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Aims Life-threatening ventricular arrhythmias (LTVAs) are common manifestations of sepsis. The majority of sepsis patients with 
LTVA are unresponsive to initial standard treatment and thus have a poor prognosis. There are very limited studies focusing 
on the early identification of patients at high risk of LTVA in sepsis to perform optimal preventive treatment interventions. 
We aimed to develop a prediction model to predict LTVA in sepsis using machine learning (ML) approaches.

Methods 
and results

Six ML algorithms including CatBoost, LightGBM, and XGBoost were employed to perform the model fitting. The least ab-
solute shrinkage and selection operator (LASSO) regression was used to identify key features. Methods of model evaluation 
involved in this study included area under the receiver operating characteristic curve (AUROC), for model discrimination, 
calibration curve, and Brier score, for model calibration. Finally, we validated the prediction model both internally and ex-
ternally. A total of 27 139 patients with sepsis were identified in this study, 1136 (4.2%) suffered from LTVA during hospi-
talization. We screened out 10 key features from the initial 54 variables via LASSO regression to improve the practicability of 
the model. CatBoost showed the best prediction performance among the six ML algorithms, with excellent discrimination 
(AUROC = 0.874) and calibration (Brier score = 0.157). The remarkable performance of the model was presented in the 
external validation cohort (n = 9492), with an AUROC of 0.836, suggesting certain generalizability of the model. Finally, a 
nomogram with risk classification of LTVA was shown in this study.

Conclusion We established and validated a machine leaning-based prediction model, which was conducive to early identification of high- 
risk LTVA patients in sepsis, thus appropriate methods could be conducted to improve outcomes.
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Graphical Abstract

Overview of the study design. A total of 27 139 patients with sepsis were randomly divided into the training set and internal validation set at a ratio of 8:2. 
Several machine learning algorithms including CatBoost, XGBoost, and logistic regression were used to perform the model fitting. After key feature selec-
tion, hyper-parameter optimization was implemented to modify the model. Finally, 9492 sepsis patients from another database were involved to conduct 
external validation.

Keywords Sepsis • Life-threatening ventricular arrhythmia • Risk stratification • Machine learning • Prediction model

Introduction
Sepsis, defined as an infection associated with organ injury distant from 
the site of infection, is characterized as fever (or hypothermia), tachy-
cardia, tachypnoea, and blood leucocyte changes.1 Moreover, sepsis is a 
common condition in the intensive care unit (ICU) and is associated 
with unacceptably high mortality, approximately 2.8 million deaths 
per year are attributable to sepsis.2 Robust data indicate that patients 
with sepsis are vulnerable to suffering from ventricular arrhythmias 
(VAs), including ventricular tachycardia (VT) and ventricular fibrillation 
(VF), which could explain the majority of sudden cardiac death (SCD) 
cases.3,4 Furthermore, existing evidence has confirmed that patients 
hospitalized for sepsis developed new VA events and were at high 
risk of SCD and in-hospital mortality.5,6

Life-threatening ventricular arrhythmias (LTVAs), which occur with 
severely depressed ventricular function and unstable haemodynamics 

state, are the main causes of cardiac arrest.7,8 However, half of the pa-
tients with LTVA are unresponsive to initial standard treatment, and 
thus have a poor prognosis.9 Moreover, the patients requiring more 
than 40 min of cardiopulmonary resuscitation almost all died.10

Therefore, early recognition of sepsis patients at high risk of LTVA is 
critical for timely interventions as well as intensive care and monitoring.

Machine learning (ML), a sub-field of artificial intelligence, can easily 
incorporate numerous variables and then identify non-linear associa-
tions and complex interactions among variables.11 ML algorithms 
have been explored in extensive fields of arrhythmia, including, but 
not limited to, classification of arrhythmia, detection of arrhythmia ori-
gins, severity risk prediction, and prognosis prediction in certain popu-
lations.12–14 Nevertheless, the utility of ML algorithms in identifying 
sepsis patients with a high risk of LTVA has not been determined.

