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ABSTRACT: Artificial metalloenzymes combine a synthetic
metallocofactor with a protein scaffold and can catalyze
abiotic reactions in vivo. Herein, we report on our efforts to
valorize human carbonic anhydrase II as a scaffold for whole-
cell transfer hydrogenation. Two platforms were tested:
periplasmic compartmentalization and surface display in
Escherichia coli. A chemical optimization of an IrCp* cofactor
was performed. This led to 90 turnovers in the cell, affording a
69-fold increase in periplasmic product formation over the
previously reported, sulfonamide-bearing IrCp* cofactor.
These findings highlight the versatility of carbonic anhydrase
as a promising scaffold for whole-cell catalysis with artificial
metalloenzymes.
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Artificial metalloenzymes (ArMs) result from anchoring a
synthetic metallocofactor within a protein scaffold,

thereby combining attractive features of enzymatic and
transition metal catalysis.1 Enzymes are known for high
reaction rates, turnover numbers, and selectivity,2,3 whereas
synthetic transition metal catalysts offer a broad range of
reactivities, some of which have no equivalent in nature.4

Merging both features promises new catalytic, diagnostic, and
therapeutic approaches and opportunities for biotechnology,
synthetic biology, and medicine.1,5A variety of ArM-catalyzed
transformations have been reported, mostly relying on purified
protein samples.1,5−9 With the long-term goal of complement-
ing natural enzymes with ArMs in a cellular environment, we
have selected E. coli’s periplasm10,11 and its outer-mem-
brane12,13 to compartmentalize these hybrid catalysts to
minimize inhibition of the cofactor by glutathione.7 In this
context, two β-barrel host proteins have been reported:
nitrobindin12 and streptavidin.10,11,13,14 Both compartmental-
ization strategies offer advantages and limitations. On the one
hand, a higher amount of host protein can be accumulated in
the periplasm. On the other hand, the access of the cofactor
and its substrate to the periplasm is hampered by the outer-
membrane’s permeability.15 Herein, we report on the
following: (i) the use of wild-type human carbonic anhydrase
II (CAII)16−19 for the assembly of an ArM in a cellular
environment, (ii) the chemical optimization of the sulfona-
mide-bearing IrCp* cofactor for transfer hydrogenation, and
(iii) comparison of the artificial transfer hydrogenase (THase)
performance for both compartmentalization strategies (i.e.,
CAIIperiplasm and CAIIsurface display).

Mammalian cell-surface variants of CA are well-established
markers for various tumor types including the following:
gliomas/ependymomas, mesotheliomas, papillary/follicular
carcinomas and carcinomas of the bladder, uterine cervix,
kidneys, lungs, neck, breast, brain etc.20−23 Several sulfona-
mide-based anticancer drugs24−26 are used to inhibit CA by
binding to the zinc in the active site, thus halting the carbon
dioxide to bicarbonate interconversion. With medical applica-
tions in mind,27 we hypothesized it may be possible to rely on
wild-type CA to target cells overexpressing this protein to
accumulate a sulfonamide-bearing metal cofactor, which
displays a bioorthogonal reactivity toward a caged drug. This
strategy would allow this prodrug to be site-specifically
uncaged in the immediate proximity of the cells overexpressing
CA. In the past, genetic optimization strategies have been
amply applied to improve the catalytic performance of ArMs.1

For medical applications, however, one is limited to the protein
that is overexpressed on the target cells, thus restricting the
optimization of the ArM to chemical strategies (i.e., variation
of the spacer−cofactor moiety). The performance of the ArM
was evaluated in the presence of wild-type CAII both in E.
coli’s periplasm and displayed on its outer membrane
(CAIIperiplasm and CAIIsurface display, respectively).
For the periplasmic compartmentalization, CAII was N-

