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A B S T R A C T   

Objectives: Accumulating evidence indicates a strong link between knee osteoarthritis (KOA) and sarcopenia. 
However, the mechanisms involved have not yet been elucidated. This study primarily aims to explore the 
molecular mechanisms that explain the connection between these 2 disorders. 
Methods: The gene expression profiles for KOA and sarcopenia were obtained from the Gene Expression Omnibus 
database, specifically from GSE55235, GSE169077, and GSE1408. Various bioinformatics techniques were 
employed to identify and analyze common differentially expressed genes (DEGs) across the 3 datasets. The 
techniques involved the analysis of Gene Ontology and pathways to enhance understanding, examining protein- 
protein interaction (PPI) networks, and identifying hub genes. In addition, we constructed the network of in
teractions between transcription factors (TFs) and genes, the co-regulatory network of TFs and miRNAs for hub 
genes, and predicted potential drugs. 
Results: In total, 14 common DEGs were found between KOA and sarcopenia. Detailed information on biological 
processes and signaling pathways of common DEGs was obtained through enrichment analysis. After performing 
PPI network analysis, we discovered 4 hub genes (FOXO3, BCL6, CDKN1A, and CEBPB). Subsequently, we 
developed coregulatory networks for these hub genes involving TF-gene and TF-miRNA interactions. Finally, we 
identified 10 potential chemical compounds. 
Conclusions: By conducting bioinformatics analysis, our study has successfully identified common gene interac
tion networks between KOA and sarcopenia. The potential of these findings to offer revolutionary understanding 
into the common development of these 2 conditions could lead to the identification of valuable targets for 
therapy.   

1. Introduction 

Knee osteoarthritis (KOA) is a prevalent degenerative condition of 
the musculoskeletal system that predominantly impacts individuals in 
the middle-aged and older age groups. This progressive ailment gradu
ally impairs the patient’s mobility and overall well-being [1,2]. The 
primary pathological feature of KOA involves the breakdown and loss of 
articular cartilage. Different joint tissues are impacted to different ex
tents, including remodeling of the subchondral bone, degeneration of 
the meniscus, weakening and looseness of ligaments, inflammation of 
the infrapatellar fat pad, and inflammation of the synovial membrane 
[2–5]. Furthermore, the presence of periarticular muscle atrophy plays a 

significant role in the progression of KOA. Decreased muscle strength 
can alter mechanical stress, reduce joint stability, and accelerate carti
lage degeneration and abnormal subchondral bone changes [6–9]. Sar
copenia, which frequently coexists with KOA [10–12], is primarily 
characterized by the decline in both muscle mass and strength. 

The term sarcopenia was originally introduced in 1989 to describe 
the decline in muscle mass associated with aging. Over time, the defi
nition of sarcopenia has evolved to encompass not only muscle mass, but 
also muscle strength and physical performance [13]. Similar to the KOA, 
sarcopenia predominantly impacts the elderly population, with its 
prevalence progressively rising in correlation with advancing age. Ac
cording to estimates, approximately 30% of individuals aged 65 and 
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older were found to have sarcopenia. Moreover, the prevalence rate of 
sarcopenia among individuals aged 80 years and above was observed to 
range from 50% to 60% [14]. Consequently, the prevalence of concur
rent KOA and sarcopenia among the elderly is relatively high [15,16]. 
Moreover, there is growing clinical evidence revealed that KOA and 
sarcopenia tend to coexist more frequently than expected, which was 
also not happened by chance [15,17–19]. Certain researchers have put 
forth the proposition that it would be prudent to view KOA and sarco
penia as a unified entity, referred to as sarcopenic osteoarthritis [20]. 
Although clinical studies have shown a strong correlation between KOA 
and sarcopenia and indicated that one condition can lead to the devel
oping the other [17,20], there is a lack of evidence about pathophysi
ological and molecular mechanisms associated with KOA and 
sarcopenia. 

