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META-RESEARCH

Lessons from a catalogue of 
6674 brain recordings
Abstract  It is now possible for scientists to publicly catalogue all the data they have ever collected on one 
phenomenon. For a decade, we have been measuring a brain response to visual symmetry called the sustained 
posterior negativity (SPN). Here we report how we have made a total of 6674 individual SPNs from 2215 partic-
ipants publicly available, along with data extraction and visualization tools (https://osf.io/2sncj/). We also report 
how re-analysis of the SPN catalogue has shed light on aspects of the scientific process, such as statistical power 
and publication bias, and revealed new scientific insights.

ALEXIS DJ MAKIN*, JOHN TYSON-CARR, GIULIA RAMPONE, YIOVANNA DERPSCH, 
DAMIEN WRIGHT AND MARCO BERTAMINI

Introduction
Many natural and man-made objects are symmet-
rical, and humans can detect visual symmetry very 
efficiently (Bertamini et al., 2018; Treder, 2010; 
Tyler, 1995; Wagemans, 1995). Visual symmetry 
has been a topic of research within experimental 
psychology for more than a century. In recent 
decades, two techniques – functional magnetic 
resonance imaging (fMRI) and electroencephalog-
raphy (EEG) – have been used to investigate the 
impact of visual symmetry on a region of the brain 
called the extrastriate cortex. Since 2011, we have 
been using EEG in experiments at the University 
of Liverpool to measure a brain response to visual 
symmetry called the sustained posterior nega-
tivity (SPN; see Box 1 and Figure 1). By October 
2020 we had completed 40 SPN projects: 17 of 
these had been published, and the remaining 23 
were either unpublished or under review.

The COVID pandemic stopped all our EEG 
testing in March 2020, and we used this crisis/
opportunity to organize and catalogue our 
existing data. The data from all 40 of our SPN 
projects are now available in a public repository 
called “The complete Liverpool SPN catalogue” 
(available at https://osf.io/2sncj/; see Box  2 
and Figure 2). The catalogue allows us to draw 
conclusions that could not be gleaned from a 
single experiment. It can also support meta-
scientific evaluation of our data and practices, as 
reported in the current article.

Meta-scientific lessons from the 
complete Liverpool SPN catalogue
There is growing anxiety about the trustworthi-
ness of published science (Munafò et al., 2017; 
Open Science Collaboration, 2015; Errington 
et al., 2021). Many have argued that we should 
build cumulative research programs, where 
effects are measured reliably, and the truth 
becomes clearer over time. However, common 
practice often falls far short of this ideal. And 
although there has been a positive response 
to the replication crisis in psychology (Nelson 
et  al., 2018), there is still – according to the 
cognitive neuroscientist Dorothy Bishop – room 
for improvement: “many researchers persist 
in working in a way almost guaranteed not to 
deliver meaningful results. They ride what I refer 
to as the four horsemen of the irreproducibility 
apocalypse” (Bishop, 2019). The four horsemen 
are: (i) publication bias; (ii) low statistical power; 
(iii) p value hacking; (iv) HARKing (hypothesizing 
after results known).

The “manifesto for reproducible science” 
includes these four items and two more: poor 
quality control in data collection and analysis, 
and the failure to control for bias (Munafò et al., 
2017). Such critiques challenge all scientists to 
answer a simple question: are you practicing 
cumulative science, or is your research is under-
mined by the four horsemen of the irreproduc-
ibility apocalypse? Indeed, before compiling the 
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SPN catalogue, we were unable to answer this 
question for our own research program.

One problem with replication attempts is their 
potentially adversarial nature. Claiming that other 
people’s published effects are unreliable insinu-
ates bad practice, while solutions such as “adver-
sarial collaboration” are still rare (Cowan et al., 
2020). In this context and heeding the call to 
make research in psychology auditable (Nelson 
et al., 2018), we decided to take an exhaustive 
and critical look at the complete SPN catalogue 
in terms of the four horsemen of irreproducibility.

Horseman one: publication bias
Most scientists are familiar with the phrase 
“publish or perish” and know it is easier to 
publish a statistically significant effect (P<.05). 
Null results accumulate in the proverbial file 
drawer, while false positives enter the literature. 
This publication bias leads to systematic over-
estimation of effect sizes in meta-analysis (Brys-
baert, 2019; Button et al., 2013).

The cumulative distribution of the 249 SPN 
amplitudes is shown in Figure  3A (top panel), 
along with the cumulative distributions for those 
in the literature and those in the file drawer 
(middle panel). The unpublished SPNs were 
weaker than the published SPNs (mean differ-
ence = 0.354 microvolts [95%  CI=0.162–0.546], 
t (218.003)=3.640, P<.001, equal variance not 
assumed). Furthermore, the published SPNs 
came from experiments with smaller sample sizes 

(mean sample sizes = 23.40 vs 29.49, P<.001, 
Mann-Whitney U test).

To further explore these effects, we ran three 
meta-analyses (using the metamean function 
from the dmetar library in R). Full results are 
described in supplementary materials (https://​
osf.io/q4jfw/). The weighted mean amplitude 
of the published SPNs was –1.138 microvolts 
[95% CI = –1.290; –0.986]. This was reduced to 
–0.801 microvolts [–0.914; –0.689] for the unpub-
lished SPNs, and to –0.954 microvolts [–1.049; 
–0.860] for all SPNs. The funnel plot for the 
published SPNs (Figure 3A; bottom panel) is not 
symmetrically tapered (less accurate measures 
near the base of the funnel are skewed leftwards). 
This is a textbook fingerprint of publication bias. 
However, the funnel asymmetry was still signifi-
cant for the unpublished SPNs and for all SPNs, 
so publication bias cannot be the explanation 
(see Zwetsloot et al., 2017 for detailed analysis 
of funnel asymmetry).

