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Abstract

Progress in many scientific disciplines is hindered by the presence of independent noise. 

Technologies for measuring neural activity—calcium imaging, extracellular electrophysiology, 

and fMRI—operate in domains in which independent noise (shot noise and/or thermal noise) 

can overwhelm physiological signals. Here, we introduce DeepInterpolation, a general-purpose 

denoising algorithm that trains a spatiotemporal nonlinear interpolation model using only raw 

noisy samples. Applying DeepInterpolation to two-photon calcium imaging data yielded up to 

6 times more neuronal segments than in raw data with a 15-fold increase in single-pixel SNR, 

uncovering single-trial network dynamics that were previously obscured by noise. Extracellular 

electrophysiology recordings processed with DeepInterpolation contained 25% more high-quality 

spiking units than in raw data, while on fMRI datasets, DeepInterpolation produced a 1.6-fold 

increase in the SNR of individual voxels. Denoising was attained without sacrificing spatial 

or temporal resolution, and without access to ground truth training data. We anticipate that 

DeepInterpolation will provide similar benefits in other domains in which independent noise 

contaminates spatiotemporally structured datasets.

Introduction

Independent noise impacts experimental systems neuroscience, given the weakness of 

neuronal signals relative to the shot and thermal noise present in devices used for observing 

the brain. For example, in vivo imaging of fluorescent indicators (voltage and calcium) 

operates in photon-count regimes where shot noise dominates pixel-wise measurements. 

Similarly, thermal and shot noise present in electronic circuits can impact action potentials 
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in in vivo electrophysiological recordings and BOLD responses in functional Magnetic 

Resonance Imaging (fMRI), impairing the measurement of authentic biological signals.

When datapoints in spatiotemporal proximity harbor the same underlying signal, but are 

independently affected by noise, median or Gaussian filters (in the time or Fourier domain) 

can be used to enhance single-trial dynamics, at the expense of reduced spatial and/or 

temporal resolution. Although this filtering approach is widely used, optimal denoising 

filters can be complicated to design by hand when data relationships span multiple 

dimensions (e.g., time and space) or are intrinsically non-linear.

Instead, it may be more efficient to remove noise by learning a model of the complex 

hierarchical relationships between data points, using a large training dataset1. This approach 

would exploit statistical relationships between samples to reconstruct a noiseless version of 

the signal, rather than applying filters to remove noise. This approach has been successful 

for learning denoising or upsampling filters2,3 but, until recently, was limited to cases where 

ground truth data is available. The Noise2Noise4 approach demonstrated that deep neural 

networks can be trained to perform image restoration without access to ground truth data, 

with performance comparable to training using cleaned data. Indeed, gradients derived from 

a loss function calculated on noisy samples are partially aligned towards the correct solution. 

Provided the noisy loss is an unbiased estimate of the true loss, the correct denoising filters 

are learned. However, unlike the data used to illustrate Noise2Noise4, neuronal data does not 

consist of pairs of samples with identical signals but different noise.

To overcome this limitation, we adopted an approach similar to the Noise2Self5 and 

Noise2Void6 frameworks. In the absence of training pairs, we solved an interpolation 

problem to learn the spatiotemporal relationships present in the data. We trained a model 

to learn the underlying relationship between each datapoint and its neighbors by optimizing 

the reconstruction loss calculated on each noisy instance of the sample itself. This approach 

is valid as long as the noise present in the target sample is independent from the input 

(adjacent) samples; otherwise, our relationship model would overfit the noise we seek to 

remove. We eliminated overfitting by omitting the target center frame from the input, and 

by presenting training samples only once during training. During inference, the dataset 

is streamed through the trained network to reconstruct a nearly noiseless version of the 

underlying signal.

We applied these principles to the problem of denoising dynamical signals at the heart 

of systems neuroscience, thereby building a general-purpose denoising algorithm we call 

DeepInterpolation. We describe and demonstrate the use of DeepInterpolation for two-

photon in vivo Ca2+ imaging, in vivo electrophysiology, and whole brain fMRI. We 

anticipate that our approach will be applicable to other experimental fields with minimal 

modifications.
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Results

Application of DeepInterpolation to two-photon Ca2+ imaging

In our recordings of the mouse visual cortex, we first confirmed that our two-photon 

recordings with GCaMP6f were dominated by Poisson noise as shown by individual plots 

of all pixel variances against their means (Supplementary Fig. 1). Then, we constructed 

our denoising network with a UNet inspired architecture8,9 following two simple principles: 

First, a single pixel can share information with pixels in a local region of the image (our 

neuronal network architecture had a final receptive field diameter of 78 pixels or 60 μm), 

and second, the decay dynamics of calcium-dependent fluorescent indicators (GCaMP6f 

τpeak = 80 ± 35 ms (s.e.m.); τ1/2 = 400 ± 41 ms (s.e.m.)7) suggest “frames” (sets of 

simultaneously acquired 2D images) up to 1 second away can carry meaningful information.

We trained a neuronal network to reconstruct a center frame from the data present in Npre 

prior and Npost subsequent frames. We omitted the center frame from the input to eliminate 

any information about the independent pixel-wise shot noise (Fig. 1A). We selected the final 

values of the meta-parameters (Npre = 30 and Npost = 30) by comparing the validation loss 

during training (Fig. 1B, Supplementary Note).

The Allen Brain Observatory datasets10 offered a large corpus of data for training of 

our denoising network: for each GCaMP6 reporter line (Ai93, Ai148), we had access to 

more than 100 million frames curated with standardized Quality Control (QC) metrics10. 

Within the limits of our computational infrastructure, we showed that using a larger number 

of both prior and subsequent frames as input yielded smaller validation reconstruction 

losses (Fig. 1B). Training required 225,000 samples pulled randomly from 1144 separate 

one-hour long experiments to stop improving (Fig. 1B). Since the loss is dominated by 

independent noise present in the target image, the reconstruction loss could not converge 

to zero. This was supported by simulating ideal reconstruction losses with known ground 

truth (Supplementary Fig. 2). In fact, even small improvement in the loss were associated 

with visible improvements in the reconstruction quality of the signal (Fig. 1B). At a typical 

frame rate of 30 Hz, a single hour of imaging yields 108,000 samples. Therefore, an average 

laboratory should have sufficient data to train their own DeepInterpolation network.

Applying this trained network to denoise held-out datasets yielded remarkable 

improvements in image quality (Supplementary Video 1, 2). The same trained network 

generalized well to additional examples (Supplementary Video 2). Shot noise was visibly 

eliminated from the reconstruction (Fig. 1C) while calcium dynamics were preserved, 

yielding a 15-fold increase in SNR (Fig. 1D, mean raw pixel SNR = 2.4 ± 0.01 s.e.m, 

mean pixel SNR after DeepInterpolation = 37.2 ± 0.2 s.e.m, N=9966 pixels). While the 

movies used during training were motion corrected, close inspection of the reconstructions 

showed that DeepInterpolation automatically removed small remaining motion artifacts 

(Supplementary Video 1, 2).

We compared our denoising approach to Penalized Matrix Decomposition (PMD)11. While 

PMD properly reconstructed somatic activities, unlike DeepInterpolation, it rejected most 

of the variance present in background pixels (Supplementary Video 3). A key underlying 
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assumption of PMD is the absence of motion artifacts. Contrary to what we saw after 

denoising with DeepInterpolation, we observed artifacts in movies denoised with PMD 

due to small residual motion artifacts (arrow in Supplementary Video 3). To compare 

these two approaches considering this limitation of PMD, we created simulated datasets 

devoid of motion artifacts, for which we had knowledge of the underlying ground truth 

signals, using the in silico Neural Anatomy and Optical Microscopy (NAOMi) approach12. 