Currently, ‘bone-muscle crosstalk’ is becoming a hot topic of 
research, which goes beyond the traditional view of pronounced me
chanical interactions and suggests a biochemical interplay of commu
nication between bones and muscles [12]. Various mechanisms have 
been suggested in the context of KOA and sarcopenia, such as aging, 
mitochondrial dysfunction, and inflammaging [20,21]. The accumula
tion of pro-inflammatory cytokines in the synovium is one of the drivers 
of KOA, such as NF kappa B (nuclear factor kappa B) and IL-6. These 
cytokines had also been proved to be associated with age-associated 
defects in tissue regeneration in mice and skeletal muscle cells by 
inhibiting muscle protein synthesis [20]. Another important factor in 
explaining the potential link between sarcopenia and osteoarthritis is 
the myokines and adipokines released from muscle and adipose tissue. 
In the presence of sarcopenia, changes in muscle and fat composition 
would lead to dysregulation of these factors, including myostatin, leptin, 
and adiponectin. These factors can further lead to an imbalance in 
cartilage or subchondral bone homeostasis leading to cartilage degen
eration [21]. However, the significance of these findings has yet to be 

validated. Recently, high-throughput chip technology is gaining popu
larity in the research of different diseases, including drug discovery, 
molecular diagnosis, and classification. With the aid of bioinformatics 
analysis, the exploration of the common transcriptional profile of KOA 
and sarcopenia could reveal novel insights into the shared pathogenesis 
and treatments of the 2 conditions. Bioinformatics analysis was used in 
the study to identify common genes implicated in the development of 
both KOA and sarcopenia. In particular, the analysis focused on 3 
datasets (GSE1428, GSE55235, and GSE169077) obtained from the 
Gene Expression Omnibus (GEO) repository. After identifying the 
common DEGs in both KOA and sarcopenia, their functions in these 
disorders were investigated through the enrichment analysis of gene 
ontology (GO) terms and pathways. To identify the hub genes, the PPI 
network was constructed afterwards. Ultimately, we built the network of 
Transcription factors (TFs)-gene regulation and TF-microRNAs (miRNA) 
regulation for the hub genes, and then predicted potential medications 
for consideration. The initial findings have unveiled common molecular 
pathways that contribute to the development of both KOA and sarco
penia. These results are highly anticipated to offer novel perspectives for 
understanding and treating these debilitating conditions. Our research 
workflow is depicted in Fig. 1. 

2. Methods 

2.1. Data collection 

The datasets GSE1428, GSE55235, and GSE169077 were acquired 
from the freely available GEO database (www.ncbi.nlm.nih.gov/geo) 
[22]. The GSE1428 dataset investigated sarcopenia in skeletal muscle 
and consisted of microarray data collected from muscle biopsies of the 
vastus lateralis muscle. The research involved a group of 22 male par
ticipants, with 10 falling into the category of young individuals and 12 

Fig. 1. Workflow diagram of current study. GEO, Gene Expression Omnibus; GO, gene ontology; PPI, protein-protein interaction; KEGG, Kyoto Encyclopedia of 
Genes and Genomes; TF, transcription factor. 
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belonging to the older age group [23]. To better illustrate the patho
logical mechanism of KOA, we utilized 2 datasets that examined the 
synovium and cartilage of the knee joint, respectively. The GSE55235 
dataset included 10 synovial tissues obtained from a normal joint and 10 
from individuals with KOA [24]. The GSE169077 dataset comprises 5 
samples of normal cartilage and 6 samples of KOA cartilage (Table 1). If 
needed, the Robust Multi-array Average (RMA) algorithm was utilized 
to conduct batch correction on all datasets. 

2.2. Determining shared DEGs in individuals with KOA and sarcopenia 

The DEGs for the GSE1428, GSE55235, and GSE169077 datasets 
were successfully identified using the DESeq2 and limma packages in R, 
respectively [25,26]. Upon performing a t- test, the gene symbols were 
chosen based on meeting the criteria of a P-value below 0.05 (adjusted) 
and a fold change (FC) greater than 1 (log2 scale). For further analysis, 
the VennDiagram package in the R language was utilized to acquire 
shared DEGs from 3 datasets [27]. 

2.3. Enrichment analysis of gene ontology and pathways 

To investigate the common features of DEGs in KOA and sarcopenia, 
Enrichr, a web-based tool for extensive gene set enrichment analysis (htt 
ps://maayanlab.cloud/Enrichr/) [28], was utilized to conduct a series 
of enrichment analyses, encompassing gene ontology and pathways. The 
GO is a type of functional enrichment that is categorized into 3 separate 
groups: biological process, molecular function, and cellular component 
[29]. To obtain a thorough comprehension of the related signaling 
pathways, the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways [30], WikiPathways [31], Reactome [32], and BioPlanet [33] 
databases were utilized. 

