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Objective: This study aims to develop and externally validate a contrast-enhanced
magnetic resonance imaging (CE-MRI) radiomics-based model for preoperative
differentiation between fat-poor angiomyolipoma (fp-AML) and hepatocellular carcinoma
(HCC) in patients with noncirrhotic livers and to compare the diagnostic performance with
that of two radiologists.

Methods: This retrospective study was performed with 165 patients with noncirrhotic
livers from three medical centers. The dataset was divided into a training cohort (n = 99), a
time-independent internal validation cohort (n = 24) from one center, and an external
validation cohort (n = 42) from the remaining two centers. The volumes of interest were
contoured on the arterial phase (AP) images and then registered to the venous phase (VP)
and delayed phase (DP), and a total of 3,396 radiomics features were extracted from the
three phases. After the joint mutual information maximization feature selection procedure,
four radiomics logistic regression classifiers, including the APmodel, VPmodel, DPmodel,
and combined model, were built. The area under the receiver operating characteristic
curve (AUC), diagnostic accuracy, sensitivity, and specificity of each radiomics model and
those of two radiologists were evaluated and compared.

Results: The AUCs of the combined model reached 0.789 (95%CI, 0.579–0.999) in the
internal validation cohort and 0.730 (95%CI, 0.563–0.896) in the external validation
cohort, higher than the AP model (AUCs, 0.711 and 0.638) and significantly higher than
the VP model (AUCs, 0.594 and 0.610) and the DP model (AUCs, 0.547 and 0.538). The
diagnostic accuracy, sensitivity, and specificity of the combined model were 0.708, 0.625,
and 0.750 in the internal validation cohort and 0.619, 0.786, and 0.536 in the external
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validation cohort, respectively. The AUCs for the two radiologists were 0.656 and 0.594 in
the internal validation cohort and 0.643 and 0.500 in the external validation cohort. The
AUCs of the combined model surpassed those of the two radiologists and were
significantly higher than that of the junior one in both validation cohorts.

Conclusions: The proposed radiomics model based on triple-phase CE-MRI images
was proven to be useful for differentiating between fp-AML and HCC and yielded
comparable or better performance than two radiologists in different centers, with
different scanners and different scanning parameters.
Keywords: hepatocellular carcinoma, angiomyolipoma, radiomics, magnetic resonance imaging, machine learning
INTRODUCTION

Hepatic angiomyolipoma (AML) is a mesenchymal benign tumor
belonging to the perivascular epithelioid cell tumors (PEComas),
which is a group of tumors believed to be derived fromperivascular
epithelioid cells and the co-expression of melanocytic and muscle
marker. Histologically, it contains variable proportions of blood
vessels, smooth muscle cells, and adipose tissue. Although only a
fewhundred cases of hepaticAMLshave everbeen recorded all over
theworld, increasing numbers of cases are being reported due to the
developmentofmodern imaging techniques in recent years (1). The
hepaticAML lesionsoften growslowly anddonot cause any clinical
symptoms. Therefore, once the diagnosis of AML is established,
conservative treatment and annual imaging follow-up is
recommended in patients without indications for surgical
resection (2). Typically, the diagnosis of AML is suggested in the
case of a middle-aged woman when a solitary tumor occurs in a
noncirrhotic liver and intratumoral macroscopic fat is detected on
computed tomography (CT)ormagnetic resonance imaging (MRI)
(3). However, the amount of fat component in the hepatic AML
varies greatly, ranging from10 to 90%of the tumor volume (4) and,
in some instances, cannot be easily identified on imaging (5, 6). In
that case, many radiologists tend to misdiagnose these fat-poor
AMLs (fp-AMLs) as other common hypervascular liver tumors,
particularly hepatocellular carcinoma (HCC), with a frequency of
50% due to the overlapping imaging features (7), especially in areas
with a high prevalence of hepatic viral infections like China. This
can lead to unsuitable therapeutic schemes such as surgical therapy
and liver transplantation. Therefore, it is crucial to accurately
distinguish between fp-AML and HCC before surgery.
I, magnetic resonance imaging; AML,
tocellular carcinoma; VOI, volume of
e; DP, delayed phase; AUC, area under
PEComas, perivascular epithelioid cell
, hepatitis B virus; HCV, hepatitis C
gy; Gd‐DTPA, gadolinium-diethylene
ghted; FS, fat-saturation; T2W, T2-
ng and data system; MITK, medical
d intra- class correlation coefficient;
-level co-occurrence matrix; GLSZM,
level run length matrix; GLDM, gray-
utual information maximization; LR,
characteristic; IDN, inverse difference
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Unfortunately, correct preoperative diagnosis of fp-AML is
currently challenging and mainly depends on histological
findings. It is well known that a clinical history of chronic liver
diseasemay be an important clue for the diagnosis of HCC, such as
cirrhosis caused by hepatitis B virus (HBV) or hepatitis C virus
(HCV) or excessive alcohol use. However, up to 20–30% of HCCs
candevelop inpatientswithnormal livers (8).HepaticAMLhas also
been reported to occur in hepatitis B carriers (9). In terms of
imaging, it hasbeenproven that it is difficult todifferentiate fp-AML
from HCC in noncirrhotic liver by the use of only a dynamic
enhancement pattern as most of the tumors are seen as a well-
defined, hypervascular enhancing mass on arterial phase (AP),
followedby awashout pattern onvenousphase (VP) or equilibrium
phase (6). Besides this, although previous studies pointed out that
the presence of early draining vein and absent tumor capsule were
useful findings for the differentiation of fp-AML from HCC in
noncirrhotic liver (6, 10), these signswere subjective and dependent
on the experience of the radiologist (5). In addition, preoperative
fine needle aspiration cytology (FNAC) of AML can obtain definite
histological evidence to improve the diagnostic accuracy with
negligible risk (11). However, FNAC has some limitations
because the trabecular growth pattern in hepatic epithelioid AML
may mimic the cells of HCC (12).

