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Section 3: Vaccines in development and new vaccine strategies 61Alternative vaccine 
delivery methods

Cutaneous vaccination

As mentioned earlier, the skin was one of the fi rst tissues into 
which variola (smallpox) virus—and later cross-protecting 
cowpox virus—were introduced to prevent smallpox. Cutane-
ous immunization remains today the standard route for small-
pox vaccine (now containing related vaccinia virus) (see Chapter 
30 [smallpox]), as well as for administering Bacille Calmette–
Guérin (BCG) to prevent tuberculosis (see Chapter 33 [tubercu-
losis]). Various adjectives have been used to describe vaccination 
into or onto the skin (e.g., cutaneous, dermal, epicutaneous, epider-
mal, intradermal, patch, percutaneous, skin, topical, and transcutane-
ous). In this chapter these are encompassed within the general 
term cutaneous vaccination.

Anatomy and immunology of the skin

The outermost section of the skin is the epidermis, a stratifi ed 
squamous epithelium that is usually about 0.1  mm thick, but 
can be from 0.8 to 1.4  mm on the palms and soles (Fig. 61–1). 
The major constituent of this stratum Malpighii, as it is known, 
is the keratinocyte, which serves both a structural function in 
limiting the passage of water and other molecules, and an 
immunologic role. This cell germinates just above a basement 
membrane and then grows, fl attens, matures and senesces in 
increasingly superfi cial strata until it reaches the surface and is 
sloughed. The main product of this cell is keratinohyalin, a 
dense lipid which helps form a waterproof barrier. The lateral 
edges of adjacent keratinocytes are tightly linked by desmo-
somes which maintain the strength of the epidermis and also 
contribute to its resistance to the passage of foreign matter or 
molecules.25,26

The topmost horny layer of the epidermis is the stratum 
corneum, comprised of staggered courses of dead keratinocytes—
also known as corneocytes—in a lipid bilayer matrix. This stack 
of 10 to 20 cells, 0.01 to 0.02  mm thick, represents the principal 
obstacle to the introduction of vaccine antigen for cutaneous 
vaccination. Below the epidermis and basement membrane lies 
the dermis, about 1.5 to 3  mm thick, in which fi broblasts, fi ne 
collagen, elastic fi bers and most skin organelles are found, 
including small blood vessels, lymphatic vessels, nerves, hair 
follicles, sweat and sebaceous glands. The subcutaneous tissue 
below, sometimes referred to as the hypodermis, consists 
primarily of fat, and varies widely in thickness among different 
body surfaces and, of course, individuals. Faster passive 
diffusion of therapeutic substances transcellularly through the 
dead and living keratinocytes, and via intercellular channels 
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The earliest known route of vaccination was intranasal, by 
insuffl ation of scab material containing variola virus from 
smallpox patients, described in China around the fi rst millen-
nium AD (see Chapters 1 [history] and 30 [smallpox]).1 The 
cutaneous route for such variolation involved breaking the skin 
with a sharp instrument and was used in India perhaps as early 
as in China, but not documented until the 16th century.2 Vario-
lation was supplanted by safer cutaneous vaccination using 
material from cowpox lesions, a method known in the 18th 
century and fi rst published by Edward Jenner.

After 15th century experiments with hypodermic injection,3 
the introduction of the needle and syringe (N-S) in the mid 19th 
century by Pravaz,4,5 Rynd6 and Wood,7 began a new era in 
medicine. Pasteur used a Pravaz syringe to inoculate sheep 
in the famed controlled challenge experiment demonstrat-
ing anthrax ‘vaccination,’ a term henceforth broadened to the 
administration of immunizing agents for various diseases, not 
just smallpox.8

Upon acceptance of the germ theory and resulting sterilization 
by the early 20th century,9 and with mass production of needles 
and glass (later plastic) syringes by mid century, hypodermic 
injection became the norm for convenient, accurate, and certain 
administration of most vaccines and many drugs. Regrettably, 
aseptic practice was ignored in many developing countries,10 
and among non-medical intravenous drug users everywhere,11 
leading to recognition of widespread iatrogenic and self-infl icted 
disease transmission during that era recently decried as the 
‘Injection Century.’12

