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In the beginning was… the genome.
The 30th of January, 1991 found me outside Temple Under-

ground Station on the Thames Embankment in London. John
Sgouros of the Martinsried Institute for Protein Sciences, who had
flown over from Munich that morning, emerged from the station
carrying seven A0 sheets in a roll. They were copies of Figure 1
for the paper ‘The complete DNA sequence of yeast chromosome
III’, for which we were determined to get a 1991 submission date.
We walked around the corner to the Nature offices in Little Es-
sex Street and handed in these giant Figures together with en-
velopes containing the manuscript and the other Figures, which
I had brought down from Manchester. Nature then lost the copies
of Figure 1 but, by 27th March 1992, the paper was accepted and
appeared in the journal on the 7th of May 1992 (Oliver et al. 1992).
This paper reported the first complete DNA sequence of a chro-
mosome from any organism and, with it, everything changed—
certainly for me, for yeast genetics, but also for the wider biomed-
ical research community’s view of the value of genome sequenc-
ing. The complete sequence of this chromosome taught us some
important lessons in two major areas.

First, in the area of eukaryotic chromosome organisation and
evolution. We found that the relationship between the genetic dis-
tance between loci, as measured in terms of recombination fre-
quency, and that of physical distance, as measured by the DNA
sequence, was far from linear. In fact, the ratio of the genetic
distance (in cM) to the physical distance (in kb) showed a > 40-
fold range for different intervals along the chromosome, being
smallest close to the centromere and greatest half-way down each
chromosome arm (Figure 3 in Oliver et al. 1992, 1993). It also in-
dicated the role of retrotransposons in the generation of redun-
dancy in the yeast genome by duplicating portions of the chro-
mosome (Wicksteed et al. 1994) and increasing the copy number
of tRNA genes (Eigel and Feldmann 1982, Genbauffe et al. 1984).
Redundancy is the substrate exploited by evolution to generate
novel functions (Ohno 1970, and see below).

Second, the complete sequence of this chromosome taught us
that we knew much less about the genetics of Saccharomyces cere-
visiae than we thought. The yeast genetics research community,
at this time, was justly proud of the genome map (Mortimer et al.
1989) that had been constructed by classical genetic techniques
supplemented by recombinant DNA analyses. In fact, there was
even talk that for some functions, e.g. DNA repair, the map was

saturated. However, inspection of the chromosome III sequence
showed that there were 182 potential protein-encoding genes
(open reading frames, ORFs, > 100 amino acids in length) of
which only 37 were known from classical studies (Oliver et al.
1992). There were 35 laboratories involved in the sequencing of
this first chromosome, and the Yeast Genome Consortium, ably
led by André Goffeau, went on in this ‘cottage industry’ approach
to sequence the other 15 chromosomes until the first complete
genome sequence of a eukaryotic organism was published in 1996
(Goffeau et al. 1996), just a year after that of the first complete
bacterial genome sequence (Fleischmann et al. 1995).

There were individual papers reporting the sequence of the
other 15 chromosomes (Dujon et al. 1994, Feldmann et al. 1994,
Johnston et al. 1994, Bussey et al. 1995, Murakami et al. 1995, Gal-
ibert et al. 1996, Bowman et al. 1997, Churcher et al. 1997, Diet-
rich et al. 1997, Jacq et al. 1997, Philippsen et al. 1997, Tettelin et
al. 1997), many of these were published, together with a bioinfor-
matics overview (Mewes et al. 1997), in a special issue of Nature
entitled The Yeast Genome Directory (for which the European Com-
mission paid handsomely) that did not appear until the following
year. The regular issue of Nature that appeared at the same time
carried a ‘News & Views’ piece on the yeast genome from Craig
Venter and his colleagues (Clayton et al. 1997) that, in the short
run, got more attention than any of those in the Directory. I think
that it is difficult for today’s researchers, used to the facility of
next-generation sequencing and automated methods of genome
assembly, to appreciate just how much work was put in by the dif-
ferent yeast labs involved in the project. When the project began,
the sequencing was done by hand (only 7% of the chromosome
III sequence was obtained using automated methods (Oliver et al.
1992) and sequence assembly was largely a hand-crafted exercise.
Although all yeast researchers, and very many others, make di-
rect or indirect use of the yeast genome sequence every day, it has
received the ultimate accolade of ‘citation eclipse’, being rarely
referred to in their papers.

