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Brain and peripheral inflammation and immune pathways 
play distinct roles in a variety of epilepsies. Disease modifi-
cation(s) and reduction in seizure burden by targeting specific 
pro- inflammatory mediators have represented a demanding 
and controversial quest.1– 3 Within this realm, the inducible 
cyclooxygenase- 2 (COX- 2) and brain- derived neurotrophic 
factor (BDNF), and their signaling cascades, were proposed 
as relevant candidate entry points in central nervous system 
(CNS) disorders.2,4– 6 COX- 2 is upstream to, and controls, a 
broad inflammatory pathway leading to the production of 
prostaglandin E2 (PGE2). As COX- 2 brain expression in-
creases during seizures, the effectiveness of COX- 2 inhibi-
tors has been tested with varying outcomes.2

Here, Yu and Jiang have outlined previously missing links 
and the temporal dynamics of COX- 2 and BDNF expression 
in the hippocampus in response to status epilepticus (SE).7 
To avoid possible model- specific biases, they elicited exper-
imental SE by injecting either KA or pilocarpine in rodents. 
With a panel of molecular biology tools, they showed that, 
in the hippocampus, the induction of COX- 2 temporally pre-
ceded that of BDNF and that blocking COX- 2 activity with 
a specific inhibitor (SC- 58125) prevented the BDNF surge 
post- SE. Next, in proceeding to validate their hypothesis: i) 
They found that PGE2, a key COX- 2 product, was sufficient 
to promote BDNF secretion from hippocampal cells; and ii) 
they targeted the PGE2 receptor EP2 by using a selective, 
brain- permeable antagonist (TG6- 10- 1) that subsequently 
decreased downstream BDNF and TrkB (BDNF receptor) 
signaling in the hippocampus post- SE. From these data, they 
conclude that, after experimental SE, COX- 2 controls BDNF/

TrkB signaling via PGE2/EP2. Because the EP2 antagonist 
TG6- 10- 1 reduced BDNF/TrkB signaling, the authors pro-
pose this pharmacological strategy to limit the inflammatory 
pathophysiology typical of post- SE in these models.

These results support the general concept that an early 
and targeted pharmacological intervention after an acute 
brain insult (here SE8) may curb the pathological sequel over 
time, here epileptogenesis leading to spontaneous seizures. 
Because of the post- SE rapidly evolving pathophysiological 
traits, identifying or targeting a specific culprit is challeng-
ing, particularly when it comes to inflammation and the vary-
ing, even contrasting, roles that specific cell types or soluble 
factors may have as a function of time, brain regions, and 
tissue lesion. Furthermore, when considering specific factors 
and  their receptors, the extent of supra- threshold stimula-
tion(s) should be considered. Thus, the activation of BDNF 
is required for a variety of physiological processes including 
learning and memory,9 while an excessive BDNF/TrkB inter-
play, or activation, plays a pathological role in certain brain 
diseases including epilepsies.4 These delicate and varying 
equilibriums need to be controlled when planning the ensu-
ing large- scale (pre)clinical trials and in case of clinical ap-
plications, along with a methodical examination of systemic 
and brain unwanted side effects associated with pro-  or anti- 
inflammatory modifications or adaptations.1,10– 12

In conclusion, this work connects COX- 2 activation to BDNF/
TrkB and PGE2/EP2 in the hippocampus after experimental SE. 
The authors propose the use of a brain- permeable antagonist as 
a strategy to suppress the abnormal BDNF/TrkB activity with a 
hypothesized preclinical application to post- insult settings.
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