Radiomics is an emerging field in image analysis, which extracts
a large number of high-dimensional quantitative features from the
image data and provides information that reflects the underlying
pathophysiology (13). Several studies have proven that MRI-based
radiomics features have the ability to discriminate different tumor
phenotypes (14–17). We assumed that, using radiomics, we could
extract and quantify the differences in conventional contrast-
enhanced MRI (CE-MRI) images between fp-AML and HCC.

In this study, we aimed to develop a radiomics model based on
triple-phase CE-MRI images to differentiate between fp-AML and
HCC in the noncirrhotic liver and validate using external data.
Moreover, we compared the diagnostic performance of radiomics
model and radiologists in distinguishing these two kinds of tumors.
MATERIALS AND METHODS

Patient Population
This multicenter retrospective study was carried out in three
centers: Shanghai Zhongshan Hospital (center A), Guangdong
October 2021 | Volume 11 | Article 744756
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Sun Yat-Sen University Cancer Center (center B), and Guangdong
Provincial People’s Hospital (center C), approved by the
institutional review board of each center, and patient informed
consent was waived.

The patient enrollment process for this study is shown in
Figure 1. First, a thorough search of the electronic medical
record system of each center was performed between January
2012 and December 2019 for the diagnosis of hepatic AML. All
the patients who both had a histologic diagnosis of AML and had
undergone a liver MRI using the contrast agent gadolinium-
diethylene triamine pentaacetic acid (Gd-DTPA) within 15 days
before their surgery were included. The exclusion criteria were as
follows: (1) patients with the presence of macroscopic
intralesional fat on unenhanced T1-weighted (T1W) images
(lose signal at fat saturation imaging or demonstrate etching
artifact at the fat–water interface at chemical shift imaging) (18),
(2) patients who received chemotherapy or radiotherapy before
surgery, and (3) patients with insufficient CE-MRI image quality
or improper timing for dynamic enhancement sequence.

To establish a control group, we subsequently searched the
same databases of each hospital for an initial diagnosis of HCC
during the same period by applying the same inclusion criteria.
The exclusion criteria were as follows: (1) lesions with obvious
necrosis, cyst, hemorrhage, or macroscopic fat, (2) lesions with
hypo-enhancement on AP, (3) patients who received
chemotherapy or radiotherapy before surgery, (4) patients with
multiple HCCs, (5) patients with insufficient CE-MRI image
quality or improper timing for dynamic enhancement sequence,
(6) lesions with intrahepatic vascular invasion or extrahepatic
metastases, and (7) patients with morphologic liver cirrhosis
(19). Consequently, the patients who had a single and
hypervascular HCC without definite evidence of morphologic
cirrhosis were identified in each center. In view of the fact that
AMLs are much less common than HCCs, we randomly selected
some of these patients according to the ratio of 1:2 to alleviate the
offset caused by the distribution and improve the statistical
power (20), relative to the number of AML patients who were
eventually enrolled in each center, using a commercially available
random number generator (QuickCalcs, GraphPad).
Frontiers in Oncology | www.frontiersin.org 3
In total, 165 patients were enrolled in this multicenter study,
including 55 fp-AMLs (center A, n = 41; center B, n = 11; and
center C, n = 3) and 110 HCCs (center A, n = 82; center B, n = 22;
and center C, n = 6). Considering the small sample sizes of center
B and center C, we grouped the patients from these two centers
into one external validation cohort.

For center A, according to the TRIPOD statement, the
patients were divided into training and internal validation
cohorts according to the time of receiving surgical treatment
and the ratio of 4:1. A total of 99 patients treated between
February 2012 and January 2017 constituted the training cohort,
whereas 24 patients treated between March 2017 and December
2019 constituted the internal validation cohort.