terminally fused to the signal peptide of the outer membrane
protein A (OmpA) to ensure its secretion to the periplasm of
E. coli (Figure 1a).11,28 For the surface display, CAII was
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anchored in the outer membrane by fusing it to a truncated E.
coli lipoprotein Lpp (residues 1−9), followed by the first five β-
sheets of OmpA (residues 46−159, Figure 1b).13,29 To probe
the localization and functionality of CAII, the fluorescent
probe 4 consisting of a carboxyfluorescein linked to an
arylsulfonamide (Figure 1c) was synthesized (see Supporting
Information). Probe 4 and a primary anti-CAII antibody in
combination with a fluorescent secondary antibody were used
to stain E. coli cells containing (i) an empty vector (negative
control 1) or plasmids targeting CAII to (ii) the cytoplasm
(CAIIcytoplasm, negative control 2), (iii) the periplasm
(CAIIperiplasm), or (iv) the cell surface (CAIIsurface display). The
samples were analyzed by fluorescence microscopy and flow
cytometry (Figure 2). Cells containing the empty vector or
CAIIcytoplasm could not be stained with probe 4 or with the anti-
CAII antibody (Figure 2). In contrast, cells containing
CAIIperiplasm or CAIIsurface display were stained with probe 4
(Figure 2a, c). The flow cytometry analysis (Figure 2c, d)
corroborated the observations of the fluorescence microscopy.
Nearly the same fluorescence increase was observed for both
the compartmentalization in the periplasm and on the cell
surface when using probe 4. Nonetheless, conclusions about
the amount of bound-fluorescent probe 4 are difficult to draw
since the probe 4 may behave different in the periplasm and on
the surface (Figure 2c). Staining with probe 4 confirms that
induction of CAIIperiplasm and CAIIsurface display lead to the
expression of functional CAII. The anti-CAII antibody is not
able to enter the periplasm of E. coli cells13 and, thus, only
labels cells expressing CAIIsurface display (Figure 2b, d). The
immunostaining, validated with the probe-labeling experi-
ments, suggests that CAII is correctly localized and functional.

Figure 1. In cellulo assembly of artificial transfer hydrogenases (THases). (a) Human carbonic anhydrase II (CAII) is secreted to the periplasm by
fusion to an N-terminal signal peptide from the outer membrane protein A (OmpA). (b) CAII is displayed on the cell surface of E. coli by fusion to
a truncated lipoprotein and the outer membrane protein A (Lpp-OmpA). Sulfonamide-bearing IrCp* piano-stool complexes were evaluated for
reducing a self-immolating substrate, releasing the fluorescent umbelliferone 2 (a, b). (c) The localization of CAII in the periplasm and on the
outer-membrane was confirmed by fluorescence, relying on the sulfonamide-bearing carboxyfluorescein probe 4.

Figure 2. Compartmentalization and expression of CAII in the
cytoplasm, in the periplasm, and on the surface of E. coli. Fluorescence
microscopy of E. coli cells: (a) stained with the fluorescent probe 4
and (b) immunostained with an anti-CAII antibody. For (a) and (b),
E. coli cells containing an empty vector (1), CAIIcytoplasm (2),
CAperiplasm (3), and CAIIsurface display (4) were stained. Flow cytometry
analysis of (c) cells stained with a fluorescent probe 4 and (d)
immuno-stained cells with an anti-CAII antibody. The inset displays
the arithmetic mean of 200 000 cells for the different compartmen-
talization systems.
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Furthermore, the labeling with probe 4 suggests that neutral
and hydrophobic probes and metallocofactors around 700 Da
can passively diffuse into the periplasm. For streptavidin-based
ArMs, we had speculated that biotin present on the cofactor
may favor the accumulation of biotinylated cofactors in the E.
coli periplasm11 by hijacking an active, energy-dependent, and
carrier-mediated biotin uptake.30−32

After establishing the compartmentalization of CAII in the
periplasm and on the surface of E. coli cells, we tested the use
of these systems for the assembly of THases. The activity of
these two systems was evaluated by using a self-immolative
fluorogenic substrate, which facilitates high-throughput screen-
ing. Upon NC reduction of the quinolinium substrate 1, the
fluorescent umbelliferone 2 and a iminoquinonemethide 3
(Figure 1) are produced.10 The highly electrophilic inter-
mediate 3 spontaneously reacts with nucleophiles present in
solution (either water or nucleophilic amino acids).33 To
determine the catalytic activity of these systems, we adapted
the assay conditions developed for a streptavidin-based
THase.10 In short, CAII was expressed at 30 °C for 4 h,
cells of an OD600 = 3 were harvested, and the pellet was
washed with 0.8 mM [Cu(gly)2] and resuspended in the
cofactor buffer (2 μM cofactor, 100 mM MOPS, pH 7, 154