2.4. Construction of protein–protein interaction network and 
identification and analysis of hub genes 

The study of biological processes at different levels of structure and 
function heavily relies on the creation and examination of protein- 
protein interaction (PPI) networks [34]. The Network Analyst plat
form (https://www.networkanalyst.ca) [35] and the Search Tool for the 
Retrieval of Interacting Genes (STRING) online database (http://stri 
ng-db.org) [36] were utilized to construct the PPI network of shared 
DEGs in KOA and sarcopenia. Afterwards, the obtained network was 
visualized and incorporated into the Cytoscape platform (https://cytos 
cape.org/) in order to aid in the examination of protein and genetic 
interactions [37]. Using the degree topological algorithm, the cyto
Hubba [38] identified the hub genes with the highest degree values. 
Next, the co-expression network of recognized central genes was 
established using GeneMANIA (http://genemania.org) [39], an internet 
resource capable of forecasting gene interactions. 

2.5. Identification of related transcription factors and miRNAs 

TFs and miRNA play a crucial role in regulating gene expression at 
the transcription and posttranscription levels [40,41]. Understanding 
the regulation of gene expression in pathological conditions requires a 
comprehensive understanding of the regulatory transcriptional network 
involving TFs and miRNA [42,43]. By utilizing the Network Analyst 

platform, a coregulatory network was constructed to carry out the se
lection of TFs and miRNA. The TF-gene regulatory network was con
structed using the ENCODE database (https://www.encodeproject.org/) 
[44,45], which is integrated into the Networkanalyst platform. To be 
eligible for this study, the requirements are a signal of peak intensity 
that is below 500 and a regulatory potential score that is predicted to be 
less than 1, as determined by the BETA Minus algorithm. The TF-miRNA 
regulatory network was built using the RegNetwork (http://www. 
regnetworkweb.org) database [46], which is also integrated into the 
Networkanalyst platform. Relevant results were all visualized by 
Cytoscape. 

2.6. Evaluation of candidate drugs 

Predicting drug molecules was done by utilizing the Drug Signatures 
Database (DSigDB, http://dsigdb.tanlab.org/DSigDBv1.0/), based on 
the common DEGs identified in the PPIs network for sarcopenia and 
KOA [47]. The DSigDB database was accessed through the Enrichr 
platform (https://maayanlab.cloud/Enrichr/) [48], a commonly used 
tool for visualizing various functional details of genes. The potential 
medications were prioritized according to their adjusted P-values, where 
lower values indicated greater significance. Statistical significance was 
determined using a threshold of P < 0.01. 

3. Results 

3.1. Identification of DEGs and common genes between KOA and 
sarcopenia 

In the GSE1428 dataset related to sarcopenia, a total of 646 DEGs 
were detected. Of these, 351 genes were up-regulated while 295 genes 
were down-regulated. In the GSE55235 dataset of synovial tissues, 985 
DEGs including 511 up-regulated genes and 474 down-regulated genes 
were identified. Additionally, the GSE169077 dataset of cartilage 
revealed 358 DEGs, consisting of 158 up-regulated genes and 200 down- 
regulated genes. By comparing the 3 datasets GSE1428, GSE55235, and 
GSE169077 (BTG2, ZNF395, LOXL1, ZBTB16, TPPP3, BCL6, DDIT4, 
HIST2H2AA3, H1FX, CDKN1A, ADM, RPGR, FOXO3, CEBPB), a total of 
14 DEGs were identified. These DEGs were represented using Venn di
agrams (Fig. 2). 

3.2. GO and KEGG pathway enrichment analysis 

The analysis of GO enrichment of 14 common DEGs was carried out 
on the Enrichr platform. In the biological process, the results indicated 
that the common DEGs are predominantly enhanced in: cellular 
response to starvation, negative regulation of cellular macromolecule 
biosynthetic process and positive regulation of neuron death (Fig. 3A). 
The analysis of cellular components showed that the common DEGs 
were primarily located in cyclin-dependent protein kinase holoenzyme 
complex and nucleolus (Fig. 3B). The molecular function analysis 
revealed that the commonly DEGs are primarily enriched in: DNA- 
binding transcription repressor activity, RNA polymerase II-specific 
and DNA binding (Fig. 3C). For the pathway enrichment, analysis out
comes from BioPlanet (Fig. 4A), KEGG (Fig. 4B), WikiPathway (Fig. 4C) 
and Reactome (Fig. 4D) were gathered. The results showed transcrip
tional misregulation in cancer pathway and FOXO signaling pathway are 

Table 1 
Details of the datasets related to KOA or sarcopenia patients.  