Given the susceptibility and the severity of LTVA in sepsis patients, 
we aimed to establish a novel model to predict the incidence of 
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LTVA in patients with sepsis utilizing ML algorithms. The validated cap-
acity of enabling straightforward and accurate risk stratification of 
LTVA in sepsis patients of the prediction model may facilitate to per-
form optimal preventive treatment interventions.

Methods
This was a retrospective study based on two large-scale databases, aiming to 
build a clinical prediction model to predict LTVA in sepsis patients (see 
Graphical Abstract).

Sources of data
A large critical care database, named Medical Information Mart for Intensive 
Care IV (MIMIC-IV, version 2.0), was employed in the present study to 
perform model training. The MIMIC-IV database contains data from more 
than 200 000 individuals who were admitted to various ICUs of the Beth 
Israel Deaconess Medical Center (BIDMC) between 2008 and 2019.15

Additionally, data of sepsis patients extracted from the eICU Collaborative 
Research Database (eICU, version 2.0), which was a multi-centre critical 
care database with high granularity data for over 200 000 admissions to 
ICUs, were used to conduct external validation. Data of the two databases 
include vital signs, medications, laboratory measurements, observations and 
notes charted by care providers, fluid balance, procedure codes, diagnostic 
codes, imaging reports, hospital length of stay, survival data, and more. 
Data from MIMIC-IV and eICU were independent of each other. The descrip-
tion of eICU was available elsewhere.16 The author (L.L.) is qualified to inquir-
ing the information from the databases (record ID: 35965741). Since the 
study was an analysis of the third-party anonymized publicly available data-
base with pre-existing Institutional Review Board (IRB) approval, IRB approval 
from our institution was exempted. The study was reported according to the 
recommendations of the Transparent Reporting of a multivariable prediction 
model for Individual Prognosis Or Diagnosis statement.17

Participants
We included 27 139 and 9492 sepsis patients with known outcomes (LTVA 
or non-LTVA) in training and validation cohorts, respectively. Patients aged  
< 18 years old or with inadequate data were excluded. In the present study, 
sepsis was defined as infection-related organ dysfunction which was repre-
sented by an increase in the Sequential Organ Failure Assessment (SOFA) 
score of 2 points or more.18 Furthermore, in this study, LTVA came in two 
main forms: sustained VT (duration greater than 30 s) and VF.19

Data imputation
The extreme and error data that failed the logic check were filled with mean 
values. We excluded features with a ratio of missing value > 30%. Mean im-
putation was performed to fill in missing data of <5%. Multiple imputation 
was used to handle variables with missing data of between 5 and 30%.20

Data collection
A total of 67 features including demographic, clinical, and laboratory data 
from the two databases were extracted via the PostgreSQL tool (version 
13.0) (see Supplementary material online, Table S1). To ensure the practic-
ability of the prediction model, we employed the data of the first medical 
records instead of the maximum or the minimum data during ICU stay.

Model development
Feature selection
After excluding the features with a heavy proportion of missing value and 
imputing missing data, 54 features were remaining for feature selection. 
To eliminate irrelevant and redundant collinear features and improve the 
practical applicability of the model, we conducted key feature selection em-
ploying least absolute shrinkage and selection operator (LASSO) regression 
which could automatically remove unnecessary or uninfluential covariates 
based on a penalization coefficient.21 Additionally, the SHapley Additive 
exPlanations (SHAP) values22 and random forest (RF) algorithm23 were ap-
plied to rank all features by feature importance. Finally, the most predictive 
variables were selected by integrating the three methods.

Model evaluation
To evaluate the performance of ML models, we used two metrics: area un-
der the receiver operating characteristic curve (AUROC) and area under 
the precision–recall curve (AUPR). The calibration curve and Brier score 
were applied to qualitatively and quantitatively evaluate the calibration of 
models, respectively. Decision curve analysis (DCA) was performed to pre-
sent the decision benefit of models. Additionally, accuracy, sensitivity, spe-
cificity, positive prediction value (PPV), negative prediction value (NPV), 
Matthews correlation coefficient (MCC), and F1-score were performed 
in each model to quantitatively evaluate prediction performance.