mM NaCl). After incubation with the cofactor 5−10 for 1 h,
the cells were pelleted and washed twice to remove unbound
cofactor. The cell pellet was resuspended in the reaction buffer
(1 M formate, 500 μM substrate 1, 0.4 M MOPS, pH 7) and
was incubated for 16 h at 30 °C shaking at 280 rpm (see
Supporting Information). The uncaging of umbelliferone 2,
resulting from the reduction of quinolinium 1, was monitored
by fluorescence (323 nm excitation, 451 nm emission). To
exclude the possibility that natural E. coli enzymes uncage
substrate 1, E. coli cells were treated as described above, except
that the cofactors were omitted. Without cofactor incubation,
product 2 formation was not observed, independent of the
expression system (i.e., CAIIcytop lasm, CAIIper ip la sm,
CAIIsurface display, Figure 3b). Next, we tested the previously
reported piano-stool cofactor 5.17,18 Using either the
periplasm- or the surface-displayed THase, conversions, albeit
limited, were 5- and 9-fold higher than the conversion
observed for cofactor 5 unspecifically bound to cells expressing
CAIIcytoplasm (Figure 3b). Next, we chemically optimized the
THase activity by varying the first coordination sphere around
the IrCp* moiety. Building on the picolinamide-based ligands
reported by Do,34−36 Himeda,37 and Duhme-Klair,38 we
anchored an arylsulfonamide moiety via a spacer on 2-

Figure 3. Screening cofactors 5−10 for THase whole-cell activity. (a) Structure of the piano-stool complexes 5−10 bearing a sulfonamide anchor.
(b) Cellular uncaging of fluorogenic substrate 1 by cofactors 5−10·CAII. (c) Ir-amount, Ir-uptake, and corresponding turnover number (TON) for
cofactor 7 determined by ICP-MS. The background was subtracted due to varying degrees of unspecific activity; see Figure S5. Data displayed are
the means ± standard deviation of experiments performed in triplicate; the individual data and additional controls are depicted in Figure S5.

Table 1. Summary of the Dissociation Constant Kd for Cofactors 5−10 and Corresponding Whole-Cell Umbelliferone 2
Formation

Cofactor 5 6 7 8 9 10

Kd (nM) 15 ± 2 >1000 35 ± 11 49 ± 8 149 ± 30 20 ± 5
Umbelliferone 2 formationa by CAIIperiplasm 100 ± 33 1255 ± 60 6863 ± 179 4454 ± 662 4341 ± 39 2072 ± 70
Umbelliferone 2 formationa by CAIIsurface display 168 ± 33 844 ± 103 5723 ± 64 2018 ± 192 2659 ± 287 1716 ± 120

aFor comparison, the product formation monitored by fluorescence was normalized and cofactor 5·CAIIperiplasm was set to 100. Data displayed are
the means ± standard deviation of experiments performed in triplicate.
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picolinamide (Figure 3a; see Supporting Methods in the
Supporting Information for the cofactor synthesis).
Gratifyingly, the THase activity for the optimized cofactors

6−10 were markedly superior to those observed with cofactor
5 either in vitro (Figure S3) or for whole-cell catalysis (Figure
3b, Table 1). The background for the negative controls, cells
containing CAIIcytoplasm or an empty vector, remains low
(Figure 3b and Figure S5a). These results suggest that the
introduced 4-hydroxypicolinamide moiety has a beneficial
effect on THase activity. Removal of the electron-donating
hydroxy-group (compare cofactors 7 and 8) had a deleterious
effect on the THase activity for whole-cell catalysis: cofactor 7
is nearly 3-fold more active than cofactor 8 for CAIIsurface display.
Next, we investigated the effect of the spacer on the THase

activity and the corresponding dissociation constant Kd with
purified CAII (Figure 3a and Table 1). For cofactors consisting
of the same first coordination sphere (i.e., 4-hydroxy-2-
picolinamide) and arylsulfonamide anchor, the nature and
the length of the spacer has a pronounced effect on the
dissociation constant. Cofactor 6, bearing the shortest spacer,
displayed the highest dissociation constant (Kd > 1000 nM),
suggesting it probably dissociates during the washing step.
Accordingly, the whole-cell activity is very low. Whereas the Kd

for the cofactors bearing two (i.e., cofactors 7 and 8) and three
atom spacers (i.e., cofactors 9 and 10) are roughly comparable,
thus ensuring quantitative binding to CAII under catalytic
conditions, the THase activity significantly differs, emphasizing
the critical influence of the second coordination sphere on
catalytic performance (Figure 3b and Table 1).
To highlight the subtle differences in the second

coordination sphere resulting from the different spacers, we
determined the cofactor’s localization within CAII by X-ray
crystallography. High-resolution X-ray data for cofactor 7−10·
CAII were obtained (Table S6 and Figure 4). Residual electron
density in the Fo − Fc and the anomalous difference density
map were observed, highlighting the presence of cofactors 7−
10 in the funnel-shaped vestibule of CAII. Modeling of
cofactor 7−10 into the electron density projected the iridium
in the position of the anomalous density peak (Figure S7). As
observed for cofactor 5,17 the Ir-atom is not fully occupied. It
was modeled in the (S)-configuration with an occupancy of
60% for cofactor 7, 9, and 10 and 90% for cofactor 8 (Table
S6).
Comparing the localization of the different cofactors reveals

that the Ir-atoms of cofactor 7 and 8 are located deepest inside
the hydrophobic funnel of CAII (Figure 4a). The firm