NAOMi combines a detailed anatomical model of a volume of tissue with models of light 

propagation and laser scanning to generate realistic Ca2+ imaging datasets (Extended Data 

Fig. 1, Supplementary Video 4). Because DeepInterpolation used information from nearby 

frames, it provided smoother calcium traces with reconstruction losses 1.4 to 2.3 times 

smaller than PMD (Extended Data Fig. 1). We confirmed that DeepInterpolation better 

rejected high frequency noise (Fourier transforms on Extended Data Fig. 1). We also 

compared DeepInterpolation with the pixel-wise approach of Noise2Void6, as well as with 

a temporal Gaussian kernel (Supplementary Video 5). As with PMD, the reconstruction 

error was 4 times higher with Noise2Void than with DeepInterpolation (Supplementary Fig. 

3D). While the Gaussian kernel was effective at rejecting shot-noise, it heavily impacted the 

calcium event shape due to spatiotemporal smoothing effects (Extended Data Fig. 2). These 

results support the benefits of training more complex spatiotemporal models.

It was crucial to ensure that DeepInterpolation faithfully reconstruct calcium dynamics, 

without adding any spurious transients, as deep learning models are capable of 

“overinterpretation,” or enhancing features that do not actually exist13. To address 

this concern, we used our simulated data to compare individual reconstructed calcium 

transients to those in the ground truth dataset (Extended Data Fig. 2A). First, unlike 

after Gaussian smoothing, spike-triggered averages showed remarkable reconstruction of 

individual calcium transients, maintaining the peak amplitude and the area under the events 

(Extended Data Fig. 2B, C). Second, we leveraged an existing dataset in which both 

calcium activity and action potentials were recorded simultaneously from the same neurons 

(Extended Data Fig. 3A, B)14. The relationship between action potentials and calcium 

transients can be complex; therefore, we selected a subset of recordings performed in a 

Camk2a-tTA; tetO-GCaMP6s transgenic mouse where this relationship was strong (lower 

false positive rate in raw data). We found that DeepInterpolation did not alter the amplitude 

of calcium events associated with one or more action potential (Extended Data Fig. 3C). 

Furthermore, DeepInterpolation decreased the false positive rate of event detection, without 

affecting the hit rate (Extended Data Fig. 3D). Smaller bin sizes increased this effect (down 

to 7 ms for the original 150Hz sampling rate), demonstrating that DeepInterpolation can 

improve the temporal precision of spike inference.

DeepInterpolation transforms segmentation of active compartments

We next evaluated the impact of DeepInterpolation on the segmentation of neuronal 

compartments in movies of calcium activity. Existing approaches to segmentation rely 

on the analysis of correlation between pixels to create ROIs15,16. After denoising, single-

pixel pairwise correlations greatly increased from near-zero (average Pearson correlation = 

9.0*10−4 ± 2.3*10−6 s.e.m, n = 4*108 pairs of pixels across 4 experiments) to a significantly 

positive value (average Pearson correlation = 0.10 ± 1.210−5 s.e.m, n = 4*108 pairs of pixels 
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across 4 experiments, KS test comparing raw with DeepInterpolation: p = 9*10−71, n = 

1,000 pixels randomly sub-selected, Supplementary Fig. 3). We expected that this increase 

in average correlation would improve the quality and the number of segmented regions. To 

that end, we tested its impact on segmentation algorithms from Suite2p16 and CaImAn17, 

two widely used calcium analysis packages.

The improvement in correlation structure provided by DeepInterpolation benefited both 

algorithms. We first compared cell filters (images representing the weighted distribution 

of the compartments) with and without DeepInterpolation (Supplementary Fig. 4, 5). With 

Suite2p, higher-SNR neurons had identical filters while dimmer neuronal compartment 

showed better-defined filters with DeepInterpolation, sometimes recovering missing portions 

of the somas (Supplementary Fig. 4). DeepInterpolation had a similar impact on CaImAn 

(Supplementary Fig. 5). We leveraged synthetic datasets generated with NAOMi12 to 

highlight the role of key segmentation parameters in weighting true positive and false 

positive rate of individual filters after DeepInterpolation (Extended Data Fig. 4). From real 

data, Suite2p extracted additional cell filters (Fig. 2A), sometimes encompassing dendrites 

or axons connected to a local soma, or even boutons attached to a horizontal dendrite (Fig. 

2B). In some movies, smaller sections of axonal or dendritic compartments were detected, 

each with well-defined calcium transients (Fig. 2C). In future experiments, it might be 

helpful to acquire high-quality structural data to better define these small compartments.

Although some compartments were not detected in the original raw movie, we applied the 

weighted masks to both denoised and raw movies to quantify the improvement in SNR of 

the associated temporal trace. ROIs associated with somatic compartments typically yielded 

a mean SNR of 21.0 ± 0.5 (s.e.m, n = 240 in 3 experiment) in the original movie (Fig. 

2D); after denoising, most of those ROIs had an SNR above 40 (mean 73.8 ± 0.5 s.e.m). 

Similarly, the mean SNR across all compartments, including the smallest apical dendrites, 

went from a mean of 13.2 ± 0.1 s.e.m (n = 3385 in 3 experiments) to 73.8 ± 0.5 s.e.m. 

To detect a calcium rise of about 10%, an SNR above 20 is necessary for those events 

to be twice as large as the noise. This suggests that removing shot noise may increase 

our capability to detect the presence of single spikes. Detecting single spikes remains 

difficult owing to the complexity of the relationship between calcium levels and action 

potentials14,19, which is unrelated to the presence of independent noise. Nonetheless, the 

average number of detected active ROIs with SNR above 20 went from 178 ± 135 (s.e.m., 

in 3 experiments) to 1122 ± 371 in a 400×400 um2 field of view (Fig. 2D) – i.e. six times 

more neuronal compartments became available for analysis from a single movie following 

DeepInterpolation,.

DeepInterpolation improves the analysis of correlated activity

We next analyzed the response of all segmented compartments to 10 repeats of a natural 

movie presentation. We found examples of both large and small responses to natural 

movies in somatic and non-somatic compartments (Extended Data Fig. 5). The trial-by-trial 

response reliability increased substantially from raw traces to traces after DeepInterpolation 

(Fig. 2E), both for somatic ROIs (raw: mean 0.10 ± 0.01, DeepInterpolation: mean 0.20 ± 
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0.01; s.e.m, n = 240 ROIs in n = 3 experiments) and across all ROIs (raw: mean 0.029 ± 

0.001, DeepInterpolation: mean 0.113 ± 0.002; s.e.m, n = 3385 ROIs in n = 3 experiments).

Neuronal representations are inherently noisy. This property of neuronal networks has fueled 

studies on the relationship between the average signal representation in individual neurons 

and the trial-by-trial fluctuation of their responses20–22. Experimental noise impacts this 

measure of neuronal relationships as it modulates trial-by-trial responses. For each pair of 

ROIs in a single experiment, we extracted their shared signal and noise correlation. As 

expected, we found that both signal and noise correlation increased after denoising (signal: 

from 0.06725 ± 0.00006 s.e.m to 0.25 ± 0.0001 s.e.m; noise from 0.02240 ± 0.00002 s.e.m 

to 0.12351 ± 0.00008 s.e.m; both for 2,329,554 pairs of ROIs from three experiments; 

Fig. 2F). This result was not just due to the improved segmentation as it was preserved 

using ROIs only detected on raw noisy data (Supplementary Fig. 6). To further illustrate 

how these improved measures of neuronal fluctuations impacted the analysis of functional 

interactions, we compared the spatial distribution of pairwise correlations between neurons 

during natural movie presentation. DeepInterpolation largely increased the number of strong 

pairwise interactions for both somatic and non-somatic pairs (Fig. 2G, all ROIs: 43 to 

1721 pairs), including pairs of ROIs much further apart than our DeepInterpolation model’s 

receptive field of 60 μm.