Functional genomics
The complete yeast genome sequence revealed 6200 putative
genes encoding 5885 proteins, 275 tRNAs, and 40 small nuclear
(sn) RNAs (Goffeau et al. 1996). This may be compared to the 769
loci on the S. cerevisiae genetic map at the outset of the sequencing
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project (Mortimer et al. 1989). Bioinformatic analyses performed
at the time of completion of the genome sequence (Mewes et al.
1997) revealed that only ca. 40% of the genes revealed by the se-
quence could be attributed a function, either from direct exper-
imental evidence, or their products’ membership of well-defined
protein families, or their significant amino-acid sequence homol-
ogy to proteins of known function.

Thus, 7–8 years of genome sequencing had not only revealed
eight times as many genes than 40 years of classical analyses, but
a large proportion of these putative genes appeared to be com-
pletely unknown to biological science.

Even with just the sequence of chromosome III in hand (some
30 years ago), it was immediately obvious that the normal course
of genetics would need to be turned on its head. Instead of isolat-
ing mutants with defective or altered phenotypes and using clas-
sical genetic analyses to define functional genes and map their
relative locations on chromosomes, now genes would be both
identified and mapped by genome sequencing, and it would be
necessary to work in the opposite direction to discover their func-
tions (Oliver et al. 1993, Oliver 1996a, 1997). It was also evident that
this new approach to genetic analysis would require techniques
that were every bit as comprehensive as that of genome sequenc-
ing itself. By 2000, it was possible to lay out the basic levels of ‘omic
analysis of genome, transcriptome, proteome, and metabolome
(Oliver 2000).

The magnitude and complexity of the task of elucidating the
functions of all the novel genes revealed by the complete yeast
genome sequence suggested that such an enterprise was beyond
the skills and resources of any single laboratory or institution
and that we should build on the network approach to large-
scale projects that had been the vision of André Goffeau. Accord-
ingly, a new European Consortium, EUROFAN (European Func-
tional Analysis Network; https://cordis.europa.eu/project/id/BIO4
950080), comprising some 145 laboratories from 14 countries, was
established at the beginning of 1996 with the aim of determining
the role of 1000 S. cerevisiae genes of unknown function that had
been identified from the genome sequence (Oliver 1996b). The ba-
sic strategy was to generate a library of single-gene deletants with
which to seek for null phenotypes. Following the generation of
the mutants, in which all laboratories participated initially, EURO-
FAN did phenotypic analyses that were organised in a hierarchical
manner that was designed to approach the biological function of
each gene with ever-increasing specificity as it moved down the
pathway of analysis.

The deletion mutants were generated by PCR-mediated gene
replacement using the kanMX cassette constructed by Achim
Wach and Peter Philippsen (Wach et al. 1994). This cassette is de-
signed such that it has no sequence homology anywhere in the
yeast genome. This means that it can be targeted to a specific
chromosomal location by PCR-generated extension sequences
that are homologous to sequences flanking the ORF, i.e. to be
deleted. Cells with this cassette successfully integrated could be
selected using the drug geneticin (G418), resistance to which was
conferred by the kanR gene carried by the cassette. This cassette,
itself, conferred no measurable phenotype on the recipient strain
other than drug resistance (Baganz et al. 1997). The phenotypic
analyses undertaken were both qualitative and quantitative in
nature. While competition experiments were identified as being
particularly useful for quantitative analyses, the initial methods
of discriminating between mutant strains in mixed cultures were
rather cumbersome (Baganz et al. 1998). This problem was quickly
resolved by Ron Davis’s innovation of incorporating gene-specific
molecular bar-codes into the PCR primers used to amplify the

deletion cassettes (Shoemaker et al. 1996). This meant that each
deletant was uniquely identified by a pair of bar-codes and the ad-
vantages of this were so obvious that a new international project
was formed between labs in the US, Canada, and EUROFAN that
resulted in the generation of a complete library of strains contain-
ing bar-coded deletions for all protein-encoding genes predicted
from the genome sequence (Giaever et al. 2002).