Figure 4. Structural characterization of IrCp* piano-stool cofactors bound to CAII. (a) Overlay of the Ir-position from cofactor 5 (gray, PDB:
3ZP9), cofactor 7 (cyan, PDB: 6QFU), cofactor 8 (lilac, PDB: 6QFV), cofactor 9 (dark green, PDB: 6QFW) and cofactor 10 (pink, PDB: 6QFX
bound to wild-type CAII). The Ir-atoms are depicted as spheres in the color of the corresponding protein backbone and the ligand surrounding the
metal was omitted for clarity. (b) Cofactor 7, (c) cofactor 8, (d) cofactor 9, (e) cofactor 10, bound to wild-type CAII. The protein is depicted as a
transparent surface and an orange cartoon representation. Amino acids in the proximity of the cofactor are highlighted as sticks and labeled. The
cofactors are represented as sticks, and the Ir and Zn ions, as orange and light-yellow spheres, respectively, and surrounded by the corresponding
anomalous electron density (red mesh at 5 σ). The distance from the amide oxygen of the cofactors to the N of Q92 is highlighted in yellow dashes
and labeled; chloride, green; nitrogen, blue; oxygen, red; sulfur, yellow.
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positioning of cofactor 7 and 8 within CAII is secured by a
hydrogen bond between the oxygen of the cofactors’ amide
group and the nitrogen of the side chain of glutamine 92 (Q92,
O···N distance 2.8 and 2.9 Å for cofactor 7 and 8,
respectively). For cofactors 9 and 10, the O···N distance is
4.3 and 4.5 Å, respectively. The localization of cofactor 10 is
most diffuse, as reflected by the smear of the anomalous
electron density (Figure 4e).
To determine the uptake of cofactor 7, the iridium

concentration for the empty vector, CAIIcytoplasm, CAIIperiplasm,
and CAIIsurface display was determined by ICP-MS (Figure 3c and
Figure S5b). These data allow determination of the turnover
number (TON) per iridium for the whole-cell THase. The
ICP-MS sample preparation was identical to that implemented
for whole-cell catalysis (see Supporting Information). The
following results were obtained: cofactor 7·CAIIperiplasm 348 ±
43 nM Ir thus amounting to 93 ± 11 turnovers (TON);
cofactor 7·CAIIsurface display 315 ± 8 nM Ir thus corresponding
to 85 ± 3 TON (Figure 3c). These data suggest that similar
amounts of THases are compartmentalized on the cell surface
and in the periplasm as observed in the flow cytometry analysis
with probe 4 (Figure 2c). Although periplasmic-expression
levels typically exceed surface-displayed expression levels,39 the
Ir concentration and corresponding TONs suggest that the
outer membrane limits the access of the cofactor and the
substrate to the compartmentalized CAII. Accordingly, the
surface-display strategy seems most suitable to develop ArMs
for synthetic biology and therapeutic purposes.
With the long-term goal of exploiting overexpressed CA on

cancer cells to concentrate organometallic cofactors and to
uncage drugs, this study has revealed the following features: (i)
picoline-amide containing cofactors lead to significantly higher
whole-cell THase activity compared to the previously reported
picoline-sulfonamide containing cofactor 5;17 (ii) chemical
optimization is a powerful means to improve catalytic
performance of a THase using wild-type CAII; (iii) CAII is
a promising monomeric globular scaffold for in vivo catalysis,
leading to ≥90 TONs; (iv) CAIIperiplasm and CAIIsurface display are
excellent platforms for ArM-based whole-cell catalysis. These
results confirm that CA is a propitious scaffold for the
accumulation of ArMs on the surface of tumor cells.40 Tumor-
localized ArMs may be valorized for the development of
innovative cancer therapies, including targeted-drug delivery.
Current efforts are aimed at adapting this protocol to cancer
cell models overexpressing CA on their surface and using
NADH as a hydrogen source instead of formate.41
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