The amplitudes of the P1 peak and the N1 
trough from the same trials provide an instructive 
comparison. Our SPN papers do not need large 
P1 and N1 components, so these are unlikely to 
have a systematic effect on publication. P1 peak 
was essentially identical in published and unpub-
lished work (4.672 vs 4.686, t (195.11) = –0.067, 
P=.946; Figure  3B). This is potentially an inter-
esting counterpoint to the SPN. However, the N1 
trough was larger in published work (–8.736 vs. 
–7.155. t (183.61) = –5.636, P<.001; Figure 3C). 

Box 1. Symmetry and the sustained posterior negativity 
(SPN).

Visual symmetry plays an important role in perceptual organization (Koffka, 1935; Wagemans 
et al., 2012) and mate choice (Grammer et al., 2003). This suggests sensitivity to visual 
symmetry is innate: however, symmetrical prototypes could also be learned from many 
asymmetrical exemplars (Enquist and Johnstone, 1997). Psychophysical experiments have 
taught us a great deal about symmetry perception (Barlow and Reeves, 1979; Treder, 2010; 
Wagemans, 1995), and the neural response to symmetry has been studied more recently 
(for reviews see Bertamini and Makin, 2014; Bertamini et al., 2018; Cattaneo, 2017). 
Functional MRI has reliably found symmetry activations in the extrastriate visual cortex (Chen 
et al., 2007; Keefe et al., 2018; Kohler et al., 2016; Sasaki et al., 2005; Tyler et al., 2005; 
Van Meel et al., 2019). The extrastriate symmetry response can also be measured with EEG. 
Visual symmetry generates an event related potential (ERP) called the sustained posterior 
negativity (SPN). The SPN is a difference wave – amplitude is more negative at posterior 
electrodes when participants view symmetrical displays compared to asymmetrical displays 
(Jacobsen and Höfel, 2003; Makin et al., 2012; Makin et al., 2016; Norcia et al., 2002). As 
shown in Figure 1, SPN amplitude scales parametrically with the proportion of symmetry in 
the image (Makin et al., 2020c).
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The funnel asymmetry was also significant for 
both P1 and N1.

Summary for horseman one: publication 
bias
This analysis suggests a tendency for large SPNs 
to make it into the literature, and small ones to 
linger in the file drawer. In contrast, the P1 was 
essentially identical in published and unpub-
lished work. However, we do not think publi-
cation bias is a problem in our SPN research. 

The published and unpublished SPNs are from 
heterogenous studies, with different stimuli and 
tasks. We would not necessarily expect them to 
have the same mean amplitude. In other words, 
the SPN varies across studies not only due to 
neural noise and measurement noise, but also 
due to experimental manipulations affecting the 
neural signal (although W-load and Task were 
similar in published and unpublished work, see 
Box 2). Furthermore, it is not the case that our 
published papers selectively report one side of a 

Figure 1. The sustained posterior negativity (SPN). The grand-average ERPs are shown in the upper left panel and difference waves (reflection-random) 
are shown in the lower left panel. A large SPN is a difference wave that falls a long way below zero. Topographic difference maps are shown on the right, 
aligned with the representative stimuli (black background). The difference maps depict a head from above, and the SPN appears as blue at the back. 
Purple labels indicate electrodes used for ERP waves [PO7, O1, O2 and PO8]. Note that SPN amplitude increases (that is, becomes more negative) with 
the proportion of symmetry in the image. In this experiment, the SPN increased from ~0 to –3.5 microvolts as symmetry increased from 20% to 100%. 
Adapted from Figures 1, 3 and 4 in Makin et al., 2020c.

https://doi.org/10.7554/eLife.66388
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Box 2. The complete Liverpool SPN catalogue.

The complete Liverpool SPN catalogue was compiled from 40 projects, each of which involved 
between 1 and 5 experiments (with an experiment being defined as a study producing a 
dataset composed only of within-subject conditions). Sample size ranged from 12 to 48 
participants per experiment (mean = 26.37; mode = 24; median = 24). Each experiment 
provided 1–8 grand-average SPN waves. In total, we reanalysed 249 grand-average SPNs, 
6,674 participant-level SPNs, and 850,312 single trials. SPNs from other labs are not yet 
included in the catalogue (Höfel and Jacobsen, 2007a; Höfel and Jacobsen, 2007b; 
Jacobsen et al., 2018; Kohler et al., 2018; Martinovic et al., 2018; Wright et al., 2018). 
Steady-state visual evoked potential responses to symmetry are also unavailable (Kohler 
et al., 2016; Kohler and Clarke, 2021; Norcia et al., 2002; Oka et al., 2007). However, 
the intention is to keep the catalogue open, and the design allows many contributions. In 
the future we hope to integrate data from other labs. This will increase the generalizability 
of our conclusions. Anyone wishing to use the catalogue can start with the beginner’s guide, 
available on open science framework (https://osf.io/bq9ka/).
The catalogue also includes several supplementary files, including a file called “One SPN 
Gallery.pdf” (https://osf.io/eqhd5/) which has one page for each of the 249 SPNs, along with 
all technical information about the stimuli and analysis (Figure 2 shows the first SPN from the 
gallery). Browsing this gallery reveals that 39/40 projects used abstract stimuli, such as dot 
patterns or polygons (see, for example, Project 1: Makin et al., 2012). The exception was 
Project 14, which used flowers and landscapes (Makin et al., 2020b). The SPN is generated 
automatically when symmetry is present in the image (e.g., Project 13: Makin et al., 2020c). 
However, the brain can sometimes go beyond the image and recover symmetry in objects, 
irrespective of changes in view angle (Project 7: Makin et al., 2015).
Almost half the SPNs (125/249) were recorded in experiments where participants were 
engaged in active regularity discrimination (e.g., press one key to report symmetry and 
another to report random). The other 124 SPNs were recorded in conditions where 
participants were performing a different task, such as discriminating the colour of the dots 
or holding information in visual working memory (Derpsch et al., 2021). In most projects the 
stimuli were presented for at least 1 second and the judgment was entered in a non-speeded 
fashion after stimulus offset. Key mapping was usually shown on the response screen to avoid 
lateralized preparatory motor responses during stimulus presentation.
The catalogue is designed to be FAIR (Findable, Accessible, Interoperable and Reusable). For 
each project we have included uniform data files from five subsequent stages of the pipeline: 
(i) raw BDF files; (ii) epoched data before ICA pruning; (iii) epoched data after ICA pruning; 
(iv) epoched data after ICA pruning and trial rejection; (v) pre-processed data averaged across 
trials for each participant and condition (stage v is the starting point for most ERP visualization 
and meta-analysis in this article). The catalogue also includes Brain Imaging Data Structure 
(BIDS) formatted files from stage iv (https://osf.io/e8r95/). BIDS files from earlier processing 
stages can be compiled from available codes or GUI (https://github.com/JohnTyCa/The-SPN-
Catalogue) by users of MATLAB with EEGLAB and BIOSEMI toolbox.
Furthermore, we developed an app that allows users to: (a) view the data and summary 
statistics as they were originally published; (b) select data subsets, electrode clusters, and 
time windows; (c) visualize the patterns; (d) export data for further statistical analysis. This is 
available to Windows or Mac users with a Matlab license, and a standalone version can be 
used on Windows without a Matlab license. The app, executable and standalone scripts, and 
dependencies are available on Github (https://github.com/JohnTyCa/The-SPN-Catalogue, 
copy archived at swh:1:rev:75e729f867c275433b68807bc3f2228c57a3ccac, Tyson-Carr, 
2022). This repository and app will be maintained and expanded to accommodate data from 
future projects.