Other drawbacks of N-S include needlestick injuries to health 
care workers,13,14 needle-phobia and discomfort for patients 
facing increasingly crowded immunization schedules,15,16 and 
the costs and complexity of safe disposal of sharps in the medical 
waste stream.17 In the early 21st century, preparedness efforts 
for threatened pandemics and bioterrorism, as well as new 
targets for disease control or eradication have rekindled an 
earlier interest in mass vaccination campaigns,18 and stimulated 
research on vaccine delivery not requiring N-S.19–24

Existing and potential alternatives to conventional 
intramuscular (IM) and subcutaneous (SC) vaccination by N-S 
are classifi ed here into three major categories: cutaneous, jet 
injection and respiratory. The cutaneous route may be subdivided 
into intradermal (ID) via conventional needle; passive diffusion 
with or without chemical enhancers or adjuvants, and disruption 
or penetration of the stratum corneum by mechanical contact, 
heat, electricity, or light. Jet injection involves pressurizing 
liquid into high-velocity streams. Respiratory vaccination 
delivers airborne particles via the nose or mouth for deposition 
onto the mucosal surfaces of the upper or lower airways.
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between them, correlates with smaller molecules (<500  Da), 
lower melting points, increased lipophilicity (and 
correspondingly lower water solubility), higher (saturated) 
concentrations, and the paucity of pendant groups that form 
hydrogen bonds that slow diffusion.22,27

The specifi c mechanisms which produce the resulting 
immune response when vaccine antigen is introduced into the 
skin are not entirely clear. Upon stimulation, keratinocytes can 
produce pro-infl ammatory cytokines (interleukin 1) and can 
themselves function as antigen-presenting cells by displaying 
major histocompatibility complex (MHC) class II antigens 
(HLA-DR), as well as intercellular adhesion molecules (ICAM-
1).28 Epidermal Langerhans cells are believed to play a key role 
in cutaneous immunization, although other well-known 
immune system players also circulate or reside in the epidermis 
or dermis, such as CD8+ and CD4+ T lymphocytes, mast cells, 
macrophages, and dermal dendritic cells.29–32

The immature Langerhans cells reside like sentinels among 
the keratinocytes in the epidermis, comprising about a quarter 
of the skin surface area,33 where they effi ciently capture foreign 
antigen by phagocytosis or endocytosis. As with similar 
dendritic cells in other tissues (see Chapter 5 [immunologic 
adjuvants]), upon activation (Fig. 61–1) these professional 
antigen-presenting cells (APC) process the antigen as they 
migrate to draining lymph nodes. There, now mature, they 
express high levels of class II MHC molecules, and present the 
antigen brought from the skin to T helper (Th) lymphocytes, a 
critical step for the subsequent immune responses orchestrated 
by the latter cells.

Classical intradermal injection with sharp 
instruments or needles

Traditional vaccination for smallpox
During the more than 200 years of cutaneous vaccination against 
smallpox (see Chapter 30 [smallpox]), a variety of sharp instru-
ments have been used to cut, scratch, poke and otherwise pen-
etrate into the epidermis (and unnecessarily deeper into the 
dermis), for inoculation of cowpox or vaccinia virus (see Fig. 
61–2).1 In the 18th and 19th centuries, the scarifi cation method 
involved scratching one or more lines into the skin with a 
needle, scalpel (lancet), or knife and rubbing vaccine into the 
resulting lesion. A rotary lancet fi rst described in the 1870s 
consisted of a shaft attached to the center of a small disk, the 
opposite ‘patient’s side’ of which contained a central tine sur-
rounded by multiple smaller tines. The twirling of the disk in a 
drop of vaccine on the skin produced much abrasion of the skin 
and often severe reactions from both vaccine and common bac-

terial contaminants. In the less traumatic multiple pressure 
method introduced in the early 1900s, liquid vaccine was placed 
onto the skin and a straight surgical needle, held tangentially 
to the skin with its tip in the drop, was repeatedly and fi rmly 
pressed sideways into the limb 10 times for primary vaccination 
and 30 for revaccination.34 Multi-tines devices have also been 
used.35,36

Tuberculosis vaccination
The Bacille Calmette–Guérin (BCG) vaccine for the prevention 
of disease from Mycobacterium tuberculosis was originally admin-
istered orally in the 1920s (see Chapter 33 [tuberculosis]). Safety 
concerns prompted a shift to cutaneous administration by ID 
needle injection (1927),37 and later multiple puncture (1939),38–41 
scarifi cation (1947), and multi-tine devices,36 as described above 
for smallpox vaccine. BCG has also been delivered cutaneously 
by bifurcated needles42 and jet injectors.43