GEO Disease type Sample source Samples (case vs. control) Experiment type Platform Year 

GSE1428 Sarcopenia Vastus lateralis muscle 12 vs 10 Expression profiling by array GPL96 2004 
GSE55235 KOA Synovial tissues 10 vs 10 Expression profiling by array GPL96 2014 
GSE169077 KOA Cartilage 5 vs 5 Expression profiling by array GPL96 2021 

KOA, knee osteoarthritis; GEO, Gene Expression Omnibus. 
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significantly assembled in the KEGG pathway database. 

3.3. Protein–protein interaction analysis and network construction 

The set of 14 common DEGs was utilized as input in both the 
Network Analyst platform and the STRING online database. The 
resulting file from this analysis was subsequently imported into Cyto
scape for the purpose of visual representation. The PPI network 
comprising commonly shared genes is composed of 53 nodes and 108 
edges. The cytoHubba plugin was utilized to identify the hub DEGs in 
the PPI network, namely FOXO3, BCL6, CDKN1A, and CEBPB, based on 
their degree (Fig. 5). The biological functions of the hub DEGs were 
investigated using a complex gene interaction network constructed 
based on data from the GeneMANIA database. The network consisted of 
various types of interactions, including co-expression (77.64%), phys
ical interactions (8.01%), co-localization (3.63%), predicted in
teractions (5.37%), and pathway associations (1.88%) (Fig. 6). A total of 
20 genes, which were found to be associated with the 4 hub DEGs, were 
identified. The findings of this study indicate that these genes are pri
marily involved in the regulation of cyclin-dependent protein kinase 
activity, negative regulation of cell population proliferation, negative 
regulation of mitotic cell cycle, positive regulation of transcription by 
RNA polymerase II, negative regulation of protein phosphorylation, 
transcription regulator complex and negative regulation of growth. 

3.4. TF-gene interaction network and TF-miRNA coregulatory network 

The NetworkAnalyst web tool was utilized to generate a TF-gene 

interaction network consisting of 4 hub DEGs. There were 318 edges 
and 201 nodes in the network. Among them, CDKN1A is regulated by 
105 TF genes, CEBPB is regulated by 86 genes, FOXO3 is regulated by 85 
genes and BCL6 is regulated by 43 genes. It was observed that a total of 
87 TFs exhibit regulation over multiple hub genes within the network. 
This finding provides evidence for the extensive interaction between TFs 
and hub genes. Among them, DMAP1, NRF1, FOXJ2, ATF3, MAZ 
regulate all 4 hub genes (Fig. 7). The construction of the TF-miRNA co- 
regulatory network was carried out using the NetworkAnalyst platform 
(Fig. 8). The network consisted of a total of 67 nodes and 142 edges. 
Within this network, 23 miRNAs and 40 TF genes were found to interact 
with hub genes. Within the miRNAs, has-miR-302a shows the highest 
degree of 3, which simultaneous regulates CDKN1A, FOXO3 and BCL6. 

3.5. Prediction of candidate drugs 

Using the DSigDB database, the Enrichr platform was utilized to 
identify potential pharmaceutical candidates. Table 2 presented the 
adjusted P-value, which is used to determine the extraction of the top 10 
potential chemical compounds. The findings of the study indicated that 
strophanthidin PC3 UP and cicloheximide PC3 UP exhibited the highest 
degree of gene interaction among the various drug molecules examined. 

4. Discussion 

The KOA and sarcopenia are common musculoskeletal diseases 
which both occur predominantly in middle-aged and elderly population. 
With the increasing aging of the population, the incidence rates will 

