to the pre-
vious one and repeating the procedure from point 1.
This general training plan has been employed five times
with obtaining 10 independent classification

Table 3 Variables selected by TWIST system
Selected Variables

MTR 2756 AA

MTHFR 677TT

RFCT 80 AA

TYMS 1494 6bp +/+

TYMS 28bp 3R/3R

BNMN %o

o N B N O S
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experiments. We have employed the so called 5x2 cross-
validation protocol [28] which produces 2 elaborations
for every sample, the first with training on subset a and
testing on subset b and the second with training on sub-
set b and testing on subset a. Table 4 summarizes the
results obtained with back propagation ANN applied ten
times on the final data set. Figure 3 shows the Area
Under the Curve (AUC) of Receiver-Operating Charac-
teristic (ROC) AUC of the ten classifications and the
average ROC AUC in red.

Semantic connectivity map

Figure 4 shows the semantic connectivity map obtained
with the application of Auto-CM system. Variables
which have the maximal amount of connections with
other variables are called “hubs” of the system. In order
to better understand the meaning of the connections a
numerical value is applied to each edge of the graph.
This value, deriving from the original weight developed
by Auto-CM during the training phase scaled from 0 to
1, is proportional to the strength of the connections
among two variables.

The TYMS 1494 6bp +/- genotype resulted to be the
principal hub of the system, i.e. the dominant variable.
This variable was connected with TYMS 28bp 2R/3R,
with MTR 2756AA, and with both MTHFR 677CT and
MTHFR 1298AA variables. Connections were detected
among MTHFR 677 and 1298 variables; particularly,
MTHFR 677TT was connected with MTHFR 1298AA,
whereas MTHFR 1298AC was connected with both

Table 4 Classification performances of back propagation
neural networks on final data set

ANN Sensitivity Specificity Global ROC
accuracy AUC

Back propagation 1 80 93,33 86,67 0,864

(a-b)

Back propagation 2 80 93,33 86,67 0,851

(a-b)

Back propagation 3 80 9333 86,67 0,864

(a-b)

Back propagation 4 80 93,33 86,67 0916

(a-b)

Back propagation 5 86,67 93,33 90 0,882

(a-b)

Back propagation 1 100 94,12 97,06 0,958

(b-a)

Back propagation 2 100 88,24 94,12 0,956

(b-a)

Back propagation 3 100 88,24 94,12 0,945

(b-a)

Back propagation 4 92,86 94,12 93,49 0,926

(b-a)

Back propagation 5 100 94,12 97,06 0,966

(b-a)

Mean 89,95 92,55 91,25 0,91
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MTHFR 677CC and MTHFR 677CT variables. More-
over, TYMS 28bp repeats and 1494 6bp deletion vari-
ables were always connected each other; particularly,
TYMS 1494 6bp +/- resulted connected with TYMS
28bp 2R/3R, TYMS 1494 6bp +/+ with TYMS 28bp 2R/
2R, and TYMS 1494 6bp -/- with TYMS 28bp 3R/3R.
BNMN%o, RFCI 80GG and TYMS 28bp 2R/3R resulted
to be the three variables connected with the condition
of being MDS. On the contrary, RFCI 80AA, MTR
2756AA and TYMS 28bp 3R/3R resulted to be the three
variables connected with the condition of being a con-
trol mother.

Discussion

This study explored the association between 7 poly-
morphisms in the folate metabolic pathway, chromo-
some damage in peripheral blood lymphocytes (as
BNMN frequency), and the condition of being mother
of a DS child with complementary non-linear
approaches: supervised neural networks (ANNs), and
the semantic connectivity map.

Through TWIST system, we established a consistent
possibility to predict the status of being a MDS on the
basis of 6 selected variables (Table 3) with 90% specifi-
city, sensitivity and global accuracy (Table 4), this mean-
ing that the selected variables contained specific
information on the occurrence of a DS pregnancy. In
particular, the BNMN frequency, as well as RFCI 80AA,
MTHFR 677TT, MTR 2756AA, TYMS 1494 6bp del +/+
and TYMS 28bp 3R/3R polymorphisms resulted the
most important variables for discriminating between
MDS and control mothers (Table 3). Most of these vari-
ables had been previously associated with DS risk by
means of genetic association studies [2].

The present study represents the first attempt to use
ANNSs to understand the complex relationship between
folate metabolism and maternal risk for having a DS
child. Though we achieved good results using ANNs for
a small dataset, results are not necessarily generalizable
to a larger population but need to be validated indepen-
dently in future studies. A look at Table 1 shows that
some of the genotypes, such as for example the MTHFR
1298CC one, were not present in our cohort while
others were present only in a few subjects, indicating
the need of further analyses in a larger group. Within
this context we made our database available online (see
additional file 1) so that other research groups can use
the data to increase their own datasets. Moreover, we
welcome any further analysis of our database with other
methods of forecasting, including logistic regression
methods, neural networks, or support vector machines.
In addition, present results have been obtained in an
Italian case-control cohort and are not generalizable to
other populations.
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the T allele at position 677 and of the C allele at posi-
tion 1298 impairs the stability of the dimer. As a conse-
quence, the 677T allele is in strong linkage with the
1298A one, while the 677T-1298C haplotype is rare and
selected negatively [29].

Similarly, the connectivity map (Figure 4) showed a
connection between TYMS 28bp repeats and 1494 6bp
deletion polymorphisms. For example, the TYMS 1494
6bp +/+ genotype resulted connected with the TYMS
28bp 2R/2R one, and the TYMS 1494 6bp -/- genotype
with the TYMS 28bp 3R/3R one. Again, linkage disequi-
librium is known between these two polymorphisms. A
previous study by us, performed in a large cohort of
white non-Hispanic Americans, revealed that haplotypes
containg both the 6bp deleted (-) allele and the 2R allele
are rare [30]. A possible biological explanation could be
that the 6bp deletion is likely to impair the stability of
the TYMS mRNA, while the 2R allele is associated with
reduced transcription of the TYMS gene. Therefore,
their combined presence on the same haplotype could
seriously impair TYMS production [30].