Mantoux method
The ID needle technique used for BCG was originally devel-
oped by Felix Mendel44 and Charles Mantoux45 in the early 20th 
century for the administration of tuberculin (now replaced by 
purifi ed protein derivative) for the diagnosis of tuberculosis 
infection. It is now called the Mantoux method. This procedure 
has become the common route for ID injection of various anti-
gens (Fig. 61–2E). A short-bevel, fi ne-gauge needle, usually 27 
gauge (0.016 inch, 0.406  mm diameter), is inserted, bevel up, 
almost parallel at a 5–15 degree angle into slightly-stretched 
skin, often the volar surface of the forearm.46 The tip is advanced 
about 3  mm until the entire bevel is covered. Upon injection of 
fl uid, proper location of the bevel in the dermis creates a bleb 
or wheal as the basement membrane and epidermis above are 
stretched by the fl uid. Leakage onto the skin indicates insuffi -
cient penetration to cover the bevel. Failure to produce a bleb 
indicates improperly deep location of the fl uid in the subcutane-
ous tissue. Drawbacks to the Mantoux method for mass vacci-
nation campaigns are the training, skill, and extra time needed 
to accomplish it correctly.

Reinventing the wheal
The potential dose-sparing effect of ID vaccination, reducing 
needed antigen by up to 80 percent in reducing dose volume to 
0.1  mL from the common 0.5  mL, has prompted renewed atten-
tion to this route because of concern for emerging threats like 
pandemic infl uenza, SARS, and bioterrorism that may leave 
populations vulnerable due to insuffi cient vaccine supply. Both 
old and new techniques can more easily achieve the effect of 
the Mantoux method in depositing the injectate into the skin to 

Figure 61–1 Activated Langerhans cells 
(dark stain) within epidermal Malphigian 
layer 48 hours after immunization by 
application of cutaneous patch containing 
heat-labile enterotoxin (LT) of E. coli. Full 
depth of dermis not shown. (Photograph 
from Glenn GM, Taylor DN, Xiuri Li, et al. 
Transcutaneous immunization: a human 
vaccine delivery strategy using a patch. 
Nature Medicine 6(12):1403–1406, 2000 
(Fig. 3b, page 1405), with permission; and 
from Glenn GM, Kenney RT, Hammond SA, 
Ellingsworth LR. Transcutaneous 
immunization and immunostimulant 
strategies. Immunol Allergy Clin N Am 
23:787–813, 2003295 (Fig. 1, p. 788), with 
permission.)
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produce a visible wheal of temporary induration. Since the 
1960s, multi-use-nozzle jet injectors (discussed in more detail 
below) delivered smallpox, BCG, and other vaccines ID by use 
of specialized nozzles (Fig. 61–2G).47–49 Modern disposable-car-
tridge injectors are being adapted with spacers to achieve that 
same route (Fig. 61–2H).50–52

Requiring less skill than the Mantoux method, a new 
investigational ID syringe with a 30-gauge needle (outer 
diameter [OD] ∼0.305  mm) that projects only 1.5  mm beyond its 
depth-limiting hub is inserted perpendicularly to deposit the 
dose into the skin (Fig. 61–2F).53,53a A 34-gauge equivalent (OD 
∼0.178  mm) for animal models produced good immune 
responses to recombinant protective antigen (rPA) for 
anthrax,54,54a conventional hemagglutinin (HA) and plasmid 
DNA antigens for infl uenza,55 and live recombinant yellow 
fever vector for Japanese encephalitis vaccines.56 ID-immunized 
rabbits challenged with ∼100 LD50 of Bacillus anthracis spores 
had identical survival rates (no adjuvant: 100%, aluminum salt 
adjuvant [alum]: 100%, CpG: 83%) as IM-immunized controls.54 
In clinical trials of conventional infl uenza HA antigen, the 30-
gauge ID syringe proved feasible and immunogenic.57

Other intradermal vaccines
In addition to smallpox and BCG, mentioned above, as well as 
combined BCG-smallpox vaccine,58,59 over a dozen other vaccine 
types have been administered ID.