ML algorithm selection
A total of six commonly used baseline ML algorithms, including CatBoost, 
XGBoost, LightGBM, logistic regression (LR), RF, and naïve Bayes, were em-
ployed to initially predict LTVA in sepsis patients based on the selected fea-
tures. The algorithm with the best prediction performance was selected for 
the remaining analyses.

Model optimization
In ML algorithms, hyper-parameter optimization (HPO) is a critical proced-
ure for achieving satisfactory performance. Hyper-parameters are numer-
ical pre-sets whose values are assigned before the commencement of a 
learning process. An ideal combination of hyper-parameters will significantly 
improve model performance. To visualize the process of HPO, the Optuna 
package (version 2.10.0),24 an open-source optimization framework, which 
allowed us to write complex ML experiments quickly, efficiently, and dy-
namically, was employed to perform HPO with the Hyperband method 
and test different combinations of hyper-parameters.25

Model fitting
Before model fitting, the combination of Synthetic Minority Over-sampling 
Technique and under-sampling was used to overcome the class-imbalance 
issue in the present study.26 The final model was fitted with the best com-
bination of the hyper-parameters. Data from the training cohort were ran-
domly divided into the training set and the internal validation set based on 
the ratio of 8:2. Herein, we modelled the LTVA prediction task as a binary 
classification problem. All included ML models output a normalized prob-
ability of LTVA risk ranging from 0 to 1.

Model validation
External validation based on the eICU cohort was performed to assess the ro-
bustness and generalizability of the model. AUROC was used to evaluate the 
performance of the six ML algorithms. Because LTVA was highly associated 
with an increased risk of mortality, the CatBoost model was employed to pre-
dict 1-year mortality. Moreover, the prediction results were validated and pre-
sented with a nomogram based on the external validation set. Recursive 
partitioning analysis was performed to construct a survival decision tree for 
risk stratification with R package ‘rpart’ based on the total points of the nomo-
gram of each participant. Additionally, the prediction for every patient was plot-
ted in order of their risk to assess the prediction distribution from the model.

Statistical analysis
Statistical analysis was performed in Python (version 3.9.0) and R (version 4.1.0). 
Patients were divided into LTVA and non-LTVA groups, and variables were 
compared between groups. Descriptive statistics were reported as frequency 
count and percentage, for qualitative data, and mean ± standard deviation, for 
quantitative data. t-Test and chi-square test were used to evaluate differences 
between two groups for continuous and categorical variables, respectively. 
Spearman correlation coefficient was employed to verify the possible statistical 
association between variables. P values ≤ 0.05 were considered significant.

Results
Characteristics of the study population
A total of 27 139 patients [mean (SD) age, 68.2 (16.2) years; 15 626 
(57.6%) male] with sepsis were identified in the training cohort, among 
them 1136 patients (4.2%) suffered from LTVA during hospitalization 
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(see Supplementary material online, Figure S1). For patients with LTVA, 
mean temperature (36.7 ± 0.7 vs. 36.9 ± 0.6, P < 0.001) and systolic 
blood pressure (SBP) (85.0 ± 17.3 vs. 89.5 ± 16.8, P < 0.001) were sig-
nificantly higher than patients without LTVA. Additionally, in the LTVA 
group, 734 patients (63.7%) presented with congestive heart failure 
(CHF), 579 (51.0%) with atrial fibrillation (AF), 390 (34.3%) with acute 
myocardial infarction (AMI), and 533 (46.9%) with pneumonia, inci-
dences of the comorbidities were statistically higher than the 
non-LTVA group. The baseline characteristics of the validation cohort 
are summarized in Table 1. The comparisons of baseline characteristics 
between the MIMIC-IV cohort and the eICU cohort are shown in 
Supplementary material online, Table S2.