continued on next page
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distribution with a mean close to zero. Our best 
estimate of mean SPN amplitude (–0.954 micro-
volts) is far below zero [95% CI = –1.049; –0.860]. 
The file drawer has no embarrassing preponder-
ance of sustained posterior positivity.

Some theoretically important effects can 
appear robust in meta-analysis of published 
studies, but then disappear once the file drawer 
studies are incorporated. Fortunately, this does 
not apply to the SPN. We suggest that assess-
ment of publication bias is a feasible first step 
for other researchers undertaking a catalogue-
evaluate exercise.

Horseman two: low statistical 
power
According to Brysbaert, 2019, many cognitive 
psychologists have overly sunny intuitions about 
power analysis and fail to understand it prop-
erly. The first misunderstanding is that an effect 
on the cusp of significance (P=.05) has a 95% 
chance of successful replication, when in fact the 
probability of successful replication is only 50% 
(power = 0.5). Researchers often work on the 
cusp of significance, where power is barely more 
than 0.5. Indeed, one influential analysis esti-
mated that median statistical power in cognitive 

neuroscience is just 0.21 (Button et  al., 2013). 
In stark contrast, the conventional threshold for 
adequate power is 0.8. Although things may be 
improving, many labs still conduct underpowered 
experiments without sufficient awareness of the 
problem.

To estimate statistical power, one needs a 
reliable estimate of effect size, and this is rarely 
available a priori. In the words of Brysbaert, 
2019, “you need an estimate of effect size to 
get started, and it is very difficult to get a useful 
estimate”. It is well known that effect size esti-
mates from published work will be exaggerated 
because of the file drawer problem (as described 
previously). It is less well known that one pilot 
experiment does not provide a reliable estimate 
of effect size (especially when the pilot itself 
has a small sample; Albers and Lakens, 2018). 
Fortunately, we can estimate SPN effect size from 
many experiments, published and unpublished, 
and this allows informative power analysis.

For a single SPN, the relevant effect size metric 
is Cohen’s dz (mean amplitude difference/SD of 
amplitude differences). Figure 4A shows the rela-
tionship between SPN amplitude and effect size dz. 
The larger (more negative) the SPN in microvolts, 
the larger dz. The curve tails off for strong SPNs, 
resulting in a nonlinear relationship. The second 

The folder called “SPN user guides and summary analysis” (https://osf.io/gjpr7/) also contains 
supplementary files that give all the technical details required for reproducible EEG research, 
as recommended by the Organization for Human Brain Mapping Pernet et al., 2020. For 
instance, the file called “SPN effect size and power V8.xlsx” has one worksheet for each 
project (https://osf.io/c8jgy/). This file documents all extracted ERP data along with details 
about the electrodes, time windows, ICA components removed, and trials removed. With a 
few minor exceptions, anyone can now reproduce any figure or analysis in our SPN research. 
Users can also run alternative analyses that depart from the original pipeline at any given 
stage. Finally, the folder called “Analysis in eLife paper” contains all materials from this 
manuscript (https://osf.io/4cs2p/).
Although this paper focuses on meta-science, we can briefly summarize the scientific utility 
of the catalogue. Analysis of the whole data set shows that SPN amplitude scales with the 
salience of visual regularity. This can be estimated with the ‘W-load’ from theoretical models 
of perceptual goodness (van der Helm and Leeuwenberg, 1996). SPN amplitude also 
increases when regularity is task relevant. Linear regression with two predictors (W-load and 
Task, both coded on a 0–1 scale) explained 33% variance in grand-average SPN amplitude 
(SPN (microvolts) = –1.669 W – 0.416Task +0.071). The SPN is slightly stronger over the right 
hemisphere, but the laws of perceptual organization, that determine SPN amplitude, are 
similar on both sides of the brain. Source dipole analysis can also be applied to the whole 
data set (following findings of Tyson-Carr et al., 2021). We envisage that most future papers 
will begin with meta-analysis of the SPN catalogue, before reporting a new purpose-built 
experiment. The SPN catalogue also allows meta-analysis of other ERPs, such as P1 or N1, 
which may be systematically influenced by stimulus properties (although apparently not W-
load).
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order polynomial trendline was a better fit than 
the first order linear trendline (see the supplemen-
tary polynomial regression analysis at https://osf.​
io/f2659/). The same relationship is found whether 
regularity is task relevant or not (Figure 4B) and 
in published and unpublished work (Figure  4C). 
Crucially, we can now estimate typical effect size 
for an SPN with a given amplitude using this poly-
nomial regression equation (see the SPN effect 
size calculator at https://osf.io/gm734/).