At the outset of these phenotypic analyses, the most obvious
phenotype was cell death, and ca. 19% of yeast’s protein-encoding
genes were found to be essential, i.e. haploid segregants lacking
the gene fail to form a colony on a YEPD agar plate. However, it
should be recalled that essentiality, like any other phenotype, is
context dependent. The ORF YDL120 provides a good example of
the way this hierarchical analysis of gene function worked, and a
rare case where a given gene was taken all the way through the
hierarchy of tests and the detailed biochemical lesion resulting
from the deletion was not only identified, but also related to a
human disease. Initial tests on a ydl120� mutant showed that it
failed to grow on glycerol, and so it was passed to the Mitochon-
drial Node for more detailed analysis. There, Francoise Foury and
her colleagues were able to locate the fault to mitochondrial iron
transport. Moreover, the amino-acid sequence of this yeast ORF’s
protein product showed similarity to that of the human protein
frataxin, which is the product of the human gene determining
the neurodegenerative disease, Friedreich’s ataxia. The yeast le-
sion could be complemented by the expression of a cDNA copy of
the human coding sequence, confirming functional homology and
elucidating, for the first time, the biochemical basis of the human
disease (Foury and Cazzalini 1997, Rotig et al. 1997).

Quantitative phenotypic analyses exploited the unique identi-
fiers that the molecular bar-codes provided in order to carry out
competition experiments between the complete library of dele-
tion mutants, usually as heterozygous (hemizygous) diploids so
that all protein-encoding genes should be interrogated. Studies
were carried out both in batch (Deutschbauer et al. 2005) and
continuous (Delneri et al. 2008) culture. The latter (Pir et al. 2012)
had the advantage of allowing competitions to be carried out un-
der different nutrient limitations or at different growth rates (us-
ing chemostat culture) or in nutrient-unconstrained conditions
(using turbidostat culture). Genes whose hemizygous mutants
showed a significant change in their growth rate, compared to
the wild type, were termed high flux control (HFC) genes. These
HFC genes may be divided into two classes: a haploinsufficient
(HI) set, where the hemizygous mutants grow slower than the
wild type, and a haploproficient (HP) set, in which the hemizy-
gotes grow faster than the wild type. The HI set is enriched for
genes involved in the processes of gene expression, while the HP
set is enriched for genes concerned with the cell cycle and genome
integrity. Since haploproficiency was observed in turbidostat cul-
ture, this means that diploid cells lacking one copy of an HP gene
grow at a rate in excess of the maximum specific growth rate pre-
viously observed in wild-type cells (Pir et al. 2012). This implies
that the control of growth rate in yeast represents a trade-off be-
tween the selective advantages of rapid growth and the need to
maintain the integrity of the genome.

For a subset of HP genes, heterozygous deletion was found to be
sufficient to cause aberrant cell cycling and altered rates of apop-
tosis, phenotypes associated with cancer in mammalian cells (de
Clare and Oliver 2013). Most of these yeast genes are the orthologs
of mammalian cancer genes, and hence, our studies suggest that
gene copy number variation (CNV) may lead to tumorigenesis in
human cells. Using this yeast gene set as a model, it was shown
that the response to a range of anticancer drugs is strongly de-
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pendent on gene dosage, such that low or intermediate concen-
trations of the drugs can actually increase yeast’s growth rate.
These data suggest that the identification of CNVs in tumor cells
may assist both the selection of anticancer drugs and the dosages
at which they should be administered. This is yet another exam-
ple of how the systematic analysis of gene function in yeast (or
functional genomics; Hieter and Boguski 1997) can shed light on
human diseases.

For all its successes, EUROFAN’s hierarchical approach to the
elucidation of gene function did not decipher the role of as many
of yeast’s novel genes as had been hoped. This may be attributed
to two main problems and yet more genome sequencing is pro-
viding at least a partial answer to them both. The first problem is
our lack of knowledge of yeast ecology. This limits our ability to
devise simple phenotypic tests at the lower end of the hierarchy
of functional analysis. The second is the remarkable amount of
redundancy in such a small eukaryotic genome as that of S. cere-
visiae. Differences, between members of a gene family, in the reg-
ulation of gene expression or the cellular localisation of protein
products can mean that this redundancy is more apparent than
real (Delneri et al. 1999). However, a major source of redundancy in
the S. cerevisiae genome is the whole-genome duplication (WGD)
that the ancestor of this and related species underwent during
their evolution. This major evolutionary event was first inferred by
Ken Wolfe and Dennis Shields (Wolfe and Shields 1997 by analyz-
ing the S. cerevisiae genome sequence (Goffeau et al. 1996) and was
subsequently confirmed by sequencing the genomes of two mem-
bers of the Saccharomycetaceae that diverged from the Saccha-
romyces lineage prior to the WGD—Kluyveromyces (syn. Lachancea)
waltii (Kellis et al. 2004) and Ashbya gossyppi (Dietrich et al. 2004).