Fine-tuning generalizes pre-trained models to previously unseen datasets

How well will this approach scale beyond the highly standardized datasets we have analyzed 

so far? We originally aggregated training data across hundreds of experiments to generate a 

few DeepInterpolation networks that could generalize across different recording conditions. 

These broadly trained models should be a good starting point for fine-tuning on other 

datasets, provided that individual frames of the data can fit within our 512 by 512 window, 

with unoccupied pixels filled with zero values.

To test this, we selected 26 datasets collected with both different and shared experimental 

conditions: one subset included mice with labelled inhibitory neurons instead of excitatory 

neurons; another subset was collected using a different model of microscope; and a final 

set used an imaging frame rate of 10 Hz (instead of 30 Hz). For each experiment, we fine-

tuned our pretrained model using 50,000 random frames. In all cases, training converged 

after 20,000 frames (Fig. 3A). When evaluating the performance of all 26 models on all 

pairwise movie combinations, we found that fine-tuned models had improved reconstruction 

performance at the expense of generalization across experimental conditions (Fig. 3B). 

We applied DeepInterpolation to recordings from neurons in cortical Layer 6, which have 

higher levels of background fluorescence than recordings from more superficial layers (Fig. 

3C). The improvements were especially visible in the reconstruction of the background 

(Fig 3C, Supplementary Video 6). When fine-tuning for low SNR experiments (below 5 

photons per pixel per dwell time), we found that an L1 loss could cause abnormally damped 

fluorescence values (Extended Data Fig. 6). While L1 loss forces training to converge 

toward the median of all potential outcomes, providing resilience to artifactual frames, like 

motion artifacts, it discards the most meaningful output frames at low photon count. In 

this case, fine-tuning with an L2 loss, which converges toward the mean of all potential 
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outcomes, recovered denoising performances with low photon counts experiments (Extended 

Data Fig. 6, Supplementary Video 7).

Application to electrophysiological recordings

Electrophysiological recordings from high-density silicon probes have similar characteristics 

to two-photon imaging movies: information is shared across nearby pixels (electrodes), 

as well as across time. Thus, a similar architecture should perform well for denoising 

electrophysiology data, in particular for removing strictly independent thermal and shot 

noise from the recordings.

Because a single action potential lasts ~1 ms, we constructed our interpolating network 

to predict the voltage profile at any given moment from 30 preceding and 30 following 

datapoints acquired at 30 kHz. Unlike for two-photon imaging, we found that omitting 

one sample before and after the center sample better rejected the background noise 

while maximizing the signal reconstruction quality. The architecture of the network was 

like the one used for two-photon imaging, except that we reshaped the input layer to 

match the approximate layout of the Neuropixels recording sites (Fig. 4A). Because 

electrophysiological recordings have a 1,000-fold higher sampling rate than two-photon 

imaging, we trained the network on just 3 experiments in total23.

After inference, a qualitative inspection of the recordings showcased excellent noise 

rejection (Fig. 4B). We compared spike profiles before and after denoising and found more 

clearly visible spike waveforms in the denoised data, especially for units of lower amplitude 

(Fig. 4B, inset; Fig. 4C). The residual of our reconstruction showed weak spike structure 

but spectral analysis revealed a mostly flat frequency distribution (Extended Data Fig. 7A). 

The overall shape (amplitude and decay time) of individual action potentials was preserved, 

while the median channel RMS noise was decreased 1.7-fold (6.96 μV after denoising, 

Fig. 4D). After denoising and spike sorting, we found 25.5 ± 14.5% s.d more high-quality 

units per probe (ISI violations score < 0.5, amplitude cutoff < 0.1, presence ratio > 0.95). 

The number of detected units was higher after DeepInterpolation regardless of the chosen 

quality metric thresholds (Extended Data Fig. 7B). Most additional units had low-amplitude 

waveforms, with the number of units with amplitudes above 75 μV remaining roughly the 

same (1532 before vs. 1511 after), while the number with amplitudes below 75 μV increased 

(381 before vs. 910 after) (Fig. 4E). For units that were matched before and after denoising 

(at least 70% overlapping spikes), average SNR increased from 11.2 to 14.5 (Fig. 4F).

By searching for spatiotemporally overlapping spikes, we determined that 6.2 ± 2.9% s.d. 

of units in the original recording were no longer detected after DeepInterpolation (<50% 

matching spikes). However, this was counterbalanced by the addition of 20.2 ± 4.8% 

s.d. units that had fewer than 50% matching spikes in the original data (Extended Data 

Fig. 7C). This is less than the 25.5% increase cited above, because it accounts for a 

minority of units that were detected but merged in the original data. To validate that these 

additional units were likely to correspond to actual neuronal compartments, we analyzed 

their responses to natural movies, using the same movie as in the two-photon imaging study. 

We found approximately 9% more reliably visually modulated units in the visual cortex after 

denoising (Extended Data Fig. 7D) and found examples of stimulus-modulated units that 
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were previously undetected (Extended Data Fig. 7E). These results showcase the ability of 

DeepInterpolation to reveal additional biologically relevant information about the neuronal 

circuits under investigation.

We compared the impact of DeepInterpolation on our electrophysiology data to that of two 

much simpler denoising methods, smoothing with a Gaussian or boxcar window (Extended 

Data Fig. 8A). Both simpler methods were able to reduce RMS noise levels to a range 

consistent to that achieved by DeepInterpolation (Extended Data Fig. 8B). However, this 

came at the expense of spike amplitude attenuation (Extended Data Fig. 8C,D).

In order to determine the conditions under which DeepInterpolation can preserve spike 

waveform shape, we applied it to a simulated ground truth dataset where spikes 

were superimposed at random locations in the original data (Extended Data Fig. 9). 

For most waveforms and amplitudes, waveform shape was preserved after applying 

DeepInterpolation. However, we did observe some attenuation at low amplitudes and for 

narrow waveforms (FWHM < 0.15 ms). Reduced similarity is expected at low amplitudes, 

where noise fluctuations can cause distortions in waveform shape. Future iterations of the 

DeepInterpolation approach could mitigate this by using a similarity metric for narrow spike 

waveforms in simulated ground truth datasets to iterate the network architecture.

Application to functional Magnetic Resonance Imaging (fMRI)

We evaluated if DeepInterpolation could aid the analysis of volumetric datasets like fMRI. 

fMRI is very noisy, as the BOLD response is typically just a 1–2 % change of the total 

signal amplitude25. Thermal noise is present in the electrical circuit receiving the MR signal. 

A typical fMRI processing pipeline involves averaging nearby pixels and successive trials 

to increase the SNR26,27. Thus, our approach could replace smoothing kernels with more 

optimal local interpolation functions, without sacrificing spatial or temporal resolution.

Given the lower spatiotemporal sampling rate of fMRI, we trained a more local interpolation 

function with only 2 pooling layers. To reconstruct the value of a brain sub-volume, we fed 

a neural network with a consecutive temporal series of a local volume of 7 × 7 × 7 voxels. 