This approach can be illustrated with 0.5 micro-
volt SPNs. Although these are at the low end of 
the distribution (Figure  4A), they can be inter-
preted and published (e.g., Makin et al., 2020a). 
The average dz for a 0.5 microvolt SPN is –0.469. 
Power analysis shows that to have an 80% chance 
of finding an effect of this size (P<.05, two tailed) 
we need a sample of 38 participants. In contrast, 
our median sample size is 24, which gives us an 
observed power of just 60%. In other words, if we 
were to choose a significant 0.5 microvolt SPN 
and rerun the exact same experiment, there is a 
100%–60%=40% chance we would not find the 
significant SPN again. This is not a solid founda-
tion for cumulative research.

Only a third of the 249 SPNs are 0.5 microvolts 
or less. However, many papers do not merely 
report the presence of a significant SPN. Instead, 
the headline effect is usually a within-subjects 
difference between experimental conditions. As 
a first approximation, we can assume the same 
power analysis applies to pairwise SPN modula-
tions. We thus need 38 participants for an 80% 
chance of detecting an ~0.5 microvolt SPN differ-
ence between two regular conditions (and more 
participants for between-subject designs).

The table in Figure  4G gives required 
sample size (N) for 80% chance of obtaining 
SPNs of a particular amplitude (power = 
0.8, alpha = 0.05, two-tailed). This suggests 
relatively large 1.5 microvolt SPNs could be 
obtained with just 9 participants. However, 
estimates of effect size are less precise at 
the high end (see the supplementary poly-
nomial regression analysis at https://osf.io/​
f2659). A conservative yet feasible approach 
is to collect at least 20 participants even when 
confident of obtaining a large SPN or SPN 
modulation. Alternatively, researchers may 
require a sample that allows them to find the 

Figure 2. The first SPN from the SPN Gallery. (A) Examples of stimuli. (B). Grand-average ERP waves from electrodes PO7 and PO8 (upper panel), 
and the SPN as a reflection-random difference wave (with 95% CI; lower panel). The typical 300–1000ms SPN window is highlighted in yellow. Mean 
amplitude during this window was –2.503 microvolts (horizontal blue line). (C) SPN as a topographic difference map. (D) Violin plot showing SPN 
amplitude for each participant plus descriptive and inferential statistics. The file “One SPN Gallery.pdf” (https://osf.io/eqhd5/) contains a figure like this 
for all 249 SPNs. The analysis details shown at the top of the figure are also explained in this file.
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Figure 3. SPN amplitudes in published and unpublished work. (A) The top panel shows the cumulative distribution of all 249 grand-average SPNs. The 
smallest SPN is at the left-most end of the x-axis, and the largest SPN is at the right-most end. The blue line is comprised 249 data points, and the black 
lines show 95% confidence intervals. If the upper confidence interval does not rise above zero, we have a significant SPN (P<.05, two-tailed). The middle 
panel shows that the 134 unpublished SPNs in the file drawer (red) are smaller (i.e., less negative) than the 115 published SPNs in the literature (green). 
The bottom panel shows a funnel plot of 249 grand-average SPNs arranged by mean (x-axis) and standard error (y-axis). Red dots are unpublished SPNs, 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.66388
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minimum effect that would still be of theoret-
ical interest. Brysbaert, 2019, suggests this 
may often be ~0.4 in experimental psychology, 
and this requires 52 participants. Indeed, the 
theoretically interesting effect of Task on SPN 
amplitude could be in this range.

Power of nonparametric tests
Of the 249 SPNs, 9.2% were not normally distrib-
uted about the mean according to the Shapiro-
Wilk test (8.4% according to Kolmogorov-Smirnov 
test). Non-parametric statistics could thus be 
appropriate for some SPN analyses. For a non-
parametric SPN, significantly more than half of 
the participants must have lower amplitude in 
the regular condition. We can examine this with 
a binomial test. Consider a typical 24 participant 
SPN: For a significant binomial test (P<.05, two 
tailed), we need at least 18/24=3/4 participants 
in the sample to show the directional effect 
(regular  < random). Next, consider doubling 
sample size to 48: We now need only 32/48=2/3 
participants in the sample to show the directional 
effect. Figure  4D–F illustrates the proportion 
of participants showing the directional effect as 
a function of SPN amplitude. Only 146 of the 
249 grand-average SPNs (59%) were computed 
from a sample where at least 3/4 of the partici-
pants showed the directional effect. Meanwhile, 
183 (73%) were from a sample where at least 
2/3 of the participants showed the directional 
effect (blue horizontals in Figure 4D). This anal-
ysis recommends increasing sample size to 48 in 
future experiments.

Power of SPN modulation effects
When there are more than two conditions, mean 
SPN differences may be tested with ANOVA. 
To assess statistical power, we reran 40 repre-
sentative ANOVAs from published and unpub-
lished work. This includes all those which support 
important theoretical conclusions (Makin et al., 
2015; Makin et al., 2016; Makin et al., 2020c; 
see https://osf.io/hgncs/ for a full list of the 
experiments used in this analysis). Observed 
power was less than the desired 0.8 in 15 of 40 
(Figure 4H). We note that several underpowered 
analyses are from Project 7 (Makin et al., 2015). 
This is still an active research area, and we will 
increase sample size in future experiments.

Increasing the number of trials
Another line of attack is to increase the number 
of trials per participant. Boudewyn et al., 2018 
argue that adding trials is alternative way to 
increase statistical power in ERP research, even 
when split-half reliability is apparently near ceiling 
(as it is in SPN research: Makin et al., 2020b). In 
one highly relevant analysis, Boudewyn et  al., 
2018 examined a within-participant 0.5 microvolt 
ERP modulation with a sample of 24 (our median 
sample). Increasing the number of trials from 
45 to 90 increased the probability of achieving 
a significant effect from ~.54 to~.89 (see figure 
eight in Boudewyn et al., 2018). These authors 
caution that simulations of other ERP compo-
nents are required to establish generalizability. 
We typically include at least 60 trials in each 
condition. However, going up to 100 trials per 
condition could increase SPN effect size, and 
this may mitigate the need to increase sample 
size (Baker et  al., 2021). Of course, too many 
trials could introduce participant fatigue and a 
consequent drop in data quality. There is likely a 
sample size X trial number ‘sweet spot’ and are 
unlikely to have hit it already by luck.