The connectivity map (Figure 4) revealed that three
variables are closely connected with the condition of
being MDS: the RFCI 80GG genotype, the BNMN fre-
quency, and the TYMS 2R/3R genotype. On the con-
trary, the RFC1 80AA genotype, the TYMS 3R/3R
genotype and the MTR 2756AA genotype, are closely
connected to the condition of being a control mother.
The association between the RFCI1 80G allele and
increased risk for having a DS child has been often
observed in Italian populations. We first reported a pos-
sible role for the RFCI 80G>A polymorphism, in inter-
action with MTHFR 677C>T and 1298A>C variants, in
affecting DS risk in Italy, suggesting a causative role for
the RFC1 80G allele and a protective role for the RFCI
80A one [31]. Subsequently, in a larger case-control
study, others observed an independent association
between the RFCI 80GG genotype and increased risk
for having a DS child in Italy [32]. They also confirmed
the protective and interactive role for the RFCI 80A
allele previously observed by us [33]. Overall, based on
these studies, we concluded that in the Italian popula-
tion the RFCI 80G allele could increase the risk for hav-
ing a DS child, while the RFC1 80A allele could be
protective [34]. Interestingly, the connectivity map con-
firmed this observation, showing a connection between
the RFCI 80GG genotype and the condition of being
MDS, as well as a connection between the RFCI 80AA
genotype and the condition of being control mother.

The BNMN frequency is another variable connected
with the condition of being MDS. Several previous stu-
dies by us [11,13,14] revealed a statistically significant
increased BNMN frequency in MDS respect to control
mothers, leading us to formulate the hypothesis that
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MDS could have an increased tendency to chromosome
malsegregation events during somatic mitotic divisions.
More recently others have suggested that women who
have a DS child in young age could be characterized by
an elevated frequency of mitotic malsegregation events
during embryogenesis [12].

The MTR 2756AA genotype resulted to be connected
to the condition of being a control mother as well as to
the MTRR 66AA genotype (Figure 4). As shown in fig-
ure 1, MTR and MTRR physically interact during folate
metabolism, being MTRR required for the maintenance
of MTR in its active state. In 2003, Bosco and co-work-
ers observed association between the MTR 2756G allele
and increased DS risk in Italy, arguing for a protective
role for the 2756A allele. They also reported an interac-
tion between MTR 2756A>G and MTRR 66A>G poly-
morphisms in increasing DS risk [35]. We recently
observed interactions between MTR 2756AA and
MTHFR 677TT genotypes in increasing DS risk in Italy
[14]. However, as shown by the connectivity map (Fig-
ure 4), these two variables are not directly connected,
and many other factors might affect their interaction.

A very interesting finding of the present study is in
the central role played by TYMS polymorphisms in the
connectivity map. Indeed, the TYMS 6bp +/- genotype
resulted to be the principal hub of the system, the
TYMS 28bp 2R/3R genotype was connected to the con-
dition of being MDS, and the TYMS 28bp 3R/3R geno-
type to that of being a control mother (Figure 4).
TYMS shifts the folate metabolic pathway from DNA
methylation toward DNA synthesis (Figure 1). Both
TYMS and MTHEFR compete for the same substrate:
5,10-methyleneTHF, the first for DNA synthesis, the
latter for DNA methylation purposes. The connectivity
map (Figure 4) shows several connections between
TYMS and MTHFR polymorphisms that can be
explained by the following observation: given that both
enzymes utilize the same substrate, polymorphisms
reducing MTHFR enzyme activity might shift pools of
5,10-methyleneTHF from DNA methylation toward
DNA synthesis, whereas polymorphisms affecting
TYMS activity might shift the pathway from DNA
synthesis toward DNA methylation [30]. We recently
observed interaction between MTHFR and TYMS poly-
morphisms in increasing DS risk, suggesting that an
impaired balance between DNA synthesis and methyla-
tion processes could favour chromosome malsegrega-
tion events [14]. The results from the present study
(Table 3 and Figure 4) seriously argue in favour of a
pivotal role for TYMS polymorphisms in DS risk.

Conclusions
In conclusion, the currently available literature suggests
that complex interactions between polymorphisms in
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folate metabolizing genes might account for an
increased maternal risk to have a DS child; however,
given the complexity of the pathway, those complex
interactions cannot be easily understood and none of
the so far studied polymorphisms can be used in genetic
counselling to predict the maternal risk for having a DS
child [2]. The present study identified 6 critical variables
that allowed discriminating between MDS and control
mothers with 90% sensitivity, specificity and accuracy,
and provided important information on the complex
biological connections between the studied variables and
the two conditions (being MDS or control mothers).
The study suggests a link between polymorphisms in
the folate metabolic pathway and the risk for a DS preg-
nancy, indicating complex gene-gene interactions. The
overall evidence suggests that further research in the
field, such as the addition of other variables, is likely to
increase the specificity and sensitivity of the system and
could help for the development of screening tools aimed
at evaluating the risk for a young woman to have a DS
pregnancy.

Additional material

Additional file 1: Database. The database used for analysis in an Excel .
csv format.
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description of the Twist system. This document already existed as
documentation [22,24,25] and is included for clarity.

Additional file 3: Auto-CM System. The pfd file contains a detailed
description of the theory behind Auto-CM system. This document
already existed as documentation [26,27] and is included for clarity.
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