Development of the prediction model
The LASSO regression was employed to eliminate redundant or irrele-
vant features, and to improve the practicability of the model. Only 10 of 
the 54 features were eventually chosen for modelling, among which 9 
features had a positive association with LTVA [SBP, Charlson co-
morbidity index (CCI), requirement of mechanical ventilation (MV), 
quick SOFA (qSOFA) score, pneumonia, CHF, AF, AMI, acute kidney 
injury (AKI)] (Figure 1). Furthermore, feature importance was evaluated 
by SHAP value and RF algorithm and showed the analogous results of 
LASSO regression (see Supplementary material online, Figure S2). In 
addition, SHAP force plot enabled personalized interpretation of the 
model (see Supplementary material online, Figure S3). Accordingly, 
the 10 key features were selected to build the prediction model. The 
correlation between the 10 features was assessed by Spearman’s cor-
relation coefficient (see Supplementary material online, Figure S4).

We compared the initial prediction performance (without model 
optimization) of the 6 ML algorithms based on the 10 features and 
found that the CatBoost algorithm presented with the best perform-
ance with an AUROC of 0.874 (Figure 2). Table 2 summarizes common-
ly used evaluation indicators of different ML algorithms. The CatBoost 
presented with the best AUROC (0.874), accuracy (0.794), sensitivity 
(0.710), specificity (0.849), PPV (0.755), NPV (0.818), MCC (0.566), 
and F1-score (0.732). The precision–recall curve showed the trade-off 
between precision and recall, which, in this case, means the fraction of 
patients who developed LTVA in the patients who were predicted to 
have LTVA (precision) and their fraction in all the patients who devel-
oped LTVA (recall). The comparisons of AUPR between CatBoost and 
other ML algorithms were conducted in the present study. The result 

showed that the CatBoost algorithm had the best AUPR (0.842) (see 
Supplementary material online, Figure S5).

Calibration refers to the degree of agreement between the predicted 
probabilities and the actual probabilities, which can be evaluated both 
qualitatively and quantitatively. Qualitative evaluation is typically per-
formed using calibration curves, while quantitative evaluation is often 
done using the Brier score. Brier score is calculated based on the 
Euclidean distance between the actual outcome and the predicted 
probability assigned to the outcome for each observation, with low va-
lues being desirable. In the present study, the prediction probability of 
the CatBoost model was the closest to the true probability compared 
with other algorithms, with a Brier score of 0.157 (see Supplementary 
material online, Figure S6). DCA can assess whether it is beneficial to 
use a model to make clinical decisions by calculating a clinical ‘net bene-
fit’. Compared with other algorithms, the CatBoost model presented 
the best decision benefit (see Supplementary material online, Figure S7).

Accordingly, given the above results, the CatBoost algorithm was se-
lected as the primary ML algorithm to perform the remaining analyses.

The HPO was applied to improve the prediction performance of the 
CatBoost model. After 100 trials, the optimal combination of hyper- 
parameters with the best prediction performance was obtained (see 
Supplementary material online, Figure S8). The final settings of the hyper- 
parameter search are listed in Supplementary material online, Table S3. The 
compact model, with the optimal combination of parameters, demon-
strated a significantly improved discrimination ability, as indicated by the 
high AUROC value of 0.929 (see Supplementary material online, Figure S9).

Model evaluation and validation
To further demonstrate the performance of the final model, the ROC 
curve was used to predict 1-year mortality based on the CatBoost mod-
el. The result showed that the CatBoost model was also able to accur-
ately predict in-hospital mortality in sepsis patients with an AUROC of 
0.837, which further demonstrated the satisfactory prediction perform-
ance of the CatBoost model (see Supplementary material online, 
Figure S10). External validation was conducted in the present study to 
demonstrate the generalization of the CatBoost model. Data of the ex-
ternal validation cohort were collected from the eICU database, and only 
the 10 key features were included in this cohort. We found that the 
CatBoost model presented with the greatest prediction performance 
compared with other ML algorithms in the validation cohort (see 
Supplementary material online, Figure S11), with AUROC, accuracy, sen-
sitivity, and specificity of 0.836, 0.792, 0.699, and 0.863, respectively (see 
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Table 1 Baseline characteristic