Typical sample sizes in other EEG 
research
When planning our experiments, we have often 
assumed that 24 is a typical sample size in EEG 
research. This can be checked objectively. We 
searched open-access EEG articles within the 
PubMed Central database using a text-mining 
algorithm. A total of 1,442 sample sizes were 
obtained. Mean sample size was 35 (±22.97) and 
a median was 28. The most commonly occurring 
sample size was 20. We also extracted sample 
sizes from 74 EEG datasets on the OpenNeuro 
BIDS compliant repository. The mean sample 
size was 39.34 (±38.56), the median was 24, and 
the mode was again 20. Our SPN experiments 
do indeed have typical sample sizes, as we had 
assumed.

Summary for horseman two: low 
statistical power
Low statistical power is an obstacle to cumula-
tive SPN research. Before the COVID pandemic 
stopped all EEG research, we were completing 

green dots are published SPNs. Dots to the left of the blue central triangle represent significant SPNs (inner edge, P<.05, outer edge, P<.01); if dots are 
inside the blue triangle, the effect is non-significant. (B) Equivalent set of plots for the peak amplitude P1 on regular trials. (C) Equivalent set of plots for 
the trough amplitude N1 on regular trials.

Figure 3 continued

https://doi.org/10.7554/eLife.66388
https://osf.io/hgncs/
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Figure 4. SPN effect size and power. (A–C) The nonlinear relationship between SPN amplitude and effect size. The equation for the second order 
polynomial trendline is shown in panel A (y = 0.13x2+0.95 x - 0.03). This explains 86% of variance in effect size (R2=0.86). Using the equation, we can 
estimate effect size for an SPN of a given amplitude. Dashed lines highlight –0.5 microvolt SPNs, with average effect size dz of –0.469. For an 80% 
chance of finding this effect, an experiment requires 38 participants. The relationships were similar whether regularity was task relevant or not (B), and in 

Figure 4 continued on next page

https://doi.org/10.7554/eLife.66388
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around 10 EEG experiments per year with a 
median sample of 24. When EEG research starts 
again, we may reprioritize, and complete fewer 
experiments per year with more participants in 
each. Furthermore, one can tentatively assume 
that other ERPs have comparable signal/noise 
properties to the SPN. If so, we can plausibly 
infer that many ERP experiments are under-
powered for detecting 0.5 microvolt effects. 
Figure  4G thus provides a rough sample size 
guide for ERP researchers, although we stress 
that more ERP-specific estimates of effect size 
should always be treated as superior. We also 
stress that our sample size recommendations 
do not directly apply to multi-level or multivar-
iate analyses, which are increasingly common in 
many research fields. Nevertheless, this inves-
tigation has strengthened our conviction that 
EEG researchers should collect larger samples by 
default. Several benefits more than make up for 
the extra time spent on data collection. Amongst 
other things, larger samples reduce Type 2 error, 
give more accurate estimates of effect size, and 
facilitate additional exploratory analyses on the 
same data sets.

Horseman three: P-hacking
Sensitivity of an effect to arbitrary analytical 
options is called the ‘vibration of the effect’ 
(Button et  al., 2013). An effect that vibrates 
substantially is vulnerable to ‘P-hacking’: that is, 
exploiting flexibility in the analysis pipeline to 
nudge effects over the threshold for statistical 
significance (for example, P=.06 conveniently 
becomes P=.04, and the result is publishable). 
“Double dipping” is one particularly tempting 
type of P-hacking for cognitive neuroscientists 
because we typically have such large, multi-
dimensional data sets (Kriegeskorte et  al., 
2009). Researchers can dip into a large dataset, 
observe where something is happening, then run 
statistical analysis on this data selection alone. 
For example, in one early SPN paper, Höfel and 
Jacobsen, 2007a state that "Time windows were 
chosen after inspection of difference waves" 
(page 25, section 2.8.3). It is commendable 
that Höfel and Jacobsen were so explicit: often 

double dipping is spread across months where 
researchers alternate between ‘preliminary’ data 
visualization and ‘preliminary’ statistical analysis 
so many times that they lose track of which came 
first. Double dipping beautifies results sections, 
but without appropriate correction, it inflates 
Type 1 error rate. We thus attempted to estimate 
the extent of P-hacking in our SPN research, with 
a special focus on double dipping.

Electrode choice
Post hoc electrode choice can sometimes be 
justified: Why analyse an electrode cluster that 
misses the ERP of interest? Post hoc electrode 
choice could be classed as a questionable 
research practice rather than flagrant malprac-
tice (Agnoli et al., 2017; Fiedler and Schwarz, 
2015; John et al., 2012). Nevertheless, we must 
at least assess the consequences of this flexibility. 
What would have happened if we had dogmat-
ically stuck with the same electrodes for every 
analysis, without granting ourselves any flexibility 
at all?