CE-MRI Image Acquisition
The MRI examinations were performed using 1.5- or 3.0-T
systems from various vendors. At each center, the MRI
protocols contained unenhanced images and dynamic
sequences after an intravenous contrast agent injection,
including axial fat saturation (fs) T2-weighted (T2W), T1W in-
phase/out-of-phase, unenhanced axial fs T1W and dynamic
triple-phase CE-MRI. All patients received 0.2 mmol/kg body
weight of Gd-DTPA (Magnevist, Bayer Schering Pharma, Berlin,
Germany) via a power injector (Spectris Solaris® EP MR,
MEDRAD Inc., Indianola, IA, USA) at an infusion rate of 1.5–
2 ml/s. After an intravenous contrast agent injection, three-
dimensional fs T1W gradient-echo sequence [VIBE (Siemens
Healthcare), LAVA (GE Healthcare), and THRIVE (Philips
Healthcare)] was used to acquire dynamic enhanced images.
The images in AP, VP, and delayed phase (DP) were acquired
during suspended respiration at 25–35, 60–75, and 150–180 s,
respectively. The detailed parameters of CE-MRI sequences used
in each imaging center are reported in Table 1.

Radiologists Interpretation of the
Enhanced MRI Images
Two abdominal radiologists (XZ and YZ, with 10 and 5 years of
experience, respectively) independently reviewed the images of
the internal and the external validation cohort. The radiologists
FIGURE 1 | The patient enrollment process for this study.
October 2021 | Volume 11 | Article 744756
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were blinded to clinical information and did not know the exact
number of each type of tumor but were aware that the tumors
were finally diagnosed with fp-AML or HCC. The two
radiologists assessed each specific phase and judged this based
on the signal intensity of majority of the tumor. According to the
features defined with reference to the definitions and annotations
in the Liver Imaging Reporting and Data System (LI-RADS)
(21), the main signs that were often used for differential diagnosis
between fp-AML and HCC were recorded, including the
draining hepatic vein and intra-tumor vessel, the presence of a
complete capsule, and the pattern of enhancement (wash in and
wash out or prolonged enhancement). When the lesion
demonstrated specific MRI features such as intra-tumor vessel,
draining hepatic vein, prolonged enhancement, no washout in
Frontiers in Oncology | www.frontiersin.org 4
the VP, and lack of complete capsule, it would be classified as fp-
AML; otherwise, it would be classified as HCC (3, 10).
Radiomics Workflow
An overview of our workflow is illustrated in Figure 2. Firstly, the
enhanced MRI data were collected, including the AP, VP, and DP
images. Then, the images of each phase were normalized by the
histogram-matching method. The delineation was performed
on AP and then registered to the other two phases, and the
misalignment was manually corrected. For each phase,
the radiomic features were extracted from the tumor region of the
original images and the preprocessed images. Finally, the feature
selection method was used to select the optimal feature subset. The
FIGURE 2 | The workflow of our study. (1) The collection of CE-MRI data, including the arterial phase (AP), venous phase, and delayed phase images. (2) Histogram
matching: The images of each phase were matched to the corresponding phase of the first patient by histogram matching. (3) Tumor segmentation: The delineation
was performed on AP and then registered to the other two phases, and the misalignment was manually corrected. (4) Radiomic feature extraction: For each phase,
the radiomic features were extracted from the tumor region of the original images and the preprocessed images. (5) Machine learning. The feature selection method
was used to select the optimal feature subset, and then the models were trained by the cross-validation procedure and evaluated on the internal and external
validation cohort.
TABLE 1 | Detailed parameters of contrast-enhanced three-dimensional fs T1W gradient-echo sequences in each center.

Center Scanner Vendor Field strength (t) Patients TR/TE (ms) Matrix Flip angle

Center A (n = 123) Aera Siemens 1.5 18 3.51/1.39 260 × 352 10°
Avanto Siemens 1.5 21 5.04/2.31 200 × 288 10°
Ingenia Philips 3.0 3 4.30/1.65 528 × 528 10°
UIHMR560 UI 1.5 36 4.4/2.2 320 × 512 10°
UIHMR770 UI 3.0 31 3.28/1.45 324 × 480 10°
Verio Siemens 3.0 14 4.07/1.43 250 × 352 9°

Center B (n = 33) Achieva Philips 3.0 3 3.12/1.51 480 × 480 10°
Aera Siemens 1.5 4 4.63/2.16 460 × 640 10°
Discovery MR750 GE 3.0 4 4.05/1.64 512 × 512 15°
Signa HDxt GE 1.5 5 3.98/1.90 512 × 512 15°
Trio Siemens 3.0 10 4.15/1.86 250 × 320 9°
uMR780 UI 3.0 7 3.3/1.45 336 × 480 10°

Center C (n = 9) Ingenia Philips 3.0 5 4.01/1.94 384 × 384 10°
Achieva Philips 3.0 4 4.02/1.94 384 × 384 10°
October 2021
 | Volume 11 | Arti
FS, fat-suppressed; UI, United Imaging; GE, General Electric; TE, echo time; T1W, T1-weighted; TR, repetition time.
cle 744756

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhao et al. Diagnosis of fp-AML via Radiomics
models were trained by the cross-validation procedure and
evaluated in the internal and external validation cohort.