Since the discovery of the WGD, a huge amount of effort has
gone into the isolation of strains of S. cerevisiae and its close
relatives from the wild and the sequencing of their genomes.
These efforts again involved a collaborative approach and the for-
mation of research consortia such as Génolevures, led by Jean-
Luc Souciet and Bernard Dujon (Sherman et al. 2004, Souciet et
al. 2009), and the 1,000 Genomes project led by Gianni Liti and
Joseph Schacherer (Peter et al. 2018). These studies have not only
thrown light on the evolutionary history of the Saccharomyc-
etaceae, including the domestication of S. cerevisiae, but the prove-
nance of the wild isolates has also contributed to our understand-
ing of yeast ecology. Despite all these efforts, both in the labo-
ratory and the field, there remain some 18% of protein-encoding
genes of S. cerevisiae that are still of unknown function (Wood et
al. 2019). Such ‘orphan’ genes are often dismissed as being spe-
cialised genes that are unique to a particular species; in fact, more
than one-third of them are conserved across the tree of evolution
from yeasts to humans (Wood et al. 2019). Thus, the functional
genomics agenda remains unfinished.

Systems biology
The endpoint of the functional genomics agenda should be a com-
plete list of the working parts of the yeast cell, such as you might
find in the back of a workshop manual of a complex machine
(Oliver 2002). However, this parts inventory is not sufficient to al-
low the servicing of the machine or to permit us to engineer it to
fulfil new purposes. What is required is to know how those work-
ing parts interact to make a functional machine, and how those
interactions are controlled; just as, for instance, we would need
the wiring diagram of a radio in order to understand the interac-
tions of its parts and how its performance is controlled (Lazebnik
2002). There were valiant attempts to take a systems approach to

biology in the 1960s (see Waddington 1968). While it was recog-
nised that this would involve the cooperation of experimental bi-
ologists and mathematical modellers, there were simply insuffi-
cient experimental data to permit the construction of robust and
predictive models. In the event, the modellers went ahead without
the essential data and, consequently, mathematical modelling got
a bad name—at least among molecular geneticists.

One of the early steps required in a systems approach to yeast
biology was to integrate the different levels of ‘omic analysis (ge-
nomic, transcriptomic, proteomic, and metabolomic) by carrying
out what have come to be known as ‘multi-omic’ experiments
(Castrillo et al. 2007). Since that time there have been enormous
advances in the technology of ‘omic analyses, with the transi-
tion from microarrays to RNAseq for transcriptomic experiments
(Waern et al. 2011, Hesketh 2019) and the extensive array of mass
spectrometry techniques employed for both proteomics (Rees and
Lilley 2011, Nightingale et al. 2019) and metabolomics (Winder
and Dunn 2011, Chaleckis et al. 2019). For metabolomics, this has
meant that the promise of being able to reveal gene functions by
comparing the metabolic profiles of single-gene mutants (Raams-
donk et al. 2001) has at last been realised (Mülleder et al. 2016)—
although it did require the conversion of the entire yeast dele-
tion collection to prototrophy in order to achieve it (Mülleder et al.
2012).

For all the advances in these analytical technologies, it was two
approaches that exploited the ‘awesome’ power of yeast genet-
ics that made major contributions to the early development of
yeast systems biology. The first of these was the yeast two-hybrid
system developed by Stan Fields (Fields and Song 1989), which
allowed the high-throughput analysis of protein–protein interac-
tions. This could be applied, not only to yeast proteins (Uetz et al.
2000, Ito et al. 2001), but also to proteins of other species, e.g. hu-
mans (Rual et al. 2005), expressed in yeast. Whilst the system has
its limitations, for instance it measures interactions within the
yeast nucleus, a number of variations to circumvent them have
been devised. For all that, Y2H analyses have provided a hugely
valuable dataset when combined with studies that used other
techniques (von Mering et al. 2002), including biochemical meth-
ods exploiting mass spectrometry (Gavin et al. 2002), and rigor-
ous statistical analyses (Yu et al. 2008). The second approach has
been arguably of even greater value since it identifies functional
interactions. This is the high-throughput detection of gene-gene
(epistatic) interactions by using the synthetic genetic array (SGA)
methodology developed by Charlie Boone, Brenda Andrews, and
colleagues in Toronto (Tong et al. 2001, 2004, Costanzo et al. 2010).
At first, the synthetic phenotypes were monitored as a growth/no
growth qualitative output, but subsequently colony growth rate
was measured (Baryshnikova et al. 2010) and even cell morphology
(Ohya et al. 2015, Mattiazzi Usaj et al. 2020). Similarly, the methods
could, at first, only be applied to measuring interactions between
pairs of nonessential genes but it has now been extended to in-
clude the essential genes through the use of titratable promoters
(Mnaimneh et al. 2004) and temperature-sensitive alleles (Li et al.
2011). These methods of mapping both physical and functional in-
teractions have proved enormously valuable to system modellers,
not only to constrain their models, but also to test their predic-
tions against empirical datasets (see below).