To estimate this, we chose three a priori bilat-
eral posterior electrode clusters and recomputed 
all 249 SPNs (Cluster 1 = [PO7 O1, O2 PO8], 
Cluster 2 = [PO7, PO8], Cluster 3 = [P1 P3 P5 
P7 P9 PO7 PO3 O1, P2 P4 P6 P8 P10 PO8 PO4 
O2]). The first two clusters were chosen because 
we have used them often in published research 
(Cluster 1: Makin et al., 2020c; Cluster 2: Makin 
et al., 2016). Cluster 3 was chosen because the 
16 electrodes cover the whole bilateral posterior 
region. These three clusters are labelled on a 
typical SPN topoplot in Figure 5A. Reassuringly, 
we found that SPN amplitude is highly correlated 
across clusters (Pearson’s r ranged from .946 to 
.982, P<.001; Figure  5B). This suggests vibra-
tion is low, and flexible electrode choice has not 
greatly influenced our SPN findings. In fact, mean 
SPN amplitude would have been slightly higher 
if we had used Cluster 2 for all projects. Average 
SPN amplitude was –0.98 microvolts [95% CI = 
–1.08 to –0.88] with the original cluster, –0.961 
[–1.05; –0.87] microvolts for Cluster 1,–1.12 
[–1.22; –1.01] microvolts for Cluster 2, and –0.61 [ 
–0.66; –0.55] microvolts for Cluster 3.

published and unpublished work (C). (D–F) How many participants show the SPN? The larger (more negative) the SPN, the more individual participants 
show the effect (regular < random). Dashed lines highlight –0.5 microvolt SPNs, which are quite often present in 2/3 but not 3/4 of the participants. The 
relationships were similar whether regularity was task relevant or not (E), and in published and unpublished work (F). (G) Table of required N for 80% 
chance of obtaining an SPN of a given amplitude. (H) Observed power and effect size of 40 SPN modulations. 15/40 do not reach the 0.8 threshold (red 
line).

Figure 4 continued

https://doi.org/10.7554/eLife.66388
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Figure 5. Vibration of the SPN effect. (A) Typical SPN topographic difference map with labels colour coded to show three alternative electrode clusters, 
which could have been used dogmatically in all analyses, whatever the observed topography. (B) Scatterplots show SPNs from the original cluster 
and the three alternatives, which are highly correlated. (C) One-sample t-tests were used to establish whether each SPN is significant. The cumulative 
distribution of p values is shown here. The smallest p value (from the most significant SPN) is at the left-most end of the x axis, and the largest p value 
(from the least significant SPN) is at the right-most end. The p values from the original cluster and the three alternatives were very similar. There was a 
similar number of significant SPNs (169–177). (D) ANOVAs are used to assess SPN modulations. The p values from 40 representative ANOVA effects do 
not overlap completely. There were more significant SPN modulations when the original electrode cluster was used than any alternative (38 vs 35–29).

https://doi.org/10.7554/eLife.66388


 ﻿﻿Feature article﻿﻿﻿﻿

Makin et al. eLife 2022;11:e66388. DOI: https://doi.org/10.7554/eLife.66388 � 12 of 21

Meta-Research | Lessons from a catalogue of 6674 brain recordings

Next, we ran one-sample t-tests on the SPN 
as measured at the 4 alternative clusters. The 
resulting p values are shown cumulatively in 
Figure  5C. Crucially, the area under the curve 
is similar for all cases. The significant SPN count 
varies only slightly, between 169 and 177 (χ2 
(3)=0.779, P=.854). We conclude that flexible 
electrode choice has not substantially inflated the 
number of significant SPNs in our research.

To illustrate this in another way, Figure  6 
shows a colour-coded table of p values, sorted 
by original cluster. At the top there are many 
rows which are significant whichever cluster is 
used (green rows). At the bottom there are many 
rows which are non-significant whichever cluster 
is used (red rows). The interesting rows are in the 
middle, where there is some disagreement indi-
cating that the original effect was a false positive 
(some green and some red cells on each row). 
We can zoom in on the central portion: where, 

exactly, are the disagreements? Two cases come 
from Wright et  al., 2017 however, this project 
reported a contralateral SPN, and these are inev-
itably more sensitive to electrode choice because 
they only cover half the scalp surface area.

We applied the same reanalysis to our 40 
representative ANOVA main effects and interac-
tions. Here there is more cause for concern: 38 
of the 40 effects were significant using the orig-
inal electrode cluster, however this goes down 
to 33 with Cluster 1, 35 with Cluster 2, and to 
just 29 with Cluster 3 (Figure 5D). Flexible elec-
trode choice has thus significantly increased 
the number of significant SPN modulations (χ2 
(3)=8.107, P=.044).

Spatio-temporal clustering
The above analysis examines consequences of 
choosing different electrode clusters a priori, 
while holding time window constant. Next, we 

Figure 6. Which SPNs are significant using alternative clusters? The left column shows a table of all 249 SPNs, 
colour coded (green, significant; red, non-significant), and sorted by p value obtained using the original cluster. 
The important part of the table is the centre, where significance thresholds are crossed by some clusters but not 
others. The central part is expanded, so text is now readable. The important cases are published SPNs that are not 
significant when either Cluster 1 or 2 is used instead. These 4 cases are all labelled (red boxes).

https://doi.org/10.7554/eLife.66388
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Figure 7. Spatio-temporal clustering results. The upper image illustrates the proportion of times each electrode 
appeared in the most significant negative cluster. Electrodes appearing in less than 10% of cases are excluded. The 
topoplot inset shows proportions on a colour scale for all electrodes. The lower image illustrates the time course 
over which the same negative clusters were active, ranked by SPN magnitude.

https://doi.org/10.7554/eLife.66388
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used a spatio-temporal clustering technique 
(Maris and Oostenveld, 2007) to identify both 
electrodes and timepoints where the difference 
between regular and irregular conditions is 
maximal. Does this purely data driven approach 
lead to the same conclusions as the original anal-
ysis from a priori electrode clusters?

After obtaining all negative electrode clus-
ters with significant effect (P<.05, two tailed) 
the single most significant cluster was extracted 
for each SPN. The proportion of times that each 
electrode appeared in this cluster is illustrated in 
Figure 7A (electrodes present in less than 10% of 
cases are excluded). Findings indicate that elec-
trodes O1 and PO7 are most likely to capture the 
SPN over the left hemisphere, and O2 and PO8 

are most likely to capture the SPN over the right 
hemisphere. This is consistent with our typical 
a priori electrode selections. Figure  7B shows 
activity was mostly confined to the 200 to 1000ms 
window, extending somewhat to 1500ms. This is 
consistent with our typical a priori time window 
selections. Apparently there were no effects at 
electrodes or at time windows we had previously 
neglected.