The Segmentation of Tumor Images
The tumor volume of interest (VOI) was manually delineated slice
by slice using the Medical Imaging Interaction Toolkit (MITK)
software (v.2013.12.00, Heidelberg, Germany), referencing to the
sagittal and coronal images reconstructed by the software. To
reduce the workload of segmentation and increase the accuracy of
tumor contouring, differently from many previous studies, the
manual VOI delineation was performed only on the AP images in
our study, and delineation was registered to the DP and VP images
byDEEDs, an efficient 3Ddiscrete deformable alignment algorithm
(22), in accordance with the image information of the three phases.
It was proved that the DEEDs algorithm outperformed the other
common registration algorithm and achieved a dice coefficient of
0.70 for the four large organs (liver, spleen, and kidneys) (23). Then,
the misalignment between the image and the registered contour on
the other two phases wasmanually corrected. In this way, when the
part or whole of the tumor had a similar signal intensity to the
surrounding liver parenchyma and it was difficult to manually
outline the contour on a single phase, the VOI of AP could be used
for reference, and the tumor contour could be relatively accurately
confirmed under the condition of triple-phase image registration.

The inter-observer reliability and intra-observer reproducibility
of feature extraction were tested using the inter- and intra-class
correlationcoefficients (ICCs).After30casesofCE-MRI images (10
fp-AMLs and 20HCCs) were selected randomly, radiologist 1 (XZ)
and radiologist 2 (YZ) performed VOI segmentation manually,
respectively. Radiologist 2 repeated the VOI segmentation 2 weeks
later to assess the intra-observer reproducibility. The feature
extraction was considered to represent a good agreement when
the ICC was greater than 0.8. The remaining image segmentation
was performed by radiologist 2 and reviewed by radiologist 1.

Radiomics Feature Extraction
In the case of MRI, the signal intensity values vary according to
the acquisition parameters used, which affect the extracted
radiomic features (24). To calibrate the variations due to the
scanner manufacturer and magnetic field strength in our cohort,
histogram standardization (25) was used to match the input
image histogram onto the standard image (in our case, the MRI
of the first patient in the training cohort).

Radiomics extraction was performed using Pyradiomics
V2.1.0. The images were resampled to a pixel spacing of 1 × 1
× 1 mm to counteract the interference caused by the non-
uniform spatial resolution. Then, the original images were
preprocessed by the wavelet filters or Laplacian of Gaussian
filters with different parameters. For each phase, 1,132 radiomic
features were obtained from the original images and the
preprocessed images: (1) 234 first-order features, (2) 14 shape-
based features, (3) 286 gray-level co-occurrence matrix features
(GLCM), (4) 208 gray-level size zone matrix features (GLSZM),
(5) 208 gray-level run length matrix features, and (6) 182 gray-
level dependence matrix features (GLDM). Finally, a total of
3,396 radiomic features were extracted from triple-phase CE-
MRI images for each patient.
Frontiers in Oncology | www.frontiersin.org 5
Construction and Validation of the
Radiomics Signatures
The radiomic features extracted from the AP, VP, and DP images
were used to build the AP model, VP model, and DP model,
respectively. Then, the combined model was trained on all
radiomic features of the images of three phases. The
construction strategies of the four models were the same.

The features were normalized by Z-score normalization
before the model building. To avoid information disclosure,
the mean and standard deviation values were calculated only
on the training set, and the entire dataset was normalized by the
mean and standard deviation values from the training set. The
features with poor consistency (intra-ICC or inter-ICC lower
than 0.8) were filtered out. To reduce the redundancy of the
features and to avoid overfitting, the joint mutual information
maximization (JMIM) method (25), which utilizes mutual
information and the maximum–minimum criterion, was used
to select the subset of features. Considering the sample size of the
training cohort, 10 radiomic features (10% of the sample size of
the training cohort) were selected to avoid over-fitting (26). The
logistic regression (LR) model was built by a repetitive (five runs)
10-fold cross-validation using the training cohort. After the
hyper-parameters were determined by the cross-validation
procedure, the LR model with optimal parameters was built on
the entire training cohort.