We omitted the entire target volume from the input (Fig. 5A). We trained a single denoising 

network using 140 fMRI datasets acquired across 5 subjects, comprising 1.2 billion samples 

in total.

We extracted the temporal traces from individual voxels and found that SNR increased 

from 61.6 ± 20.6 s.d. to 100.40 ± 38.7 s.d. (n = 100,001 voxels) (Fig. 5B). Applying the 

trained network to held-out test data resulted in excellent denoising performance (Fig. 5C). 

We noticed that the background noise around the subject’s head was excluded and only 

present in the residual image (Fig. 5C, Supplementary Video 8). Surrounding soft tissues 

became visible after denoising (Fig. 5C, Raw data: background voxel std = 7.59 ± 0.01 

s.e.m; brain voxels std = 15.95 ± 0.08 s.e.m., n = 10,000 voxels; DeepInterpolation data: 

background std = 2.24 ± 0.01 s.em., n = 10,000; brain voxels std = 9.72 ± 0.05 s.e.m., 

n = 10,000 voxels; Residual: background std = 7.91 ± 0.01; brain voxels std = 15.79 ± 

0.08, n = 10,000 voxels). We compared movies extracted with DeepInterpolation to fully 

pre-processed movies smoothed with a Gaussian denoising kernel (Supplementary Video 9): 
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the original 3D resolution was fully maintained in DeepInterpolation while the processed 

data with Gaussian kernel diffused dynamics across nearby voxels. The residual movie 

showed no visible structure except for occasional blood vessels, corrected motion artifacts 

and head mounting hardware (Fig. 5C, Supplementary Video 10).

Discussion

We have presented DeepInterpolation, which can reconstruct nearly noiseless versions of 

datasets without the need for ground truth training data. Applying DeepInterpolation to Ca2+ 

imaging, electrophysiological recordings, and fMRI demonstrates its widespread benefits 

and ability to uncover previously hidden neuronal dynamics. While our approach is closely 

related to Noise2Self5 and Noise2Void6, we developed our framework independently. As a 

result, several key differences are notable. First, instead of working with single fluorescence 

frames with pixel-wise omissions, we adapted our approach to the types of complex multi-

dimensional biological datasets at the heart of systems neuroscience. Second, we trained 

our models on large databases, demonstrating the impact of richer denoising models on 

existing neuroscience data and on workflows such as cell segmentations or spike sorting. 

Third, we contributed practical solutions to relevant problems in this domain: we provide a 

network topology that works on real neuroscience datasets, a training regimen that requires 

data volumes that are available to most laboratories, and a fine-tuning process to adapt 

pre-trained models to new datasets.

We anticipate that DeepInterpolation will enhance post-processing steps that can leverage 

higher SNR levels and more pronounced correlation structure. For instance, background 

correction in two-photon imaging data relies on measurements of the contamination from 

neighboring pixels. Typically, measurement within background pixels are less reliable than 

in somatic pixels, given the lower expression-level in the background, necessitating the 

averaging of distant pixels. With fewer, more local neighboring pixels needed to make this 

measurement, we expect background correction reliability to increase.

We anticipate DeepInterpolation to become instrumental for the advancement of large-scale 

voltage imaging of neuronal activity28,29 and to facilitate practical application of high-speed 

fMRI, which currently operates in a regime in which thermal noise dominates the BOLD 

signal. Our approach should permit scientists in a variety of fields to re-analyze their 

existing datasets, but with independent noise reduced or removed.

Methods

Description of experimental data used in this study

All experimental datasets used in this study were previously collected and published 

separately. Associated datasets were all made available online. Animal and human work 

approval was described in each associated publication.

We trained 4 denoising neuronal networks in this study: one for two-photon imaging 

experiments using the Ai93(TITL-GCaMP6f) reporter line, one for the Ai148(TIT2L-

GCaMP6f-ICL-tTA2) reporter line30,31, one for Neuropixels recordings using “Phase 
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3a” probes32, and one for fMRI imaging using datasets from a study published on 

OpenNeuro.org33. For Neuropixels, training data consisted of 1-hour of segments extracted 

from 10 different ~2.5 hour long recordings (see below for information on the specific 

sessions used). For fMRI, the dataset contained fMRI data from five subjects with 3 types 

of scanning sessions: “ses-perceptionTraining”, “ses-perceptionTest” and “ses-imageryTest”. 

We trained our denoiser on “ses-perceptionTraining” sessions and measured the denoising 

performance on “ses-perceptionTest” sessions.

All raw datasets used for training are available at the time of publication through AWS 

S3 buckets (Amazon.com, Inc., https://openneuro.org/datasets/ds001246/versions/1.2.1 and 

https://registry.opendata.aws/allen-brain-observatory/).

Pre-processing steps

Two-photon imaging movies were motion-corrected similarly to our previous publication10. 

The motion correction algorithm relied on phase correlation and only corrected for rigid 

translational errors. We used these motion-corrected movies for denoising. All motion 

corrected movies were used directly as is during training, we did not exclude any frames 

or recordings due to motion instabilities. SNR was not used as a criteria for inclusion and 

was highly variable in the training set as we usually set laser power to the maximum level 

safely tolerated by the tissue10. Potential motion correction errors occasionally present in 

our data were typically below neuronal soma size. We did not re-apply motion correction 

after DeepInterpolation.

For Neuropixels recordings, the median across channels was subtracted to remove common-

mode noise. The median was calculated across channels that were sampled simultaneously, 

leaving out adjacent channels that are likely measuring the same spike waveforms, as 

well as reference channels that contain no signal. For each sample, the median value of 

channels N:24:384, where N = [1,2,3,…,24], was calculated, and this value was subtracted 

from the same set of channels. Importantly, this step removes noise that is correlated 
across channels, without affecting the independent noise targeted by DeepInterpolation. We 

performed denoising on the spike band after the median subtraction and offline filtering 

steps (150 Hz high pass) were applied.

For fMRI recordings, we used raw, unprocessed Nifti-1 volume data provided on 

OpenNeuro.org (https://openneuro.org/datasets/ds001246/versions/1.2.1). We compared 

denoised fMRI recordings with processed datasets available on OpenNeuro.org that included 

a Gaussian kernel. The Gaussian kernel was part of a standard fMRI processing pipeline 

using SPM5 (http://www.fil.ion.ucl.ac.uk/spm) and introduced as part of a motion correction 

algorithm. We did not alter the parameters of this gaussian kernel.

Detection of ROIs in two-photon data

We used two different segmentation algorithms in this study. The first one was 

described in a previous publication and leverages a succession of morphological filters 

to extract binary masks surrounding active pixels10. These masks are publicly available 

through the AllenSDK (https://allensdk.readthedocs.io/en/latest/). In all analysis related to 
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Supplementary Fig. 6, we applied these binary masks to both raw and DeepInterpolation 

movies to extract matching calcium traces.

In all analysis related to Fig. 2, we used the sparse mode in Suite2P16 to extract 

all individual filters. We used default parameter values of this mode except for 

threshold_scaling, which was set to 3. With the increased SNR achieved with 

DeepInterpolation, this single change limited the proportion of false positives in the final 

set of filters (Extended Data Fig. 4E). Using the Suite2p sorting GUI, we then manually 

sorted filters. We excluded filters present at the edge of the image, filters created by motion 

artifacts as well as features that did not cover any neuronal segment present in the max 

projection image. Somatic and non-somatic ROIs were also manually sorted based on the 

presence of a soma-excluded region in the filter. Filters that included a blurred out-of-plane 

soma were considered non-somatic. Once the final set of filters were extracted, we reapplied 

those weighted masks either to the original raw movie or the movie after DeepInterpolation 

to extract individual traces.