Variables Training cohort (n = 27 139) Validation cohort (n = 9492)

LTVA (n = 1136) Non-LTVA (n = 26 003) P value LTVA (n = 177) Non-LTVA (n = 9315) P value

Temperature, °C 36.7 ± 0.7 36.9 ± 0.6 <0.001 36.6 ± 1.3 36.9 ± 1.0 <0.001
SBP, mmHg 85.0 ± 17.3 89.5 ± 16.8 <0.001 95.9 ± 22.5 99.4 ± 20.9 <0.001

CCI 6.23 ± 2.83 5.65 ± 2.88 <0.001 5.98 ± 2.96 4.21 ± 2.23 <0.001

MV, % 710 (62.5%) 10 864 (41.8%) <0.001 104 (58.8%) 2567 (27.6%) <0.001
qSOFA score 0.78 ± 0.78 0.69 ± 0.74 <0.001 1.91 ± 0.72 1.78 ± 0.75 0.023

CHF, % 724 (63.7%) 8467 (32.6%) <0.001 38 (21.5%) 854 (9.2%) <0.001

AF, % 579 (51.0%) 9181 (35.3%) <0.001 37 (20.9%) 1088 (11.7%) <0.001
AMI, % 390 (34.3%) 2219 (8.5%) <0.001 35 (17.8%) 302 (3.2%) <0.001

Pneumonia, % 533 (46.9%) 9673 (37.2%) <0.001 72 (40.7%) 3117 (33.5%) 0.044

AKI, % 765 (67.3%) 12 760 (49.1%) <0.001 72 (40.7%) 2552 (27.4%) <0.001

LTVA, life-threatening ventricular arrhythmia; SBP, systolic blood pressure; CCI, Charlson comorbidity index; MV, mechanical ventilation; qSOFA, quick Sequential Organ Failure 
Assessment; CHF, congestive heart failure; AF, atrial fibrillation; AMI, acute myocardial infarction; AKI, acute kidney injury.
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Supplementary material online, Table S3). Therefore, we suggested that 
the CatBoost model had excellent robustness, reliability, and generaliza-
tion ability, and could be promoted in clinical practice.

Additionally, we developed a personalized nomogram to visually present 
the prediction result, together with the probability of LTVA within hospital-
ization. We obtained the LTVA probabilities of each participant in the exter-
nal cohort using the ‘predict_proba’ function of the CatBoost algorithm. 
Consequently, all patients in the external validation set were ranked by the 
prediction probability. The prediction distribution plots of the CatBoost 
model with patients sorted in the order of risk showed positive clustering 
of patients who suffered from LTVA, suggesting the favourable discriminatory 
ability of the model (Figure 3A). To further optimize the risk stratification, the 
decision tree was performed in this study. Two cut-off values of the total 

points of the nomogram were calculated using the decision tree algorithm 
(Figure 3B). Accordingly, participants were divided into three groups: low-risk 
(total points < 312), middle-risk (total points ≥ 312 and < 362), and high-risk 
groups (total points ≥ 362) (Figure 3C). The patients in the middle-risk group 
had about a four-fold risk of LTVA compared with the low-risk group, and 
the risk was eight-fold in the high-risk group, which further demonstrated 
the ability of risk stratification of the nomogram (Figure 3D).

Discussion
In the present study, we built an ML-based ensemble model that en-
abled the accurate prediction of LTVA in patients with sepsis during 

Figure 1 Feature selection by LASSO regression. (A) Plots for LASSO regression coefficients. (B) Cross-validation plot for the penalty term.

http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztad025#supplementary-data
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Figure 2 Prediction performance of different models.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2 Internal and external validation

AUROC ACC SENS SPEC PPV NPV MCC F1-score

Internal validation
CatBoost 0.874 0.794 0.710 0.849 0.755 0.818 0.566 0.732
XGBoost 0.860 0.791 0.680 0.846 0.743 0.802 0.536 0.710