Infl uenza
There is a substantial literature, since the 1930s, starting with 
Thomas Francis (of Salk polio vaccine trial fame),60 document-
ing the equivalence and occasionally improved immunogenic-
ity of ID infl uenza vaccination by needle-syringe compared to 
larger doses by the SC and IM routes.57,61–79 On the other hand, 
a few studies found ID infl uenza responses less then IM or SC 
on some or all of the antigens that were studied.80–85

When identical amounts of reduced antigen were compared 
between the ID and IM or SC routes, there were confl icting 
results from mid-century trials using the whole-cell products of 
that era. Bruyn et al found GMTs in children receiving 0.2  mL 
intradermally of infl uenza vaccine to be higher than those 
receiving the same dose SC,64 as did Davies et al86 and Tauraso 
et al74 administering 0.1  mL by both routes. When administering 
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Figure 61–2 Devices for Classical Intradermal Vaccination. (A) Vaccinostyle, which scratches the skin before or after applying liquid vaccine. (B)
Rotary lancet, twirled between thumb and fi ngers to abrade skin. (C) Surgical needle, pressed parallel to skin in multiple-pressure method. (D)
Bifurcated needle, sharp end shown holding fl uid by capillary action between tines. (E) 26-gauge hypodermic needle inserted by Mantoux 
method, creating wheal. (F) Investigational intradermal syringe (BD Micro-Delivery System; Becton, Dickinson and Co.53) is inserted perpendicular 
to skin with 30-gauge needle projecting 1.5  mm beyond its hub. (G) Intradermal nozzle of Ped-O-Jet® multi-use-nozzle jet injector (Keystone 
Industries345) (see Fig. 61–4, C), showing 0.127  mm diameter orifi ce bored into inset sapphire. Recessed cone within nozzle directs jet stream at 
∼45º angle through short air gap into skin. (H) Investigational intradermal spacer on Biojector® 2000 disposable-cartridge jet injector cartridge #2 
(Bioject, Inc.50) used for subcutaneous injections; spacer creates a 2  cm air gap to weaken stream, leaving injectate in the skin. Items A, B, C, D, 
and G were used for smallpox vaccination; D is currently recommended.
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by ID one-tenth (0.1  mL) the SC dose (1.0  mL) in varying 
dilutions below the labelled dosage of 800 chick cell agglutinating 
(CCA) units per mL, Stille et al also found greater ID responses, 
but only when the SC dose was low, at 8 or 0.08  CCA (ID dose: 
0.8 and 0.008, respectively).70 Conversely, SC responses exceeded 
ID ones when the standard SC dose was used or reduced by 
only one log (80  CCA, ID: 80 and 8  CC, respectively). This 
suggested a linear ID dose-response curve, but a sigmoid SC 
one, which favored the ID route at the lower-dose end. On the 
other hand, when identical reduced doses for a new shifted 
‘Asian’ strain were given by the two routes (80, 40, or 20  CCA, 
compared to 200 per full 1.0  mL), both McCarroll et al,87 studying 
hospital employees 18 to 65 years of age, and Klein et al,88 
studying infants 2 months to 5 years of age, found little difference 
in responses between the ID and SC routes. McCarroll speculated 
the ID superiority in earlier studies was due to an anamnestic 
effect not present that season. Klein simply doubted any ID 
superiority when equal volumes are used.

Regarding systemic reactions, among 101 infants from 2 
months to 2 years of age receiving 0.1  mL of infl uenza vaccine 
in the Klein et al study, febrile reactions were reported among 
34.7% (17/49) in the intradermal group and only 19.2% (10/52) 
in the subcutaneous group getting the same reduced dose.88 
Similarly, local reactions of small areas of erythema and 
induration with 2 to 3 days of slight tenderness and itching were 
described for ‘all’ intradermal participants (ages 2 month 
to 5 years, n  =  96), while only 2 of 94 children vaccinated 
subcutaneously had local pain and induration. Considering the 
entire reduced-dose, ID infl uenza literature, one might conclude 
that this route may be considered when antigen shortages and 
distributive equity demand the use of the lower end of the dose-
response curve, where ID may outperform the SC/IM routes. 
The increased reactions described in these whole-virus studies 
may be mitigated by the modern use of less reactogenic split-
virus products.