For both Supplementary Fig. 4 and Supplementary Fig. 5, we used default parameters in 

Suite2p16 and CaIman17 and matched cell filters using a Euclidean distance measure in each 

filter set.

Detection of neuronal units in electrophysiological data

Kilosort2 was used to identify spike times and assign spikes to individual units35. 

Traditional spike sorting techniques extract snippets of the original signal and perform a 

clustering operation after projecting these snippets into a lower-dimensional feature space. 

In contrast, Kilosort2 attempts to model the complete dataset as a sum of spike “templates.” 

The shape and locations of each template is iteratively refined until the data can be 

accurately reconstructed from a set of N templates at M spike times, with each individual 

template scaled by an amplitude, a.

Kilosort2 was applied to the original and denoised datasets using identical parameters (all 

default parameters, except for ops.Th, which was lowered from [10 4] to [7 3] to increase 

the probability of detecting low-amplitude units). Because the spike detection threshold is 

relative to the overall noise level per channel, the absolute value of the threshold was lower 

following DeepInterpolation.

The Kilosort2 algorithm will occasionally fit a template to the residual left behind after 

another template has been subtracted from the original data, resulting in double-counted 

spikes. This can create the appearance of an artificially high number of ISI violations for 

one unit or artificially high zero-time-lag synchrony between nearby units. To eliminate 

the possibility that this artificial synchrony will contaminate data analysis, the outputs of 

Kilosort2 are post-processed to remove spikes with peak times within 5 samples (0.16 ms) 

and peak waveforms within 5 channels (~50 microns).

Kilosort2 generates templates of a fixed length (2 ms) that matches the time course of 

an extracellularly detected spike waveform. However, there are no constraints on template 

shape, which means that the algorithm often fits templates to voltage fluctuations with 
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characteristics that could not physically result from the current flow associated with an 

action potential. The units associated with these templates are considered “noise,” and are 

automatically filtered out based on 3 criteria: spread (single channel, or >25 channels), shape 

(no peak and trough, based on wavelet decomposition), or multiple spatial peaks (waveforms 

are non-localized along the probe axis). A final manual inspection step was used to remove 

any additional noise units that were not captured by the automated algorithm.

Quality control for electrophysiological units

Units with action-potential-like waveforms detected by Kilosort2 are not necessarily high 

quality. To ensure that units met basic quality standards for further analysis, we filtered them 

using three different quality metrics, computing with the ecephys_spike_sorting Python 

package (github.com/AllenInstitute/ecephys_spike_sorting): (1) ISI violations score < 0.5. 

This metric is based on refractory period violations that indicate a unit contains spikes 

from multiple neurons. The ISI violations metric represents the relative firing rate of 

contaminating spikes. It is calculated by counting the number of violations <1.5 ms, dividing 

by the amount of time for potential violations surrounding each spike, and normalizing 

by the overall spike rate. It is always positive (or 0) but has no upper bound. See36 for 

more details. (2) Amplitude cutoff < 0.1. This metric provides an approximation of a 

unit’s false negative rate. First, a histogram of spike amplitudes is created, and the height 

of the histogram at the minimum amplitude is extracted. The percentage of spikes above 

the equivalent amplitude on the opposite side of the histogram peak is then calculated. If 

the minimum amplitude is equivalent to the histogram peak, the amplitude cutoff is set to 

0.5 (indicating a high likelihood that >50% of spikes are missing). This metric assumes a 

symmetrical distribution of amplitudes and no drift, so it will not necessarily reflect the true 

false negative rate. (3) Presence ratio > 0.95. The presence ratio is defined as the fraction 

of blocks within a session that include 1 or more spikes from a particular unit. Units with a 

low presence ratio are likely to have drifted out of the recording or could not be tracked by 

Kilosort2 for the duration of the experiment.

Applying these quality metrics removed 54% of detected units in the original data, and 60% 

of units after denoising. Spike sorting after DeepInterpolation found more units regardless of 

the threshold used for each QC metric (Extended Data Fig. 7B).

Procedure for finding matched vs. new units

Following spike sorting steps, we searched for overlapping spikes between pairs of units 

detected before and after denoising. Spikes were considered to overlap if they had a peak 

occurring within ±5 channels and 0.5 ms of one another. The number of overlapping spikes 

was used to compute three metrics, using the original spike trains as “ground truth”37. 

(1) Precision. The fraction of denoised spikes that were also found in the original data. 

(2) Recall. The fraction of original spikes that were also found in the denoised data. (3) 
Accuracy. Nmatch / (Ndenoised + Noriginal – Nmatch)

Units were considered matched if they had an accuracy exceeding 0.7. Units were 

considered novel after denoising if they had a total precision (summed over all original 
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units) less than 0.5. Units were considered undetected after denoising if they had a total 

recall (summed over all denoised units) less than 0.5.

Applying smoothing kernels to electrophysiology data

To compare DeepInterpolation to simpler denoising methods, we selected a 10 s chunk of 

data (300k samples x 384 channels) and convolved it with a Gaussian kernel (σ = 1) or a 4 

× 4 boxcar window using methods from the scipy.ndimage library. We then computed RMS 

noise levels for individual channels after masking out spike waveforms (absolute voltage 

levels > 50 μV).

Simulated Neuropixels ground truth data

We created simulated ground truth data by superimposing known spike waveforms on a real 

Neuropixels dataset, in order to quantify any distortions that were present after applying 

DeepInterpolation. We first hand-selected 20 mean waveforms with diverse shapes from a 

separate dataset. These were then scaled between 20 and 300 μV and added to the hour-long 

dataset at random times and random locations (N = 100 spikes per waveform x amplitude 

combination).

Training of denoising networks

We used 3 different sets of environments for training deep neural networks. Two-photon 

denoising networks were trained using TensorFlow 1.9.0, keras 2.2.4 and CUDA 9.0. 

Electrophysiology denoising networks were trained using TensorFlow 2.0 and CUDA 

10.0 through their built-in Keras libraries. fMRI denoising networks were trained using 

TensorFlow 2.2 and CUDA 10.1.

We utilized NVIDIA Titan X, Geforce GTX 1080, and Tesla V100-SXD2 GPUs available 

on the Allen Institute internal computing clusters. The fMRI denoising network was 

trained on Amazon AWS using the p2.8xlarge and p3.8xlarge instance type depending on 

availability. For all 3 data types, training on a single GPU took 2–3 days of continuous time.

We used an L1 loss during training for both two-photon imaging and fMRI datasets. 

Electrophysiological datasets were trained with an L2 loss. All training was done with 

the RMSProp gradient descent algorithm implemented in keras. Two-photon denoiser was 

trained with a batch size of 5 so as to fit on available GPU memory. The learning rate 

was set to 5*10−4. The Neuropixels denoiser was trained with a batch size of 100, with 

the learning rate was set to 10−4. The fMRI denoiser was trained with a batch size of 

10,000. The larger batch size was allowed by the smaller input-output size. The fMRI 

denoiser was trained with a learning scheduler, initialized at 10−4, dropping by half every 

45 millions samples. To facilitate training, all samples were mean-centered and normalized 

by a single shared value for each experiment during training. For two-photon movies, the 

mean and standard deviation was pre-calculated using the first 100 frames of the movie. 