Fig. 2. Volcano diagram and Venn diagram. (A) The volcano map of GSE1428. (B) The volcano map of GSE55235. (C) The volcano map of GSE160977. Upregulated 
genes are colored in red; downregulated genes are colored in green. (D) The 3 datasets showed an overlap of 14 DEGs. HC, healthy control; OA, osteoarthritis. 
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Fig. 3. The top 10 GO terms of common genes between KOA and sarcopenia. (A) Biological Processes, (B) Cellular Component, (C) Molecular Function. GO, gene 
ontology; KOA, knee osteoarthritis. 
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Fig. 4. The top 10 pathway enrichment analysis of common genes between KOA and sarcopenia. (A) BioplanetPathway, (B) KEGG Human Pathway, (C) Wiki
pathway, (D) ReactomePathway. KOA, knee osteoarthritis; KEGG, Kyoto Encyclopedia of Genes and Genomes. 
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increase gradually, which imposed a heavy burden on society. And the 
coexsiting of two diseases can make the situation worse. Although 
numerous studies revealed that KOA and sarcopenia are significantly 
intercorrelated, few studies focus on the shared genetic mechanism. The 
objective of this study was to discover the common DEGs linked to both 
KOA and sarcopenia. Following the identification of 14 common DEGs 
between KOA and sarcopenia, a sequence of bioinformatics in
vestigations was carried out. Identifying these shared DEGs could 
potentially improve our comprehension of the underlying mechanisms 
and therapeutic targets in KOA and sarcopenia. 

The process of detecting GO terms utilized the 14 identified common 
DEGs. The most significant GO biological process terms include cellular 
response to starvation, negative regulation of cellular macromolecule 
biosynthetic process, positive regulation of neuron death, negative 
regulation of mitotic cell cycle, and positive regulation of fat cell dif
ferentiation. Among them, cellular response to starvation and negative 
regulation of cellular macromolecule biosynthetic process represents the 
nutrient deficiencies in KOA and sarcopenia [49,50]. Especially the 
micronutrients such as vitamin K, vitamin D and magnesium, have 
already been shown to play an important role in KOA and sarcopenia 
[51–53]. Consequently, nutritional interventions are the fundamental 
and important actions for these 2 conditions [54,55]. The positive 
regulation of adipocyte differentiation could potentially serve as a sig
nificant mechanism for elucidating the interplay between KOA and 
sarcopenia. Sarcopenia is closely associated with fat infiltration in 
muscle, while the infrapatellar fat pad also contributes to pathophysi
ological processes in KOA [3,56]. The primary GO terms within the 
molecular function category are as follows: DNA-binding transcription 
repressor activity, RNA polymerase II-specific; DNA binding; and RNA 
polymerase II cis-regulatory region sequence-specific DNA binding. RNA 
polymerase II is a multiprotein complex that transcribes DNA into pre
cursors of messenger RNA (mRNA) and miRNA [57]. The molecular 
function of these common genes indicated that the dysregulation of 
mRNA or miRNA is present in both KOA and sarcopenia, but further 
study is needed to determine which one specifically. The 
cyclin-dependent protein kinase holoenzyme complex and nucleus are 
among the highest-ranking cellular components. In mammals, the cell 
cycle regulatory network is primarily controlled by a set of 20 kinases 
known as cyclin-dependent protein kinases (CDKs) [58]. It has been 

previously discovered that the proliferation of myosatellite cells and 
chondrocytes is significantly influenced by several CDKs [59,60]. 

By analyzing the 14 common DEGs, we obtained the identification of 
the KEGG pathway to find similar pathways between KOA and sarco
penia. Top 10 KEGG pathways included: transcriptional misregulation in 
cancer, FOXO signaling pathway, endometrial cancer, non-small cell 
lung cancer, PI3K-AKT signaling pathway, cellular senescence, micro
RNAs in cancer, thyroid cancer, bladder cancer, and basal cell carci
noma. The forkhead box O (FOXO) family of transcription factors play 
an important role in cell proliferation, apoptosis, differentiation and 
resistance to oxidative stress by shuttling in and out of the nucleus 
[61–64]. The PI3K-AKT pathway is a cellular signaling pathway that 
facilitates cellular processes such as metabolism, cell division, cell 
viability and growth, and blood vessel formation upon receiving signals 
from outside the cell [65,66]. Both of these pathways play a crucial role 
in preserving cellular balance and are implicated in the development of 
KOA and sarcopenia. The relaxation of the FOXO and PI3K-AKT 
signaling pathway plays a role in reducing cell survival under oxida
tive stress, promoting the presence of cartilage-degrading enzymes in 
KOA, and disrupting muscle protein turnover in sarcopenia [62,63, 
67–69]. Currently, the FOXO and PI3K/AKT pathways are promising 
therapeutic targets in both KOA and sarcopenia which had already 
drawn the attention of researchers [61,68–71]. In the interim, findings 
derived from BioPlanet indicate that the gene pathways that exhibit the 
highest level of interaction are the BDNF signaling pathway and the p53 
signaling pathway. The utilization of WikiPathway and Reactome da
tabases independently yields the identification of two distinct pathways: 
DNA damage response (only ATM dependent) WP710 and 
FOXO-mediated transcription R-HSA-9614085. 