LightGBM 0.840 0.757 0.637 0.835 0.716 0.778 0.483 0.674

Random forest 0.704 0.647 0.446 0.778 0.568 0.682 0.237 0.500
Logistic regression 0.701 0.660 0.421 0.816 0.600 0.683 0.259 0.495

Naïve Bayes 0.687 0.625 0.391 0.777 0.535 0.661 0.182 0.453

External validation
CatBoost 0.836 0.792 0.699 0.863 0.796 0.790 0.574 0.745

XGBoost 0.817 0.753 0.662 0.823 0.741 0.761 0.493 0.699

LightGBM 0.812 0.731 0.636 0.804 0.713 0.743 0.448 0.672
Random forest 0.697 0.617 0.449 0.746 0.575 0.639 0.205 0.504

Logistic regression 0.686 0.624 0.357 0.817 0.583 0.639 0.196 0.443

Naïve Bayes 0.679 0.594 0.325 0.789 0.527 0.617 0.129 0.402

AUROC, area under the receiver operating characteristic curve; ACC, accuracy; SENS, sensitivity; SPEC, specificity; PPV, positive prediction value; NPV, negative prediction model; MCC, 
Matthews correlation coefficient.
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hospitalization. We investigated several ML algorithms to predict LTVA 
and found that CatBoost presented the best performance. 
Temperature, SBP, CCI, qSOFA score, MV, AF, AMI, CHF, pneumonia, 
and AKI were selected as the key variables based on feature importance 
to develop the prediction model. The excellent prediction performance 
of the model was validated both internally and externally. The predic-
tion model may facilitate more responsive clinical care that is beneficial 
for sepsis patients with high-risk LTVA through early identification.

ML algorithms
ML algorithms can facilitate information processing of complex and 
mass data, and make reasonable interpretations through continuous 
learning and training, to assist clinicians to make better medical deci-
sions. Accordingly, in recent years, numerous ML algorithms are widely 
employed to develop clinical prediction models including regression 
and classification. In this study, we built a classification prediction model 

Figure 3 Model validation and risk stratification. (A) Prediction distributions of the risk of LTVA. (B) The risk stratification of LTVA according to a 
decision tree. (C ) A nomogram of the CatBoost model for predicting LTVA during hospitalization in sepsis patients. (D) Logistic analysis of the risk of 
LTVA based on the risk stratification.
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aiming to early identify sepsis patients with a high risk of LTVA during 
hospitalization, using six commonly used ML classification algorithms in-
cluding XGBoost, LightGBM, and LR. The result showed that the 
CatBoost presented with the best prediction performance compared 
with other algorithms. CatBoost belongs to gradient boosting algo-
rithms, can successfully handle categorical features and missing values 
automatically, and takes advantage of dealing with them during training 
instead of pre-processing time.27

Life-threatening ventricular arrhythmia 
predictors in sepsis
A total of 10 commonly available features were employed to build the 
prediction model. Predictors can be considered in three categories: (i) 
hospitalization information of individuals, such as CCI and qSOFA 
score; (ii) vital signs, such as SBP and temperature; (iii) comorbidities, 
such as AF, CHF, AMI, pneumonia, and AKI. The 10 predictors did 
not involve many laboratory tests or imagological examinations, making 
it easy to early identify sepsis patients with a high risk of LTVA. 
According to its SHAP values, with the advancing of CCI and qSOFA 
score, the probability of LTVA is increasing as expected, because 
they reflect worse general health status. A recent study has found 
that arrhythmias causing haemodynamic compromise were more com-
mon in the hypothermia group than in the normothermia group in pa-
tients with cardiac arrest.28 Electrolyte disturbances, fluid status, and a 
temperature effect on cardiac myocytes may help to explain the find-
ing.29 Additionally, hypothermia was found highly correlated with 
poor outcomes in sepsis patients.30 We suggested that hypothermia 
was conducive to predicting LTVA in patients with sepsis which may ex-
plain the high mortality in sepsis patients with hypothermia. Pneumonia 
was an independent risk factor for arrhythmias and even cardiac arrest, 
the mechanisms may involve myocardial ischaemia, a maladaptive re-
sponse to hypoxia, and sepsis-related cardiomyopathy.31 There is an in-
timate interaction between the heart and kidney, AKI can exacerbate 
heart dysfunction via volume and pressure overload and can aggravate 
cardiomyopathy due to uraemic toxins and acidaemia, and result in 
heart failure and LTVA.32 AF, CHF, and AMI, can significantly influence 
mechanical and electrical activity of the heart, and consequently, cause 
LTVA as expected.