To quantify these consistencies, SPNs were 
recomputed using the electrode cluster and 
time window obtained with spatiotemporal 
cluster analysis. There was a strong correlation 
between this and SPN from each a priori cluster 
(Pearson’s r ranged from .719 to .746, P<.001; 
Figure 8).

Figure 8. Correlations between SPNs from a priori and data-driven selections. Red data points indicate no 
significant negative cluster was found for that SPN. For these points, the mean SPN cluster is plotted as zero and 
does not influence the green least-squares regression line.

https://doi.org/10.7554/eLife.66388
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There are two further noteworthy results from 
spatiotemporal clustering analysis. First, 74% of 
published data sets yielded a significant cluster, 
while the figure was only 57% for unpublished 
data (as of May 2022). This is another estimate 
of publication bias. Second, we can explain some 
of the amplitude variation shown in Figure 8. As 
described in Box  2, 33% of variance in grand-
average SPN amplitude can be predicted by two 
factors called W and Task (SPN (microvolts) = 
–1.669 W – 0.416Task + 0.071). We also ran this 
regression analysis on the spatiotemporal cluster 
SPNs (i.e., the blue data points in Figure  8). 
The two predictors now explained just 16.8% of 
variance in grand-average SPN amplitude (SPN 
(microvolts) = –0.557 W – 0.170Task – 0.939). The 
reduced R2, shallower slopes and lower intercept 
are largely caused by the fact that many data sets 
had to be excluded because they did not yield a 
cluster (i.e., the red data points in Figure 8). This 
highlights one disadvantage of spatiotemporal 
clustering: For many purposes we want to include 
small and non-significant SPNs in pooled analysis 

of the whole catalogue. However, these relevant 
data points are missing or artificially set at zero if 
SPNs are extracted by spatiotemporal clustering.

Pre-processing pipelines
There are many pre-processing stages in EEG 
analysis (Pernet et al., 2020). For example, our 
data is often re-referenced to a scalp average, 
low pass filtered at 25  Hz, down-sampled to 
128  Hz and baseline corrected using a –200 to 
0ms pre-stimulus interval. We then remove some 
blink and other large artifacts with independent 
components analysis (Jung et  al., 2000). We 
sometimes remove noisy electrodes with spher-
ical interpolation. We then exclude trials where 
amplitude exceeds  +/-100 microvolts at any 
electrode.

To examine whether these pre-processing 
norms are consequential, we reanalysed data 
from 5 experiments from Project 13 in BESA 
instead of Matlab and EEGLAB, using different 
cleaning and artifact removal conventions. When 
using BESA, we employed the recommended 

Figure 9. EEGLAB and BESA pipeline comparison. Panels show SPN waves for each of the 5 experiments in 
project 13. EEGLAB waves are the solid lines; the BESA waves are the dashed lines. 20%–100% refers to the 
proportion of symmetry in the stimulus (see Figure 1 for example stimuli).

https://doi.org/10.7554/eLife.66388
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pipelines and parameters. Specifically, we used 
a template matching algorithm to identify eye-
blinks and used spatial filtering to correct eye-
blinks within the continuous data. Trials were 
removed that exceeded an amplitude of  ±120 
microvolts or a gradient of ±75 (with the gradient 
being defined as the difference in amplitude 
between two neighbouring samples). Although 
this trial exclusion takes place on filtered data, 
remaining trials are averaged across pre-filtered 
data. High and low pass filters were set to 0.1 and 
25 Hz in both EEGLAB and BESA. While EEGLAB 
used zero-phase filters, filtering in BESA used 
a forward-filter for the high-pass filter but used 
a zero-phase filter for the low-pass. As seen in 
Figure 9, similar grand-average SPNs fall out at 
the end of these disparate pipelines.

We conclude that post-hoc selection of elec-
trodes and time windows are weak points that 
can be exploited by unscrupulous P-hackers. 
Earlier points in the pipeline are less susceptible 
to P-hacking because changing them does not 
predictably increase or decrease the desired ERP 
effect.

Summary for horseman three: P-hacking
It is easier to publish a simple story with a beau-
tiful procession of significant effects. This stark 
reality may have swayed our practice in subtle 
ways. However, our assessment is that P-hacking 
is not a pervasive problem in SPN research, 
although some effects rely too heavily on post 
hoc data selection.

Reassuringly, we found most effects could 
be recreated with a variety of justifiable analysis 
pipelines: Data-driven and a priori approaches 
gave similar results, as did different EEGLAB 
and BESA pipelines. This was not a foregone 
conclusion – related analysis in fMRI has revealed 
troubling inconsistencies (Lindquist, 2020; 
Botvinik-Nezer et al., 2020). It is advisable that 
all researchers compare multiple analysis pipe-
lines to assess vibration of effects and calibrate 
their confidence accordingly.

Horseman four: HARKing
Hypothesizing After Results Known or HARKing 
(Kerr, 1998; Rubin, 2017), is a potential problem 
in EEG research. Specifically, it is possible to 
conduct an exploratory analysis, find something 
unexpected, then describe the results as if they 
were predicted a priori. At worst, a combination 
of P-hacking and HARKing can turn noise into 
theory, which is then cited in the literature for 
decades. Even without overt HARKing, one can 

beautify an introduction section after the results 
are known, so that papers present a simple narra-
tive (maybe this post hoc beautification could 
be called BARKing). Unlike the other horses, 
HARKing and BARKing are difficult to diagnose 
with reanalysis, which is why this section is shorter 
than the previous sections.

The main tool to fight HARKing is online 
pre-registration of hypotheses (for example, on ​
aspredicted.org or osf.io). We have started using 
pre-registration routinely in the last four years, 
but we could have done so earlier. An even 
stricter approach is to use registered reports, 
where the introductions and methods are peer 
reviewed before data collection. This can abolish 
both HARKing and BARKing (Chambers, 2013; 
Munafò et  al., 2017), but we have only just 
started with this. Our recommendation is to 
use heavy pre-registration to combat HARKing. 
Perhaps unregistered EEG experiments will be 
considered unpublishable in the not-too-distant 
future.