The area under the receiver operator characteristic (ROC)
curve was used to evaluate the performance of the radiomic
models. After the cutoff value that maximizes the Youden Index
was obtained on the cross-validation result, the accuracy,
sensitivity, and specificity were also calculated. The output of
the prediction was calibrated by the isotonic regression method.

Statistical Analysis
The ROC curves were drawn by using Matplotlib (version 3.1.0),
and the area under the ROCcurve (AUC), accuracy, sensitivity, and
specificity were calculated by the Scikit-learn python package
(version 0.20.3). The kappa consistency test was adopted to assess
inter-observer agreement between the two radiologists. The level of
agreementwas interpretedas slight ifkwas0.01 to0.20, fair if 0.21 to
0.40, moderate if 0.41 to 0.60, substantial if 0.61 to 0.80, and almost
perfect if 0.81 to 1. The DeLong test was used for pairwise
comparisons between the combined model and the remaining
three models and between the best-performing radiomics model
and each radiologist. For the comparison of the sensitivity and
specificity between the best-performing radiomics model and the
assessment of the radiologists, the McNemar chi-square test was
employed. The abovementioned statistical analysis was performed
on R software (version 3.6.0; https://www.r-project.org/)
environments. A two-sided p <0.05 was considered statistically
significant throughout the study.
RESULTS

Patient Demographics
The mean age of patients in the fp-AML group was lower than
that of patients in the HCC group (47.1 ± 12.6 vs. 55.8 ± 12.0 years,
October 2021 | Volume 11 | Article 744756
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t = -4.306, p < 0.001). Male predominance was observed in the
HCC group, while most fp-AML patients were female [87%
(48/55) vs. 18% (20/110), p < 0.001].

There was no patient with tuberous sclerosis in the fp-AML
group. In the HCC group, more patients had a preexisting
chronic liver disease that was caused by chronic HBV or HCV
infection, compared with those with fp-AML [79% (87/110) vs.
9% (5/55), p < 0.001). None of the HCCs was of the
fibrolamellar variant.
Radiomics Analysis
Of the 3,396 radiomics features extracted from AP, VP, and DP
images, 2,585 were demonstrated to have a good inter- and intra-
observer agreement, including 958 AP features, 823 VP features,
and 804 DP features. Then, the JMIM feature selection method
selected 10 optimal features for each model. For the combined
model, the 10 optimal features included seven features from AP,
two features from DP, and one feature from VP.

The detailed diagnostic performance of each model is shown
in Table 2. The AUCs of the AP model, the VP model, and the
DP model reached 0.711 (95%CI, 0.489–0.933), 0.594 (95%CI,
0.339–0.848), and 0.547 (95%CI, 0.257–0.837) in the internal
validation cohort and 0.638 (95%CI, 0.466–0.809), 0.61 (95%CI,
0.434–0.786), and 0.538 (95%CI, 0.355–0.722) in the external
validation cohort. The combined model reached the AUC of
0.789 (95%CI, 0.579–0.999) in the internal validation cohort,
significantly higher than the VP model (p = 0.015) and the DP
model (p = 0.004). In the external validation cohort, the AUC of
the combined model was 0.730 (95%CI, 0.563–0.896), also
significantly higher than the VP model (p = 0.035) and the DP
model (p = 0.008). The ROC curves are shown in Figure 3.

With the cutoff value of 0.6 that maximizes the Youden
Index, the accuracy, sensitivity, and specificity of the combined
model reached 0.708, 0.625, and 0.75 in the internal validation
cohort and 0.619, 0.786, and 0.536 in the external validation
Frontiers in Oncology | www.frontiersin.org 6
cohort, respectively. The accuracy and the specificity of the
combined model were higher or comparable than the other
three single-phase models in the internal and the external
validation cohorts. The sensitivity of the combined model was
not lower than the other single-phase models on the internal
validation cohort and the external validation cohort, except for
the AP model.

The beta coefficients of the combined model were viewed as the
importance of the features (illustrated in Figure 4), and the formula
used to calculate the predicted probability of fp-AML by the
combined model is listed in Supplementary Data S1. The
features that contributed most to the diagnosis of fp-AML were
wavelet-LLL_firstorder_RootMeanSquared_ap, wavelet-
LLL_firstorder_Mean_ap, and original_firstorder_90Percentile_ap.
On the other side, the features that contributed most to the
diagnosis of HCC were wavelet-LHL_firstorder_Mean_vp,
wavelet-LHH_glszm_LowGrayLevelZon-eEmphasis_ap, and
wavelet-HLL_firstorder_RootMeanSquared_vp. The waterfall
figure of the calibrated prediction results of each case is shown
in Figure 5.
Compared With the Interpretation
of the Radiologists
The comparison of diagnostic performance between the models
and the radiologists is shown in Figure 3 and Table 3. The
interobserver agreement (k) values between the two radiologists
were 0.565 in the internal validation cohort and 0.146 in the
external validation cohort. The AUCs of radiologist 2 reached
0.594 (95%CI, 0.375–0.813) and 0.500 (95%CI, 0.351–0.649) in
the internal and external validation cohorts, respectively,
significantly inferior to the combined model (p = 0.043 and
0.027). The AUCs of radiologist 1 were 0.656 (95%CI, 0.442–
0.871) and 0.643 (95%CI, 0.486–0.799) in the internal and
external validation cohorts, respectively, tending to be lower
than the combined model, but not significant (both p >0.05).
TABLE 2 | The detailed performance of arterial phase (AP) model, venous phase (VP) model, delayed phase (DP) model, and combined model.