Based on the analysis of the PPI network, the proteins FOXO3, BCL6, 
CDKN1A, and CEBPB have been identified as hub proteins due to their 
significantly high degrees. Three genes have been identified as being 
associated with the pathological mechanism of KOA and sarcopenia. 
FOXO3 is a member of FOXO family of transcription factors, which have 
an important role both in KOA and sarcopenia as described above [54, 
63,72]. In particular, FOXO3 can induce atrophy of muscle cells through 
activation of Atrogin-1, but it is also important for self-renewal of 
myosatellite cells in adult muscle regeneration [67,73]. While FOXO3 
regulates apoptosis and extracellular matrix metabolism in 

Fig. 5. PPI network of common genes among KOA and sarcopenia. A: PPI network output from STRING online database. B: PPI network output from Network Analyst 
platform. The highlighted 4 hub genes, based on their degree, are FOXO3, BCL6, CDKN1A, and CEBPB. The analyzed network holds 53 nodes and 108 edges. PPI, 
protein-protein interaction; KOA, knee osteoarthritis; STRING, Search Tool for the Retrieval of Interacting Genes. 
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chondrocytes [72]. CDKN1A, also known as p21, encodes a potent CDK 
inhibitor which binds to and inhibits the activity of CDK2 or CDK4 and 
thus functions as a regulator of cell cycle [74]. Although numerous 
studies have shown that CDKN1A is a key gene in KOA through bio
informatic analysis [75–78], but the true role of it remains obscure. The 
low expression or knocking down CDKN1A resulted in an enhancement 
of chondrogenic differentiation, which could even lead to the cartilage 
regeneration [79]. However, some studies also indicated that the low 
expression of CDKN1A was associated with the proliferation of 
fibroblast-like synoviocytes which is one of the manifestations of KOA 
[80]. In sarcopenia, CDKN1A contribute to the age-associated decrease 
in satellite cell proliferation, which causes the muscle atrophy [81]. 
CEBPB is an important transcription factor regulating the expression of 
genes involved in immune and inflammatory responses [82,83]. In KOA, 
CEBPB induces chondrocyte apoptosis by regulating the expression of 

MMP13 [84]. While in the sarcopenia, the role of CEBPB is less 
described, but it has been demonstrated to play a central role in adipose 
differentiation [85]. As to the BCL6, a gene encodes a zinc finger tran
scription factor, there is a lack of studies documenting the involvement 
of it in KOA or sarcopenia, underscoring the significance of further 
investigation in this area. According to GeneMANIA database, the hub 
genes primarily govern the regulation of cyclin-dependent protein ki
nase activity, which in turn plays a crucial role in controlling the cell 
cycle and cellular proliferation. In line with previous studies, the pro
liferation of myosatellite cells and chondrocytes is an important path
ogenesis and therapeutic target for KOA and sarcopenia [86–89]. 

TFs and miRNAs both have a crucial impact on the development of 
numerous diseases through their co-regulation of gene expression [43, 
90]. Through our analysis, we have identified the TFs and miRNA that 
may serve as shared causes and potential treatment targets for KOA and 

Fig. 6. Analysis of 4 hub genes and their co-expressed genes in co-expression physical interactions, co-localization, predicted interactions, and pathway associations 
using GeneMANIA. 
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sarcopenia. In TF-gene interaction network, CDKN1A exhibits a signif
icantly elevated rate of interaction with other transcription factor genes. 
Additionally, among the regulators, namely DMAP1, NRF1, FOXJ2, 
ATF3, and MAZ, there is evidence of interaction with all 4 hub genes. In 
the TF-miRNA coregulatory network, EGR1 and has-miR-302a show the 
highest degree in TFs and miRNAs, respectively. Among the TFs, ATF3, 
NRF1 and EGR1 have already been shown to be involved in KOA and 
sarcopenia [91–94]. EGR1 (early growth response 1) facilitates the 

deterioration and enlargement of cartilage by triggering the Krüppel-
like factor 5 and β-catenin signaling in KOA [95], while also hindering 
the ability to eliminate excess reactive oxygen species in muscle [95,96]. 
While the role of the DMAP1, FOXJ2 and MAZ in KOA and sarcopenia 
need to be investigated in future research. As to the has-miR-302a, it can 
promote inflammatory cytokine release and matrix metalloproteinase 
production and ultimately leads to cartilage degeneration in KOA [97]. 
Meanwhile, has-miR-302a is also tightly related to the mitochondrial 