Other conventional vaccines by intradermal route
The ID route was used extensively for the live, attenuated 
yellow fever French neurotropic vaccine (FNV), which was 
given by ID scarifi cation in the 1940s and 1950s in Francophone 
Africa (see Chapter 36 [yellow fever]).89 The 17D strain showed 
both good90 and poor91 immune responses when jet-injected ID. 
The ID route also yielded mixed results for live measles 
vaccines.92–104

Inactivated vaccines with good immune responses after ID 
injection include typhoid105 and rabies,106–113 the latter of which 
has been used widely for dose-sparing purposes in the 
developing world.114 Salk’s fi rst clinical trials of inactivated 
polio vaccine administered it ID,115,116 a route widely used for 
millions of Danes in the mid-1950s,117,118 but studied little since 
despite good responses.119–123 Generally good results have been 
reported for ID hepatitis B,124–130 with some exceptions in 
infants131–133 and with recombinant vaccine.133a–133c Mixed 
results have been reported for cholera134 and hepatitis A.135,136 
Other non-living vaccines studied rarely by this route 
include meningococcal A,137 diphtheria-tetanus-pertussis,138,139 
tetanus,140,141 tetanus-diphtheria,142 tetanus-typhoid,143,144 tick-
borne encephalitis145,146 and Rift Valley fever.147

Investigational intradermal vaccines
ID injection—as well as IM—led to the serendipitous discovery 
in an infl uenza model148 that viral genes encoded into bacterial 
DNA would somehow get expressed in vivo into their protein 
antigens, a seminal event in the modern era of recombinant 
nucleic acid vaccinology.149 Gene proto-antigens to prevent 
infl uenza,150 HIV/AIDS,151,152 smallpox153 and many other dis-
eases are being inserted into both ‘naked’ DNA/RNA154 and 
various vectors such as modifi ed vaccinia Ankara (MVA) virus, 

for delivery by the ID route. ID jet injection has been used for 
immunomodulators like interferon.155

Novel methods to deliver antigen past the 
stratum corneum

Various commercial patch delivery systems developed since 
1981 have demonstrated the ability of certain therapeutic agents 
(e.g., scopolamine, nitroglycerin, clonidine, estradiol, fentanyl, 
nicotine and testosterone) to diffuse passively into bare, 
untreated skin without the use of the active technologies or 
enhancers described below.27 But such passive diffusion usually 
works only for small molecules of certain physical characteris-
tics. Thus, there are but a few animal models of immunization 
onto bare, untreated skin.156–158 Newer methods to facilitate 
antigen delivery to the epidermis involve painlessly stripping, 
abrading, scraping, piercing, vaporizing, shocking, vibrating, 
bombarding and otherwise permeabilizing the barrier of the 
stratum corneum.20,22,23,27,159,160 Some methods combine several 
processes.

Stripping and abrading
Tape and friction
A variety of simple tools have been used to remove the stratum 
corneum. Common cellophane adhesive tape may be applied to 
the skin and pulled away, carrying away dead keratinocytes 
with each repetition. Such tape-stripping has been shown to 
enhance cytotoxic T cell and cytokine immune responses upon 
subsequent application of various antigens and adjuvants to the 
skin in mice.161–167 Similarly, rubbing gauze, emery paper, EKG 
pads, or pumice on the skin removes cells by their abrasive 
effects, and have been found to enhance immune responses in 
humans.168

Shaving and brushing
The razor and the brush work as well. In a clinical trial of adeno-
virus vectors encoded to express infl uenza HA antigen, the 
abdominal skin of 24 adults was shaved with a disposable, 
twin-blade razor, followed by ‘gentle brushing with a soft-
bristle toothbrush for 30 strokes’ and application of the antigen 
with an occlusive TegadermTM patch.169 Two doses 28 days apart 
at the highest dose level produced 4-fold rises in HI titer in 67% 
of the cutaneous vaccinees. Occasional mild erythema at the 
abdominal site was reported in 61% and rash/itching in 39% of 
patients. This same research team,170 studying mice, substituted 
an electric trimmer for shaving but otherwise used similar 
brushing to demonstrate that topical application of non-repli-
cating Escherichia coli vectors overproducing antigens for Clos-
tridium tetani and B. anthracis were immunogenic.171,172 Control 
animals demonstrated that depilation alone had little effect; 
what made the difference was the mild brushing that produced 
minimal irritation (Draize scores  =  1).173

Uncoated microtines
Other methods to abrade the stratum corneum take advantage 
of low-cost fabrication techniques adapted from the microelec-
tronics industry to produce arrays of large numbers of sub-
micron- to millimeter-sized tines (sometimes referred to as 
solid microneedles) of silicon, metal, or other material.22,174 
One technology that abrades the skin before or after topical 
application of the antigen or therapeutic agent is named a 
microenhancer array (MEA) and consists of a square or round 
chip of about 1  cm2 area of silicon or plastic microprojections 
that are mounted on a hand-held applicator (OnVaxTM53, Fig. 
61–3A).175