For Neuropixels recordings, the mean and standard deviation was pre-calculated using the 

200,000 samples.
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For fMRI recordings, we extracted the centered volume of the movie that was 1/4th of the 

total movie size and averaged all voxels. To allow our interpolation network to be robust to 

edge conditions, input volumes on the edge of the volume were fed with zeros for missing 

values. For inference, we convolved the denoising network through all voxels of the volume, 

across both space and time, using only the center pixel of the output reconstructed volume to 

avoid any potential volume boundaries artifacts.

A detailed step by step pseudocode description of this process is available in Supplementary 

Note.

Fine-tuning of denoising networks

For all datasets in Fig. 3, we started training with the Ai93 excitatory line DeepInterpolation 

network. 50,000 randomly selected frames were pulled from each individual movie and used 

only once during training. The validation loss was measured on each movie before training 

and at the end of training. All Fig. 3 data trained using an L1 loss.

Simulation of using an L1 loss versus L2 loss against different light levels

A single averaged two photon frame was used as a ground truth to generate 100 noisy 

frames with poisson noise added on top. The amplitude of this poisson noise was determined 

by the simulated photon count. We randomly inserted black frames to emulate badly motion 

corrected frames before taking either the median or mean of all 100 frames. This median or 

mean frame was compared to the ground truth frame.

Inference of final datasets with trained networks

Once a DeepInterpolation network was learned, inference was performed by streaming 

entire experiments through the same fixed network. To match the conditions in training, 

each dataset was mean-centered and normalized following the same procedure used during 

training. Output denoised data were brought back to their original scale after going through 

the DeepInterpolation model.

Applying the trained DeepInterpolation network comes with some computational costs. 

Since inference is an “embarrassingly parallel” problem, we utilized our internal cluster with 

more CPU nodes than GPU nodes available for parallelization. On this cluster, one local 

job with 16 threads available took approximately 0.5 to 1 second to process one two-photon 

frame. With 100 jobs simultaneously triggered, we could process an entire 70 minutes long 

recording in between 20 and 60 minutes depending on the availability of nodes. Processing 

individual electrophysiological recording had a similar computational need.

Quantification of SNR

In the two-photon data, SNR was defined as the ratio of the mean fluorescence value divided 

by the standard deviation along the temporal dimension. In ideal photon shot-noise limited 

conditions, this SNR is proportional to the square root of N, where N is the photon flux 

detected per pixel.
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In the Neuropixels data, SNR for individual units was defined as the ratio of the maximum 

peak-to-peak waveform amplitude to the RMS noise on the peak channel.In the fMRI data, 

tSNR of individual voxels was defined as the ratio of the mean BOLD signal value divided 

by standard deviation along the temporal dimension.

Analysis of natural movie responses

Noise and signal correlation analysis in two-photon data—For each natural 

movie presentation, we extracted the corresponding ROI traces. The signal correlation 

was computed by averaging all 10 presentations of the movie and calculating the Pearson 

pairwise correlation of those averaged responses between pairs of ROIs.

The noise correlation was calculated by calculating the Pearson correlation of individual trial 

responses between a pair of ROIs and then averaging all 10 presentations of the movie.

Response reliability in two-photon data—The response reliability was calculated 

according to the following formula:

reliability ROI = 2
N N − 1 ∑ i, j i ≠ j, i < jr responsetriali t , responsetrialj t

where r is the Pearson correlation across time between a response traces from an ROI at triali 
and trialj. N is the total number of trials.

This process yielded a single reliability measure for each ROI.

Significant responses in Neuropixels data—When analyzing spike data, the trial-to-

trial correlation of the natural movie response depends heavily on the bin size chosen. To 

determine responsiveness for Neuropixels data, we instead compared each unit’s natural 

movie PSTH (averaged across 25 trials) to a version in which all bins were temporally 

shuffled. A Kolmogorov–Smirnov test between the original and shuffled PSTHs was used 

to determine the probability that the response could have occurred by chance (p < 0.05 for 

significantly responsive units; see Extended Data Fig. 7 for an example).

Synthetic data generation for two-photon imaging

We created realistic synthetic calcium imaging datasets using an approach called in silico 

Neural Anatomy and Optical Microscopy (NAOMi)12. Given the computational load of the 

model, we generated a single dataset made of 15,000 frames simulating a 400×400 μm2 

field of view at 11 Hz frame rate. Except for the field of view size and frame rate, all 

parameters were set to default values. We also used 3 datasets accompanying the NAOMI 

publication ( ‘sparseLabelingVolume’, ‘typicalVolume80mW’, ‘typicalVolume160mW’). To 

denoise these synthetic datasets, we fine-tuned our Ai93 DeepInterpolation onto the 

synthetic data using an L2 loss.
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Comparison with Penalized Matrix Factorization

PMD11 was run on an AWS instance (m5.8xlarge) under a pre-packaged jupyterhub 

environment (https://hub.docker.com/r/paninski/trefide). All movies were pre-centered and 

normalized using code available in the trefide package (psd_noise_estimate).

Comparison with Noise2Void and gaussian kernel

We used the Fiji38 implementation of Noise2Void6,38. All default parameters (64 batch size, 

5 neighborhood radius, 64 patch shape) were used to train a denoising network using a 

dataset simulated with NAOMi.

To compare DeepInterpolation to a gaussian kernel, we convolved simulated noisy calcium 

movies with a Gaussian kernel (σ = 3) along the temporal dimension.

Comparison of calcium detected events with cell-attached electrophysiological recordings

We used 4 experiments (cell ids: 102932, 102939, 102941, 102945) collected in Camk2a-

tTA; tetO-GCaMP6s transgenic mice14. We first separately fine-tuned a DeepInterpolation 

model to each high-magnification raw movie. With these models, we subsequently denoise 

each imaging dataset. Cell-attached electrophysiological recordings were not denoised and 

we used pre-computed spike events provided with each dataset. Raw and denoised movies 

were processed with Suite2p default parameters and the recorded cell calcium ROI was 

manually selected for further processing. Neuropil contamination was corrected using a 0.8 

weight and calcium events were detected using OASIS39. Receiver operating characteristic 

(ROC) curves were calculated by varying an event detection threshold on the calcium event 

traces created by OASIS. Both calcium and detected action potential traces were binned with 

varying bin size for comparison. True positive rates calculated using bins where one or more 

detected action potentials were present while false positive rates were calculated using bins 

with no detected spikes.

Data availability

The two-photon imaging and Neuropixels raw data can be downloaded from the following 

S3 bucket: arn:aws:s3:::allen-brain-observatory

Two-photon imaging files are accessed according to Experiment ID, using the following 

path: visual-coding-2p/ophys_movies/ophys_experiment_<Experiment ID>.h5 We used a 

random subset of 1144 experiments for training the denoising network for Ai93, and 397 

experiments for training the denoising network for Ai148. The list of used experiments IDs 

is available in json files (in deepinterpolation/examples/json_data/) on the DeepInterpolation 

GitHub repository. The majority of these experiment IDs are available on the S3 bucket. 

Some experimental data has not been released to S3 at the time of publication.

Neuropixels raw data is accessed by Experiment ID and Probe ID, using the following paths: 

visual-coding-neuropixels/raw-data/<Experiment ID>/<Probe ID>/spike_band.dat
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The dat files have the median subtraction post-processing applied, but do not include an 

offline highpass filter. Prior to DeepInterpolation, we extracted 3600 seconds of data from 

each of the recordings listed in Supplementary Table 1.

To train the fMRI denoiser, we used datasets that can be downloaded from an S3 bucket: 

arn:aws:s3:::openneuro.org/ds001246

We trained our denoiser on all “ses-perceptionTraining” sessions, across 5 subjects (3 

perception training sessions, 10 runs each).