Fig. 7. Network for TF-gene interaction with hub genes. (A) The highlighted red color node represents the hub genes and other nodes represent TFs. There were 318 
edges and 201 nodes in the network. Among them, CDKN1A is regulated by 105 TF genes, CEBPB is regulated by 86 genes, FOXO3 is regulated by 85 genes and BCL6 
is regulated by 43 genes. It was observed that a total of 87 TFs exhibit regulation over multiple hub genes within the network. (B) A significant gene clustering 
module via Cytoscape. Six TFs closely related to the hub genes were identified. TF, transcription factor. 
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function and glycolysis of the skeletal muscle [98]. 
Through the utilization of the DSigDB database, 14 common DEGs 

were employed in order to forecast potential pharmaceutical agents. 
Subsequently, the 10 most noteworthy drugs were identified and 
brought to attention. Among them, various cardiac glycoside com
pounds were identified, such as strophanthidin, lanatoside, digitoxi
genin and digoxin. Cardenolides have a direct effect on strengthening 
myocardial contractility, whether they have the same effect on other 
muscles or sarcopenia has not been reported. However, the therapeutic 
role of cardenolides in osteoarthritis has been reported in several studies 
in the last 2 years [99,100]. Wang et al. [100] found that digoxin acti
vates chondrocyte differentiation and anabolism to protect against KOA. 
The repurposing digoxin for KOA further validates the reliability of our 
analysis, and the repurposing cardenolides for sarcopenia is another 
promising direction, which need more in-depth researches. Ciclohex
imide is one of inhibitors of protein synthesis, which could inhibit 
starvation-induced autophagy through mTORC1 activation [101,102]. 
As shown in GO biological process, the common genes mainly were 
enriched in cellular response to starvation. It appears that in KOA and 

sarcopenia, there is an unexpected autophagy induced by starvation. 
Parthenolide, an active compound derived from chrysanthemum’s 
leaves and flowers, possesses significant properties in reducing inflam
mation, alleviating migraines, and combating cancer. According to 
recent research, parthenolide has been found to regulate mitophagy 
caused by oxidative stress and safeguard myoblasts from apoptosis. This 
compound also exhibits similar effects on chondrocytes [103,104]. 

Previous research has investigated the fundamental genes or path
ways that are linked to KOA and sarcopenia, respectively. Nevertheless, 
the molecular mechanisms that are common to both of these conditions 
have yet to be investigated. The current study aimed to investigate and 
ascertain the shared DEGs, hub genes, TFs, and miRNAs associated with 
KOA and sarcopenia. This study represents the first attempt to identify 
these factors, providing valuable insights into the shared underlying 
mechanisms and potential therapeutic strategies for both conditions. 
However, our study also has some limitations. First, only 3 expression 
profiles were included in this study. The small number of samples may 
make the results less convincing. Meanwhile, in the patients of KOA 
datasets, the status of sarcopenia was not stated, but this does not affect 

Fig. 8. The network presents the TF-miRNA coregulatory network via NetworkAnalyst platform. The network consists of 67 nodes and 142 edges including 40 TF- 
genes, 23 miRNA and 4 hub genes. The nodes in red color are the hub genes, a yellow node represents TF-genes and other nodes indicate miRNAs. Within the 
miRNAs, has-miR-302a shows the highest degree of 3, which simultaneous regulates CDKN1A, FOXO3 and BCL6. TF, transcription factor. 
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our results as we take the intersection of the 2 diseases; Second, given 
that our study relies solely on bioinformatics analysis without any 
clinical validation, it is imperative to conduct further verification of the 
functionality of hub genes using an in vitro model. This aspect will be 
the primary focus of our future research, along with assessing the safety 
and efficacy of candidate drugs. 

5. Conclusions 

In summary, we have successfully identified common and hub DEGs 
and elucidated the shared molecular mechanisms underlying KOA and 
sarcopenia using various bioinformatics methodologies. This study of
fers a potential avenue for further exploration into the shared patho
genic mechanisms and treatment approaches for KOA and sarcopenia. 
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