As with Functional Genomics, the advent of Systems Biology
saw the establishment of networks of European yeast researchers
to pursue major programmes of work—the Yeast Systems Biol-
ogy Network (YSBN, led by Jens Nielsen; https://cordis.europa.
eu/project/id/18942) and UNICELLSYS (led by Stefan Hohmann;
https://cordis.europa.eu/project/id/201142). YSBN had a coordi-
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nating role in systems biology research using yeast as a model
organism and aimed to employ both mathematical analyses and
computational tools to integrate experimental data; it set out to
develop common resources and standards. UNICELLSYS had the
more focussed aim of achieving a quantitative understanding of
how cell growth and proliferation are controlled and coordinated
by both extracellular and internal signals. These two networks op-
erated in a very synergistic manner.

Stefan Hohmann’s organisation of UNICELLSYS showed con-
siderable vision at a time when not everyone was convinced of the
need for Systems Biology, or even that it represented ‘respectable’
science. Moreover, working together with Hiroaki Kitano, Stefan
played a major role in coordinating and promoting Systems Biol-
ogy on a global, scale. The work in UNICELLSYS involved some ad-
vances in proteomic technology to improve quantitation (Selevsek
et al. 2015) and, also, a shift in emphasis from protein synthesis to
post-translational modifications (Kapuy et al. 2009, Amoutzias et
al. 2012) and protein–protein interactions (Nandy et al. 2010). Work
on the responses to external stimuli concentrated on the response
to osmotic stress, with experimentalists joining with modellers to
elucidate the circuitry involved (Nadal-Ribelles et al. 2012, Tiger
et al. 2012, Talemi et al. 2016). Work on the control of cell prolif-
eration in response to internal signals concentrated on the cell
cycle and had two strands—in one, the experimentalists worked
in close collaboration with the modellers with some individuals
becoming adept in both approaches (Barberis et al. 2011), while
the other comprised a purely theoretical approach (He et al. 2011).

YSBN had the aim of establishing some common standards
between research groups, not only in experimental methods (a
problem already encountered in EUROFAN; Brown et al. 2001), but
also in how both models and data were represented and stored.
The standardisation of experimental methods (Canelas et al. 2010)
was a massive undertaking that involved a comparison of the be-
haviour of two yeasts strains—CEN.PK113-7D, a lab strain that was
widely used by yeast physiologists and that had already been ex-
tensively characterised by an earlier multi-lab experiment (van
Dijken et al. 2000), and YSBN2, a new reference strain constructed
in the s288c background (Winston et al. 1995) but with the aux-
otrophic markers replaced by wild-type copies of the genes. Batch
and continuous fermentations were carried out in Jack Pronk’s
laboratory in Delft and samples distributed to the participating
laboratories. These undertook analyses of the transcriptome (by
four different methods in four laboratories), enzyme activities
(three different protocols in two labs), and the metabolome (three
different technologies in seven labs). This produced an extensive
reference dataset that, regrettably has been underused (Canelas
et al. has < 400 citations at the time of writing), perhaps because
the transcriptome analyses were not carried out using RNAseq
technology (Waern et al. 2011).

A major contribution of YSBN was to establish a consensus sto-
ichiometric model of the yeast metabolic network (Herrgård et al.
2008). A genome-scale model of the yeast metabolic network had
already been constructed by Jens Nielsen, Bernard Palsson, and
their colleagues (Förster et al. 2003) building on Palsson’s E. coli
model (Edwards and Palsson 2000). However, the consensus model
(which was constructed at a YSBN ‘jamboree’ in Manchester)
benefitted from the input of a wide range of experts, standard-
ised and unambiguous representations of chemical structures,
its adherence to the Systems Biology Mark-up Language (SBML;
Hucka et al. 2003), and its availability on a publicly accessible
database (now at https://sysbiochalmers.github.io/yeast-GEM/).
This model (Yeast1) was rapidly updated even during the course of
YSBN (Nookaew et al. 2008, Dobson et al. 2010, Heavner et al. 2012),

not least because it did not permit the performance of simulations
and Flux Balance Analysis (FBA). The current version is Yeast8
(available at the website above) and the evolution of genome-scale
models of the S. cerevisiae metabolic network is the subject of an
excellent recent review (Yu et al. 2022).