Code availability

Code for DeepInterpolation and all other steps in our algorithm are available online through 

a GitHub repository40. Example training and inference tutorial code are available at the 

repository.

Code and data to regenerate all figures presented in this manuscript is available online 

through a GitHub repository41.
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Extended Data

Extended Data Fig. 1. Comparison of DeepInterpolation, Noise2Void6, a Gaussian kernel, 
Penalized Matrix Decomposition (PMD)2on simulated calcium movies with ground truth.
(A) A simulated two photon calcium movie that was generated using an in silico Neural 

Anatomy and Optical Microscopy (NAOMi) simulation12. Left: A few ROI were manually 

drawn to extract the associated traces (middle) of the simulated movie with (blue trace) and 

without sources of noise (ground truth, orange). Right: The corresponding Fourier transform 

of all traces was calculated for each trace and averaged across. (B) The same movie and 
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traces after PMD denoising. (C) The same movie and traces after DeepInterpolation. Scale 

bar is 100 μm. (D) Quantification of average mean squared error (L2) between noisy traces 

and ground truth, as well as between Noise2Void, PMD, a gaussian kernel (with σ=3) and 

DeepInterpolation with ground truth. (E) Quantification of the improvement in L2 norm 

against the original noisy error.

Extended Data Fig. 2. Analysis of spike-evoked calcium responses in simulated calcium movies 
with ground truth.
(A) For the simulated movie in Supplementary Fig. 2, spike-triggered traces were generated 

at different levels of activity. Spikes were counted within 272 ms windows and used to sort 

calcium events. Left column corresponds to a single trial associated with one spiking event. 

Right column is the average of all associated trials. Traces were extracted from (B). For all 

neuronal compartments created in the field of view, the peak calcium spike amplitude was 

measured in ground truth data as well as in movies that went through DeepInterpolation and 

a gaussian kernel. Red line is the identity line. (C) Same plot as (B) except that the area 

under all calcium events was measured.
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Extended Data Fig. 3. Quantification of DeepInterpolation impact on spike detection 
performance using high-quality simultaneous optical and cell-attached electrophysiological 
recording.
(A) Example high-magnification single two-photon frame acquired during a dual calcium 

imaging and cell-attached cellular recording in vivo in a Camk2a-tTA; tetO-GCaMP6s 

transgenic mouse. Cell id throughout the figure refers to the available public dataset cell 

ids14 (B) Exemplar simultaneous voltage cellular recording, detected Action Potential (AP), 

original fluorescence recording, denoised trace with DeepInterpolation and detected events 

using fast non-negative deconvolution39 based either on the original or the denoised data. 

(C) Violin distribution plots of ΔF/F amplitude associated with number of recorded action 

potentials in 100 ms bins. Raw traces (black) and traces after DeepInterpolation (red) are 

shown for 4 different recorded cells. (D) Receiver operating characteristic (ROC) curves 

showing the detection probability for true APs against probability of false positives as 
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detection threshold is changed, for one or more spikes. ROC curves were calculated for 

4 different temporal bin sizes. False positives were calculated from time windows with 

no spikes. Each ROC curve represents a different cell id. Red curves are obtained after 

DeepInterpolation. Inset plots zoom on lower false positive rates.

Extended Data Fig. 4. Quantification of DeepInterpolation impact on segmentation performance 
of Suite2p with synthetic data from NAOMi.
(A) The noisy raw movie (first row) was pre-processed with either a fine-tuned 

DeepInterpolation model (second row), a gaussian kernel (third row), or using Penalized 
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Matric Factorization (PMD) (fourth row). The first column shows the ROIs or cell filters 

identified by Suite2p that were matched with corresponding ideal ROIs in the ground truth 

synthetic data (cross-correlation > 0.7). The second column shows ROIs that could not be 

matched (cross-correlation < 0.7) with any ideal ROI in the synthetic data. The third column 

shows the ideal ROIs projection in the synthetic data that were matched with a segmented 

filter (i.e. not the ROI profile that were found using suite2p but the expected ROI from the 

simulation). Two sets of segmentation are displayed for two values of threshold_scaling, 

a key parameter in suite2p controlling the detection sensitivity. Scale bar is 100 μm. 

(B) True positive rate, i.e. the proportion of ROIs in the simulation that were found by 

suite2p. threshold_scaling was varied from 0.25 to 4 (default is 1) for every datasets. N=4 

simulated movies. Shaded area represents the standard deviation across 4 simulations. (C) 

False positive, i.e. the proportion of found ROIs that were not found in the simulated set 

of ideal ROIs (cross-correlation <0.7). N=4 simulated movies. Shaded area represents the 

standard deviation across 4 simulations. (D) True positive rate against false positive rate for 

each pre-processing method.

Extended Data Fig. 5. Natural movie responses extracted from somatic and non-somatic 
compartments after DeepInterpolation.
(A) Example calcium responses to 10 repeats of a natural movie for 4 examples ROIs, both 

somatic and non-somatic (B,C,D) Top: Analysis of the sensory response to 10 repeats of 

a natural movie visual stimulus. Each ROI detected after DeepInterpolation was colored by 

the preferred movie frame time (B), the amplitude of the calcium response at the preferred 

frame (C) and the response reliability (D). Scale bar is 100 μm. (B) Bottom: Distribution 

of preferred frame of the natural movie for both somatic and non-somatic ROIs in the same 

field of view. (C) Bottom: Same as (B) for response amplitude at the preferred time. (D) 
Bottom: Reliability of all ROIs response to the natural movie. Reliability was computed by 

averaging all pairwise cross-correlation between each individual trial.
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Extended Data Fig. 6. Fine-tuning DeepInterpolation models with an L2 loss yields better 
reconstruction when photon count is very low.
(A) Comparison of an example image in a two-photon movie showing VIP cells expressed 

GCaMP6s in Raw data, after DeepInterpolation with a broadly trained model (Ai93), 

after DeepInterpolation with a model trained on VIP data with an L1 loss and after 

DeepInterpolation with a model trained on VIP data with an L2 loss. Scale bar is 100 

μm. (B) Simulation of reconstruction error when using either the L1 loss or the L2 loss for 

various levels of photon count and corrupted frames.
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Extended Data Fig. 7. Extended data for Neuropixels recordings.
(A Left: Heatmap of the residual (denoised subtracted from the original data), for the same 

data shown in Figure 3B. Right: Power spectra for the original (gray), denoised (red), and 

residual (yellow) data. (B) Number of units passing a range of quality control thresholds, 

for three different unit quality metrics. QC thresholds used in this work are indicated with 

dashed lines. (C) Physiological plots for one example unit from V1 that was only detectable 

after denoising (<20% of spike times were included in the original spike sorting results). 

(P-value calculated using the Kolmogorov–Smirnov test between the distribution of spikes 
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per trial for the original and shuffled response). (D) Number of units with substantial 

response modulation to a repeated natural movie stimulus, for all cortical units detected 

before and after denoising. (E) Raster plots for 10 high-reliability exemplar units detected 

only after denoising, aligned to the 30 s natural movie clip. Each color represents a different 

unit.