Discussion
One of the most worrisome aspects of the repli-
cation crisis is that problems might be systemic, 
and not caused by a few corrupt individuals. It 
seems that the average researcher publishes 
somewhat biased research, without sufficient 
self-awareness. So, what did we find when we 
looked at our own research?

As regards publication bias – the first 
horseman of irreproducibility – we found that the 
115 published SPNs were slightly stronger than 
the 134 unpublished ones. However, we are confi-
dent that there is no strong file drawer problem 
here. Even the unpublished SPNs are in the 
right direction (regular < random not random < 
regular). Furthermore, a complete SPN catalogue 
itself fights the consequences of publication bias 
by placing everything that was in the file drawer 
into the public domain.

We are more troubled by the second 
horseman: low statistical power. Our most nega-
tive conclusion is that reliable SPN research 
programs require larger samples than those we 
typically obtain (38 participants are required 
to reliably measure –0.5 microvolt SPNs and 
our median sample size is 24). This analysis has 
lessons for all researchers: It is evidently possible 
to ‘get by’ while routinely conducting underpow-
ered experiments. One never notices a glaring 
problem: after all, underpowered research will 
often yield a lucky experiment with significant 
results, and this may support a new publication 

https://doi.org/10.7554/eLife.66388
https://aspredicted.org/
https://aspredicted.org/
http://osf.io/
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before moving on to the next topic. However, 
this common practice is not a strong foundation 
for cumulative research.

The costs of underpowered research might 
be masked by the third horseman: P-hacking. 
Researchers often exploit flexibility in the anal-
ysis pipeline to make borderline effects appear 
significant (Simmons et  al., 2011). In EEG 
research, this often involves post-hoc selection 
of electrodes and time windows. Although some 
post-hoc adjustment is arguably appropriate, 
this double dipping certainly inflates false posi-
tive rate and requires scrutiny. We found that the 
same basic story would have emerged if we had 
rigidly used the same a priori electrode clusters 
in all projects or used a spatio-temporal clus-
tering algorithm for selection. However, some of 
our SPN modulations were not so robust, and we 
have relied on post hoc time windows.

The fourth horseman, HARKing, is the most 
difficult dimension to evaluate because it cannot 
be diagnosed with reanalysis. Nevertheless, pre-
registration is the best anti-HARKing tool, and we 
could have engaged with this earlier. We are just 
beginning with pre-registered reports.

To summarize these evaluations, we would 
tentatively self-award a grade of A- for publi-
cation bias (75%, or lower first class, in the UK 
system), C+ for statistical power (58%), B+ for 
P-Hacking (68%), and B for Harking (65%). While 
some readers may not be interested in the validity 
of SPN research per se, they may be interested 
in this meta-scientific exercise, and we would 
encourage other groups to perform similar exer-
cises on their own data. In fact, such exercises 
may be essential for cumulative science. It has 
been argued that research should be auditable 
(Nelson et al., 2018), but Researcher A will rarely 
be motivated to audit a repository uploaded by 
Researcher B, even if the datasets are FAIR. To 
fight the replication crisis, we must actively look 
in the mirror, not just passively let others snoop 
through the window.

Klapwijk et al., 2021 have performed a similar 
meta-scientific evaluation in the field of develop-
mental neuroimaging and made many practical 
recommendations. All our themes are evident in 
their article. We also draw attention to interna-
tional efforts to estimate the replicability of influ-
ential EEG experiments (Pavlov et  al., 2020). 
These mass replication projects provide a broad 
overview. Here we provide depth, by examining 
all the data and practices from one representative 
EEG lab. We see these approaches as comple-
mentary: they both provide insight into whether 

a field is working in a way that generates mean-
ingful results.

The focus on a single lab inevitably introduces 
some biases and limitations. Other labs may use 
different EEG apparatus with more channels. This 
would inevitably have some effect on the record-
ings. More subtle differences may also matter: 
For instance, other labs may use more practice 
trials or put more stress on the importance of 
blink suppression. However, the heterogeneity 
of studies and pipelines explored here ensures 
reasonable generalizability. We are confident that 
our conclusions are relevant for SPN researchers 
with different apparatus and conventions.

Curated databases are an extremely valu-
able resource, even if they are not used for 
meta-scientific evaluation. Public catalogues 
are an example of large-scale neuroscience, the 
benefits of which have been summarized by 
the neuroscientist Jeremy Freeman as follows: 
“Understanding the brain has always been a 
shared endeavour. But thus far, most efforts 
have remained individuated: labs pursuing inde-
pendent research goals, slowly disseminating 
information via journal publications, and when 
analyzing their data, repeatedly reinventing the 
wheel” (Freeman, 2015). We tried to make some 
headway here with the SPN catalogue.

Perhaps future researchers will see their role as 
akin to expert museum curators, who oversee and 
update their public catalogues. They will obses-
sively tidy and perfect the analysis scripts, data-
bases and metafiles. They will add new project 
folders every year, and judiciously determine 
when previous theories are no longer tenable. 
Of course, many researchers already dump raw 
data in online repositories, but this is not so 
useful. Instead, we need FAIR archives which are 
actively maintained, organized, and promoted 
by curators. The development of software, tools 
and shared repositories within the open science 
movement is making this feasible for most labs. 
We are grateful to everyone who is contributing 
to this enterprise.

It took more than a year to find all the SPN 
data, organize it, reformat it, produce uniform 
scripts, conduct rigorous double checks, and 
upload material to public databases. However, 
we anticipate that it will save far more than a 
year in terms of improved research efficiency. It 
is also satisfying that unpublished data sets are 
not merely lost. Instead, they are now contrib-
uting to more reliable estimates of SPN effect 
size and power. It is unlikely that any alternative 
activity could have been more beneficial for SPN 
research.

https://doi.org/10.7554/eLife.66388
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