Other systems of modelling yeast metabolism have been devel-
oped. Reiser et al. (2001) constructed a logical model of the yeast
metabolic network. This is a very simple model: it has no dynam-
ics and it does not even contain the stoichiometry of the reactions.
However, each reaction is linked to a gene in the complete S. cere-
visiae genome sequence (Goffeau et al. 1996) and this revealed a
number of ‘orphan’ reactions, ones for which there was good ev-
idence that they must occur in yeast, but for which no gene en-
coding the enzyme catalysing the reaction had yet been identi-
fied. Adam, a ‘Robot Scientist’, was then provided with this model
and with access to the public sequence databases. This permitted
Adam to use artificial intelligence to design, and robotics to exe-
cute, experiments that identified the genes associated with some
of these orphan reactions—the first example of a machine discov-
ering new science (King et al. 2009).

The most important developments of the genome-scale stoi-
chiometric model of yeast metabolism have involved the exploita-
tion of transcriptomic (Lee et al. 2012) or proteomic (Sánchez et al.
2017, Lu et al. 2019) data to further constrain the model and in-
crease the accuracy of its predictions. Future developments are
likely to involve the use of machine-learning techniques to reduce
the uncertainties in enzyme kinetic constants, such as kcat or km

values (Kroll et al. 2021, Li et al. 2021). Uncertainties can be ac-
commodated by other modelling systems such as Flexible Nets (a
development from Petri Nets, hence the title of this piece), which
can also deal with regulation of both reactions and the industrial
processes which rely on them (Júlvez et al. 2018). In the other di-
rection, Szappanos et al. (2011) used machine learning techniques
to reconcile contradictions between the predictions of the yeast
genome-scale metabolic model and the experimental genetic in-
teraction data of Costanzo et al. (2010). In this way, they were able
to correct errors in the model, demonstrating that there was only
one route to NAD biosynthesis in yeast, and not two as there are
in E.coli (Edwards and Palsson 2000). We can expect to see an in-
creased use of machine learning and other forms of artificial in-
telligence in systems biology modelling. However, it is important
that we ensure that our models have explanatory power as well
as predictive accuracy.

Final thoughts
Much of the work described in this article is the result of open-
ended research programmes that aimed to produce useful data.
In other words, they were hypothesis generating, rather than hy-
pothesis testing. Science has always needed both these kinds of re-
search (Kell and Oliver 2004), and data-generating research should
not be dismissed as mere ‘stamp-collecting’. Indeed, early at-
tempts to develop a systems approach to biology failed due to a
lack of quantitative and comprehensive data (see above). Today,
however, such data are in plentiful supply and there is much en-
thusiasm for investigations based on ‘Big Data’ (Pal et al. 2020). It
is important to remember that the results of such analyses can
be skewed by incomplete or biased data sets (for a topical exam-
ple, see Bradley et al. (2021)). Moreover, despite the so-called ‘data
avalanche’, there are data that are critical to the generation of ac-
curate predictions by systems biology models that are either in-
complete or unavailable. For example, our knowledge of the bio-
chemical composition of yeast biomass under different physiolog-
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ical conditions is in a parlous state (Dikicioglu et al. 2015). Another
crucial data set, the kinetic parameters of enzymes, will either
be hard won through exhaustive (and exhausting) experimental
work (Smallbone et al. 2013) or require the use of advanced deep-
learning methods to leverage the scattered and heterogeneous ex-
perimental data available (Kroll et al. 2021, Li et al. 2021). Other
essential resources that must be generated and maintained if the
potential of Big Data analyses in systems biology is to be realised
are properly curated databases—dumps of electronic lab note-
books are not useful. Such databases require not only the skills
and commitment of professional curators, but also the direct in-
volvement of experimentalists in the curation process (Oliver et
al. 2016). A major problem is that the generation of these miss-
ing data and the maintenance of high-quality databases are often
considered mundane activities that tend to be under-resourced by
funding bodies. However, given the resources, the combination of
the intrinsic advantages of yeasts as model organisms, and the
demonstrated ability of the international community of yeast re-
searchers to work together for the common good, will ensure that
yeasts will remain in the vanguard of the revolution in biology and
build upon the achievements of pioneers like Stefan Hohmann.
Stefan was not only open to new technologies and new concepts
in his science, but he was also open to collaboration and had a
talent for organisation and coordination; we are all in his debt.
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