Extended Data Fig. 8. Comparing DeepInterpolation with traditional denoising methods.
(A) Heatmap of 100 ms of Neuropixels data before and after applying three denoising 

methods: Gaussian filter, 2D Boxcar, and DeepInterpolation. (B) Distribution of RMS 

noise levels across channels shown in (A), computed over the same 10 s interval. The 

parameters for the Gaussian and Boxcar filters were chosen such that the resulting RMS 

noise distributions roughly matched that seen with DeepInterpolation. (C) Example voltage 

time series for one channel, before and after applying the three denoising methods shown in 

(A). (D) Relationship between original peak amplitude and denoised peak amplitude for all 

spikes in a 10 s window, from the same example channel shown in (C).
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Extended Data Fig. 9. Results of simulated ground truth electrophysiology experiments.
(A) Right: Heatmap of original data (black outline), data with superimposed spike 

waveforms (gray outline), and superimposed data after denoising (red outline). Left: Spike 

waveform outlined in heatmaps, for three different conditions. (B) Mean peak waveforms 

for each of three units superimposed on the original data at 8 different amplitudes (N = 

100 spikes per unit per amplitude). (C) Mean cosine similarity between individual denoised 

waveforms and the original superimposed waveform. Colors represent different units. (D) 

Relationship between denoised amplitude and waveform full-width at half max (FWHM), 

for all 100 μV waveforms. Colors represent different units.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Training DeepInterpolation networks for denoising two-photon Ca2+ imaging.
(A) Schematic of an encoder-decoder deep network with skip connections for denoising 

two-photon imaging data. The encoder-decoder network utilized Npre and Npost frames, 

acquired at 30 Hz, before and after the target frame (labelled in green) to predict the 

central target frame (which was omitted from the input). Scale bar is 50 μm (B) Left: 
Validation loss shown as a function of unique samples for different combinations of 

(Npre, Npost) values during training for training a single network for the Ai93 reporter 

line (Methods). Y axis is the mean absolute difference between a predicted frame and 

a noisy sample across 2500 samples. Individual data samples were z-scored using a 

single estimate of mean and standard deviation per movie. Validation loss was therefore 

measured in normalized fluorescence units. Dashed vertical line indicates early stopping 
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(due to the extreme computational demands during training) during evaluation of the 

parameter sets. Right: denoising performance of this model compared to a single raw 

frame (top) on a single representative experiment. Scale bar is 100 μm. Each red inset is 

100 μm. (C) Six representative example traces extracted from a held-out denoised movie 

before (black) and after (red) denoising with DeepInterpolation. The top three traces are 

extracted from a somatic ROI, while the bottom three traces are extracted from a single 

pixel. (D) Distribution of SNR (mean over standard deviation, see Methods) for 10,000 

pixels (randomly selected across N=19 denoised held-out test movies) before and after 

DeepInterpolation.
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Fig. 2 |. Applying DeepInterpolation to Ca2+ imaging reveals additional segmented ROIs and 
rich network physiology across small and large neuronal compartments.
(A) Three examples showing overlaid colored segmentation masks on top of a maximum 

projection image. Red dashed boxes show zoomed-in view. Scale bar is 100 μm. (B) 
Example individual weighted segmented filters showcasing dendrites, isolated somas, somas 

with attached dendrites, and axons and small sections of dendrites or axons. Scale bar is 50 

μm (C) Manually sorted ROIs from one experiment showcasing the calcium traces extracted 

from each individual type of neuronal compartments (from top to bottom - cell body, 

horizontal processes, processes perpendicular to imaging plane). (D) Left: Quantification 

of SNR for all detected ROIs (gray dots) and somatic ROIs (red dots) with and without 

DeepInterpolation. Dashed line represents the identity line. Right: Comparison of the 

number of ROIs with an SNR above 20 with and without DeepInterpolation. Each line 

is a single experiment (n = 3 experiments). (E) Quantification of the response reliability of 

individual ROIs across 10 trials of a natural movie visual stimulus. Dashed line represents 

the identity line. (F) Left: signal correlation (average correlation coefficient between the 

average temporal response of a pair of neurons) for all pairs of ROI in (D) for both raw and 

denoised traces. Right: noise correlation (average correlation coefficient at all time points of 

the mean-subtracted temporal response of a pair of neurons) for all pairs of ROIs in (D). (G) 

For an example experiment, pairs of ROIs with high noise correlation (>0.4) are connected 

with a straight line for both original two-photon data and after DeepInterpolation. Scale bar 

is 100 μm.
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Fig. 3 |. Fine-tuning pre-trained DeepInterpolation models recover reconstruction performance 
with minimal training data.
(A) Training reconstruction loss in validation data throughout fine-tuning a pre-trained 

model (Ai93 DeepInterpolation model) on previously unseen two-photon calcium movies. 

For training, experimental conditions differed as follows: switching to a different 

experimental rig with the same recording conditions (Changing rig), using data from 

inhibitory neurons (Exc. to inh.) recorded with a different reporter line (Ai148), using data 

from layer 6 (To layer 6) recorded with an Ntsr1-Cre_GN220;Ai148 mouse line, using 

data from the same mouse line but imaged at 10Hz (instead of 30Hz) and performing 

volume scanning with a piezo objective scanner (To new imaging protocol). Dashed 

lines represent the standard deviation across rounds of training with similar conditions. 

(B) Cross-model evaluation performance when varying the recording conditions. The 

broadly trained Ai93 DeepInterpolation model was fine-tuned separately on 26 recording 

experiments with varying imaging conditions. We then evaluated each fine-tuned model on 

all 26 experiments separately to plot the cross-condition reconstruction performance. The 

performance was normalized to the broadly trained Ai93 model. (C) Comparison of an 

example raw frame recorded with an Ntsr1-Cre_GN220;Ai148 mouse line in the layer 6 

(left) with its corresponding frame after DeepInterpolation with various models. First, we 

used a broadly pre-trained Ai93 model, then a fine-tuned model on non-layer 6 data and 

finally a model trained on the same exact layer 6 experiment. Scale bar is 100 μm.
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Fig. 4 |. Applying DeepInterpolation to electrophysiological recordings decreases background 
noise and yields additional detected neuronal units.
(A) Structure of the DeepInterpolation encoder-decoder network for electrophysiological 

data recorded from a Neuropixels silicon probe, with two columns of 192 electrodes each, 

spaced 20 μm apart. Data is acquired at 30 kHz. (B) Side-by-side comparison of original 

(left) and denoised (right) data, plotted as a 2D heatmap with time on the horizontal axis and 

channels along the vertical axis. Insets show a close-up of a single action potential across 

22 contiguous channels (the box is 3.6 ms wide). (C) Denoised time series (red) overlaid 

on the original time series (gray) for three channels from panel B. (D) Histogram of RMS 

noise for all channels from 10 experiments, before and after applying DeepInterpolation. 

(E) Histogram of waveform amplitudes for all high-quality units from 10 experiments. (F) 
Histogram of waveform SNRs for all units that were matched before and after denoising.
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Fig. 5 |. Applying DeepInterpolation to fMRI removes thermal noise.
(A) Structure of the DeepInterpolation encoder-decoder network for fMRI data. Instead of 

predicting a whole brain volume at once, the network reconstructs a local 7×7×7 cube of 

voxels. (B) tSNR for 10,000 voxels randomly distributed in the brain volume in raw data and 

after DeepInterpolation. (C) Exemplar reconstruction of a single fMRI volume. First row is 

a coronal section while the second row is a sagittal section through a human brain. In the 

second column, the temporal mean of 3D scan was removed to better illustrate the presence 

of thermal noise in the raw data. The local denoising network was processed throughout 

the whole 3D scan for denoising. The impact of DeepInterpolation on thermal noise is 

illustrated in the 3rd column. The 4th column shows the residual of the denoising process. 

Scale bar is 5 cm.
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