Preclinical studies of the MEA device in mice inoculated 
with DNA plasmids encoding fi refl y luciferase and HBsAg 
found similar or greater light emission and immune responses, 
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respectively, compared with control IM and experimental ID 
injections. Anthrax rPA with alum or CpG adjuvants applied 
by MEA device to mouse skin produced equivalent or better 
immune responses than IM controls (although not as good as 
an ID microneedle), while immune responses and challenge 
survival were signifi cantly less among MEA-immunized rabbits 
compared to IM controls.54 Among Cynomolgus monkeys 

vaccinated by six ‘swipes’ of the MEA, with SC and 34 gauge, 
microneedle-based ID controls, all animals seroconverted to an 
investigational recombinant Japanese encephalitis (JE) vaccine.56 
Those vaccinated by swiping the MEA through a drop of vaccine 
already on the skin showed neutralizing antibody responses in 
the same range as for SC controls, while applying vaccine after 
the abrasion appeared less effective.

200 mm 330 mm

A

D
E F

G

B C

Figure 61–3 Investigational Devices for Cutaneous Vaccination by Mechanical, Electromagnetic, or Kinetic Methods of Disrupting or Penetrating
Stratum Corneum. (A) OnVaxTM hand-held applicator device for abrading skin before or after separate vaccine application (Becton, Dickinson and 
Co.53). Inset: Scanning electron micrograph (SEM) of plastic microprojections (typical heights 150–200  µm each) of a microenhancer array (MEA) 
mounted on a hand-held applicator tool. (From Mikszta JA, Sullivan VJ, Dean C, et al. Protective immunization against inhalational anthrax: a 
comparison of minimally invasive delivery platforms. J Infect Dis 191:278–288, 200554 (Fig. 1B, p. 281), with permission; and from Prausnitz MR, 
Mikszta JA, Raeder-Devens J. Microneedles. In: Smith EW, Maibach HI, (eds). Percutaneous Penetration Enhancers, 2nd ed. Boca Raton, FL 
33487: CRC Press; 2006, 239–255176 (Fig. 16.1(d), p. 241), with permission). (B) Macrofl ux® microneedle array (microprojections) patch and 
applicator (Macrofl ux Corporation178). Inset: SEM of tines of 330  µm height embedded on the patch, to be coated with drug or antigen and 
applied into the skin. (From Cormier M, Johnson B, Ameri M, et al. Transdermal delivery of desmopressin using a coated microneedle array 
patch system. J Control Release 97(3):503–11, 2004 (Fig. 2b, p. 506),182 with permission; and from Matriano JA, Cormier M, Johnson J, et al. 
Macrofl ux microprojection array patch technology: a new and effi cient approach for intracutaneous immunization. Pharm Res 19:63–70, 2002179

(Fig. 1B, p. 64), with permission.) (C) Application device and microphotograph (inset) of microtines of Microstructured Transdermal System (3M 
Corporation183).188 (From Gordon RD, Peterson TA. Myths about transdermal drug delivery. Drug Delivery Technology 2003;3(4):2003 (Fig. 4),185

with permission.) (D) Microneedles, conical and cylindrical (Georgia Institute of Technology200). View of circular array on end (DD) compared to 
26-gauge hypodermic needle. (From McAllister DV, Wang PM, Davis SP, et al. Microfabricated needles for transdermal delivery of 
macromolecules and nanoparticles: Fabrication methods and transport studies. Proc Natl Acad Sci USA 100:13755–13760, 2003198 (Fig. 2, 
p. 13758), with permission; and from Prausnitz MR, Mikszta JA, Raeder-Devens J. Microneedles. In: Smith EW, Maibach HI, (eds). Percutaneous
Penetration Enhancers, 2nd ed. Boca Raton, FL 33487: CRC Press; 2006, 239–255 (Fig. 16.4, p. 245),176 with permission.) (E) Laser-assisted 
drug delivery (LAD) device (Norwood Abbey201) ablates stratum corneum with laser beam before application of drug. (F) PassPortTM patch 
(Altea Therapeutics220) applied to patient chest; microporation induction device is held against the patch fi laments and then activated to induce 
painless heat to generate micropores in stratum corneum. (G) Particle-Mediated Epidermal Delivery (PMED) Device (PowderMed257) propels 
microparticles coated with antigen or other drug into skin with supersonic helium gas.
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A clinical trial of the MEA measured transepidermal water 
loss (TEWL) as a surrogate indicator for removal of the stratum 
corneum following each of fi ve consecutive swipes across the 
same site on the volar forearm of volunteers. Projection heights 
of 100, 150 and 200  µm showed steadily increasing rates of 
TEWL, with the tallest projections producing the greatest water 
loss. Control swipes with fi brous and sandpaper EKG pads 
showed little or no TEWL.175