Model Area under the receiver operating characteristic curve (95%CI) Accuracy Sensitivity Specificity

Training cohort (n = 99) AP 0.863 (0.776–0.95) 0.798 (79/99) 0.848 (28/33) 0.773 (51/66)
VP 0.756 (0.659–0.853) 0.636 (63/99) 0.879 (29/33) 0.515 (34/66)
DP 0.752 (0.647–0.856) 0.657 (65/99) 0.909 (30/33) 0.53 (35/66)
Combined 0.866 (0.78–0.953) 0.828 (82/99) 0.758 (25/33) 0.864 (57/66)

Cross-validation (n = 99) AP 0.826 (0.729–0.923) 0.808 (80/99) 0.818 (27/33) 0.803 (53/66)
VP 0.708 (0.605–0.811) 0.677 (67/99) 0.818 (27/33) 0.606 (40/66)
DP 0.6 (0.484–0.715) 0.535 (53/99) 0.788 (26/33) 0.409 (27/66)
Combined 0.841 (0.747–0.936) 0.848 (84/99) 0.758 (25/33) 0.894 (59/66)

Internal validation cohort (n = 24) AP 0.711 (0.489–0.933) 0.625 (15/24) 0.875 (7/8) 0.5 (8/16)
VP 0.594* (0.339–0.848) 0.625 (15/24) 0.625 (5/8) 0.625 (10/16)
DP 0.547** (0.257–0.837) 0.375 (9/24) 0.625 (5/8) 0.25 (4/16)
Combined 0.789 (0.579–0.999) 0.708 (17/24) 0.625 (5/8) 0.75 (12/16)

External validation cohort (n = 42) AP 0.638 (0.466–0.809) 0.524 (22/42) 0.929 (13/14) 0.321 (9/28)
VP 0.61* (0.434–0.786) 0.595 (25/42) 0.714 (10/14) 0.536 (15/28)
DP 0.538** (0.355–0.722) 0.405 (17/42) 0.714 (10/14) 0.25 (7/28)
Combined 0.73 (0.563–0.896) 0.619 (26/42) 0.786 (11/14) 0.536 (15/28)
October 2021
 | Volume 11 | A
The p-value was calculated by the De Long’s test.
*p < 0.05, **p < 0.01.
AP, arterial phase; VP, venous phase; DP, delayed phase.
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In the internal and external validation cohorts, the differences in
accuracy, sensitivity, and specificity between the combined
model and each radiologist were not statistically significant
(all p > 0.05), except that the sensitivity of radiologist 2 was
significantly lower than that of the combined model (p = 0.023).
Representative cases in which diagnoses were corrected using the
radiomics approach are shown in Figure 6.
Frontiers in Oncology | www.frontiersin.org 7
DISCUSSION

The present study showed that the combined radiomics model
incorporating triple-phase CE-MRI images had a favorable
predictive value for differentiating fp-AML from HCC in
patients without morphological liver cirrhosis, with the AUCs
of 0.866, 0.789, and 0.730, respectively, in the training cohort,
FIGURE 4 | The importance of the features of the combined model.
FIGURE 5 | The calibrated radiomics scores for each patient in the training, internal validation, and external validation cohorts. The red bars represent the scores for
fat-poor angiomyolipoma patients, while the blue bars represent the scores for the hepatocellular carcinoma patients.
A B

FIGURE 3 | The receiver operating characteristic curves of the four models and the performance of the two radiologists on the internal validation cohort (A) and on
the external validation cohort (B).
October 2021 | Volume 11 | Article 744756
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internal validation cohort, and external validation cohort. The
performance of the model was comparable to that of an
experienced radiologist with 10 years of experience and better
than that of a junior radiologist with 5 years of experience in both
the internal validation cohort and the external validation cohort.
To the best of our knowledge, this study represents the first
multi-center and multi-scanner assessment of the role of multi-
phase CE-MRI-based machine learning to differentiate fp-AML
from HCC with a large sample size. The performance of this
approach in the external validation cohort is encouraging, which
suggests its potential to augment the diagnostic performances of
radiologists, even in different centers with different scanners or
different scanning parameters.