Clinical application value
First, the CatBoost model had satisfactory prediction value with excellent 
discrimination and calibration. It is the determining factor for a clinical ap-
plication whether a model could accurately predict target outcomes. 
Second, practicality is one of the main advantages of the model. The 
10 features for prognosis prediction were readily accessible and fre-
quently monitored in routine clinical practice; therefore, the model could 
be generalized on a large scale, especially for undeveloped regions. Third, 
the CatBoost model had certain interpretability. As we mentioned 
above, features contributing to LTVA risk prediction in this study were 
tangible and many of them had been proven intimately correlated with 
LTVA in sepsis patients. We introduced the SHAP method which can 
provide a visual interpretation of the optimal model at the global and 
the local levels.22 SHAP values of each feature for all patients were sep-
arately aggregated and averaged to investigate what features were con-
sidered important. Finally, other strengths of the CatBoost model 
include its generalizability and robustness. To verify whether the predic-
tion performance of the model was consistent across the different per-
iods, different regions, or different populations, and then to improve the 
credibility of the model, we performed external validation in the present 
study and found that the prediction performance of the CatBoost model 
was also excellent in the eICU database. Given the above characteristics, 
the CatBoost model, therefore, has great clinical application value in the 
early identification of sepsis patients who are at high risk of LTVA.

Future research direction
We have demonstrated that the CatBoost model could accurately predict 
LTVA during hospitalization in sepsis patients. Because patients who suf-
fered from LTVA are at high risk of mortality, early identification of LTVA 
may be conducive to risk stratification, clinical decision-making, and 
improvement of prognosis in patients with sepsis. For instance, more 
intensive monitoring of vital signs, strict management of electrolytes 
including potassium and magnesium, and prophylactic anti-arrhythmic 
therapy before the sepsis is effectively contained should be applied to pre-
vent LVTA in high-risk patients. Therefore, we plan to conduct a similar 
prospective study of prediction-based LTVA monitoring in sepsis patients 
to reduce LTVA and improve outcomes.

Limitations
Although we develop and validate a novel ML-based prediction model to 
accurately predict LTVA in sepsis patients, some limitations should be ac-
knowledged. First, our work is based on a retrospective analysis of data, 
and further prospective studies are needed to confirm the findings. 
Second, data of this study were extracted from two public databases, 
and many important variables concerning LTVA were excluded for the 
high rate of missing values, such as cardiac troponin, brain natriuretic pep-
tide, and left ventricular ejection fraction, which may put some effects on 
this model. Moreover, patients with CHF were not divided into reduced 
or preserved ejection fractions, and the prognosis between these pa-
tients was different. Third, treatments including antibiotics, vasoactive 
agents, or MV were not included in this study for inadequate data, which 
may provide bias. Fourth, variables for the models were collected at base-
line. Implementation of dynamic changes of clinical markers is likely to im-
prove prediction. In addition, the present analysis does not allow to 
conclude that the algorithm is specific for prediction of LVTA rather 
than a marker for overall poor outcome.

Conclusion
The CatBoost model described in the present study could accurately 
predict LTVA during hospitalization based on 10 commonly used fea-
tures in patients with sepsis. The model was validated in another large 
database, and the results showed excellent prediction performance as 
well. The model could early identify patients at high risk of LTVA in sep-
sis and may improve outcomes by providing reasonable alerting and 
feedback.
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