Many previous studies have used various strategies to
discriminate between fp-AML and HCC. Due to the rarity of
hepatic AML, especially the cases with no or minimal fat, most of
these studies enrolled a small number of patients. A study with a
relatively large sample size of 30 hepatic epithelioid AML
Frontiers in Oncology | www.frontiersin.org 8
indicated that specific MRI features, such as intra-tumor vessel,
draining hepatic vein, prolonged enhancement, and lack of
capsule, may contribute to a more confident diagnosis,
consistent with the results of some previous reports (7, 27).
However, some authors have put forward different views. Kim et
al. (5) investigated 12 patients with lipid-poor AML and 27
patients with HCC and analyzed the presence of peripheral
capsule and several imaging features related with the vascular
components of AMLs on MRI images, including the feeding
artery dilatation, multiple aneurysmal arteries, and the early
draining veins. They found that none of these imaging features
was significantly different between lipid-poor AML and HCC.
The authors speculated that this could be explained by the fact
that AML and HCC were both hypervascular tumors that
frequently shared similar imaging features related to their
vascular component and also might be attributed to the weaker
arterial enhancement of gadoxetic acid and the lower spatial
resolution of MRI compared to CT. In comparison to the
TABLE 3 | The detailed comparison between the performance of two radiologists and the combined model.

AUC Accuracy Sensitivity Specificity

Internal validation cohort (n = 24)
Radiologist 1 0.656 (0.442–0.871) 0.667 (16/24) 0.625 (5/8) 0.688 (11/16)
Radiologist 2 0.594 (0.375–0.813)* 0.625 (15/24) 0.500 (4/8) 0.688 (11/16)
Model 0.789 (0.579–0.999) 0.708 (17/24) 0.625 (5/8) 0.750 (12/16)
External validation cohort (n = 42)
Radiologist 1 0.643 (0.486–0.799) 0.690 (29/42) 0.500 (7/14) 0.786 (22/28)
Radiologist 2 0.500 (0.351–0.649)* 0.571 (24/42) 0.286 (4/14)* 0.714 (20/28)
Model 0.730 (0.563–0.896) 0.619 (26/42) 0.786 (11/14) 0.536 (15/28)
October 2021 | Volume 11 | A
The p-value was calculated by the De Long’s test or McNemar chi-square test when appropriate.
*p < 0.05.
AUC, area under the receiver operating characteristic curve.
A B

D E F

C

FIGURE 6 | Two representative cases: case 1 (A–C), a 65-year-old female without chronic hepatitis B virus (HBV) infection, and case 2 (D–F), a 36-year-old female
with chronic HBV infection. These two cases were both misdiagnosed as hepatocellular carcinoma by two radiologists, whereas the model output was consistent
with the correct diagnosis of fat-poor angiomyolipoma.
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different literatures regarding the frequencyof the drainage veins on
CT or MRI images in AML patients, the value varied greatly,
ranging from 25 to 83.3%, according to previous reports (5, 6,
28). As to the incidence of tumor psudocapsule, this feature was
reported tobe found in11.1– 42%ofAMLs (3, 5). Thosedifferences,
on the one hand, could be attributed to the differences of sample
sizes, patient composition, and scanning methods among these
studies; on the other hand, this could also mean that the evaluation
of these imaging signs is subjective and depends on the experiences
of the radiologist—for example, itwas pointedout that sometimes it
was hard to differentiate the enhanced tumor vessels in the
peripheral portion from the tumor capsules in AMLs (28). This
may also explain the poor or moderate degree of agreement of the
diagnosis results of the two radiologists in our study. Although
having been properly trained before on the interpretation of MRI
images for an accurate understanding of the useful imaging signs
and following clear instructions for diagnosis in our study,
radiologist 2 showed a relatively low and unsatisfactory level of
sensitivity in the diagnosis in the external validation cohort due to
limited diagnostic experience. Besides this, Kim et al. (5) also
proposed that lipid-poor AML frequently showed more
homogeneous hypointensity than HCC on the hepatobiliary
phase of gadoxetic acid-enhanced MRI, and this feature could
better differentiate these two diseases. However, gadoxetic acid-
enhanced MRI is currently not the first-line examination of focal
hepatic lesions in China due to its higher price than the
conventional extracellular contrast agents and the longer scan
time. Hence, compared to subjective and qualitative analyses,
radiomics is objective, quantitative, and reproducible. Moreover,
the radiomic analysis based on Gd-DTPA-enhanced conventional
MRI images in our study does not require additional scanning time
and cost, and it might prove to be a practical tool.

Our study indicated that, comparedwith theVPandDPmodels,
the AP radiomics model showed a higher AUC. After adding the
three phases of images together to form a combinedmodel, thefinal
radiomics signature contained 10 features: seven from the AP, two
from the VP, and one from the DP. These results indicated that AP
played amajor role in distinguishing these two tumors. Although it
iswell known thatAMLandHCCusually bothdemonstrate intense
contrast enhancement, these two tumors still seem tobedifferent on
AP. It had been proved that tumoral vessels connecting with the
early draining vein in AML were more prominent and ectatic than
those in HCC, and the latter tends to be faint and negligible (6).
Thus, even if not showing obvious differences by visual assessment,
conventional AP images might still reflect underlying, invisible,
histological differences. Our results suggested that radiomics could
detect these microscopic differences between fp-AML and HCC
contained in routine AP images. Actually, our results were
consistent with a previous study based on the measurement of
mean attenuation values with 12 patients who underwent CT (28).
In that study, the authors demonstrated that the hepatic AML
appeared to have a more intense contrast enhancement and higher
mean attenuation values exceeding 120 HU than that of HCCs
on AP.

As far as we know, there is only one study based on MRI
radiomics to distinguish hepatic AML from HCC. Recently,
Frontiers in Oncology | www.frontiersin.org 9
Liang et al. (7) demonstrated that the radiomics model based
on AP images performed well in distinguishing epithelioid AML
from HCC and focal nodular hyperplasia, especially for MRI.
This was similar to our results; however, the study had not been
externally verified, and the performance of the model in other
participant data was not clear (26). Furthermore, unlike our
study, they only used the AP images and single-layer region of
interest. As mentioned above, the accuracy and specificity of the
combined model were higher or comparable than the other three
single-phase models in the internal and external validation
cohorts in our study. Therefore, it is a better choice to
combine data from multiple phases. However, whether the
VOI analysis is superior to the single-layer analysis is still an
unresolved question. Considering that previous studies (29, 30)
had confirmed that a whole-tumor analysis had higher inter-
observer consistency and better ability to reflect tumor
heterogeneity than a two-dimensional analysis, we used VOI
analysis in this study.

A previous study has explained the relationships between image
featuresand textureparameters (31),whichhavedifferentmeanings
and are expected to be related to histological features that reflect
tumor heterogeneity. In our study, fp-AML was positively
associated with wavelet-GLCM-inverse difference normalized on
DPandAP. Interestingly, this feature reflects the local homogeneity
of an image, which may be explained by the lower tissue
homogeneity in HCC compared with that in fp-AMLs. Moreover,
we found that HCCwas significantly associated with the histogram
parameters on VP, which reflected the characteristics of earlier
washout on VP in HCCs (3). Besides this, GLSZM-low-gray-level-
zone-emphasis (LGLZE) on AP was one of the top three ranked
parameters for predictingHCC in our study. The GLSZM provides
information on the size of the homogeneous zones for each gray
level in three dimensions, and LGLZE is the distribution of the low
gray level zones. According to a previous study, compared to high
gray-level values, gray level runs with low gray-level values in two-
dimensional images of the cell nuclei in ovarian cancer patients,
indicating a higher probability for strong invasion ability andapoor
prognosis (32), which seemed to be in agreement with our results.

There are several limitations in our study. Firstly, compared
with HCC, fp-AML is encountered less frequently in clinical
practice owing to its rarity. Although we performed a
multicentric trial employing a relatively larger sample size, the
number of patients with fp-AML was still far less than the
patients with HCC. However, our study of 55 patients
represents, to our knowledge, the largest cohort of hepatic fp-
AML patients analyzed for differential diagnosis of HCC so far.
In addition, we followed a fp-AML–HCC ratio of 1:2 to lessen
the impact of imbalanced datasets that exist. Secondly, using
multicentric CE-MRI datasets for radiomic feature extraction
can pose a greater challenge due to the variations resulting from
differences in imaging equipment and acquisition parameters. To
overcome this problem, we adopted the histogram matching
techniques to correct scanner-dependent intensity variations.
Besides this, it has been proved that if the spatial resolution of
the MRI images used in radiomics analysis is high enough, it can
offset the influence of different scan parameters on the results (33).
October 2021 | Volume 11 | Article 744756
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In our study, all three centers adopted three-dimensional fs T1W
gradient-echo sequence for dynamic enhancement imaging, which
provided high-slice selective spatial resolution (2 to 3 mm) (34).
Thirdly, radiomics signature was constructed using CE-MRI
images only in this multicenter study. The reason was that the
CE-MRI images were retrospectively collected, so we finally
adopted only the enhanced sequence to obtain the largest
possible sample size.

In conclusion, this multicenter study indicates the proposed
CE-MRI-based radiomics model incorporating triple-phase
images that can be useful for differentiating between fp-AML
and HCC and yields comparable or better performance than that
of two radiologists in both the internal validation cohort and the
external validation cohort.
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