Coated microtines
Another method to carry antigen across the stratum corneum is 
by coating it onto solid microscopic projections or microtines, 
from which it dissolves and diffuses while held for variable 
periods of time in the epidermal layer.176 But their suitability for 
human vaccination has not yet been fully demonstrated.21,177

One example of microtines is the investigational Macrofl ux® 
microprojection array,178 whose projections vary from 225 to 
600  µm height and are packed into an area of 1 to 2  cm2 at 
densities from 140 to 650 tines per cm2. They are inserted by a 
spring-mounted applicator and held in place by an adhesive 
patch (Fig. 61–3B). In a hairless guinea pig model, ovalbumin 
as a representative large antigenic protein was applied to the 
tines and administered in two doses 4 weeks apart.179,180 
Post-booster titers for the device were comparable to control 
IM, SC and ID Mantoux method injections at higher doses, 
and surpassed IM and SC routes at lower doses. Other 
preclinical studies of the Macrofl ux have demonstrated 
delivery of oligonucleotides181 and the peptide hormone 
desmopressin.182

Another array of microtines is termed a Mictrostructured 
Transdermal System (MTS),183 and consists of drug-coated 
pyramidal projections of 250  µm height, in a density of 1,300 
projections per cm2, again mounted on an adhesive patch and 
applied with a spring-powered applicator (Fig. 61–3C).184–187 In 
a rabbit model, several formulations in various ratios of tetanus 
toxoid and alum adjuvant coated onto the microtines induced 
antibody levels an order of magnitude higher than the presumed 
protective threshold (>0.2  IU), using just a fraction of the 
standard IM dose.188 Experimental placement of the device on 
human volunteers found it to be ‘well-tolerated,’ ‘non-
intimidating and not painful.’186

Among others working with microtines, Coulman et al 
studied nanoparticles and DNA plasmids expressing β-
galactosidase and fl uorescent proteins applied to the epidermal 
surface of ex vivo human breast skin donated at mastectomy.189 
After applying the microtines to the skin for 10 seconds, they 
were able to verify epidermal penetration and gene expression 
by a variety of histologic and photometric means. Kwon et al 
developed biodegradable microtines made by dissolving 
drug in carboxymethylcellulose and casting into a solid by 
centrifugation in a mold and air drying (DrugMATTM, 
VaxMATTM).190–192 Others conducting work with microtines 
(solid microneedles) include Corium194,195 and Valeritas 
(Micro-TransTM).197

Injecting microneedles
Hollow projections termed microneedles, produced by similar 
techniques as for the solid microtines described above, are 
designed to inject therapeutic agents through their tiny cannulae 
(Fig. 61–3D).20,176,198 Although harder to manufacture and more 
easily broken and clogged,174,176 fl ow rates of microneedles have 
been measured up to a remarkable 1 mL per minute per 
cannula.176a Common lengths are 0.2 to 0.5  mm, short enough to 
be painless since their depth does not reach nerve endings in 
the dermis22,198,199 Among those working on such microneedles 
are the Georgia Institute of Technology,198,200 Norwood 
Abbey,201 NanoPass (MicroPyramidTM, MicronJetTM),202 SpectRx 
(SimpleChoice™),196 and Valeritas.197

Electromagnetic energy
The use of light or electricity, or the heat or radiation they 
produce, has been pursued to facilitate entry of drug into the 
skin, either during a brief or constant application of energy, or 
through the pathways created after a short pulse.

Laser light
Laser light has been used in two ways to breach the stratum 
corneum. In one, a brief pulse of laser light ‘ablates’ this layer, 
after which drugs are applied directly onto the exposed epider-
mis, often with an occlusive patch, for the few hours until the 
stratum regenerates.20,27,203–206 One device, the LAD (laser assisted 
drug delivery, Norwood Abbey)201 generates an erbium-doped 
yttrium-aluminum-garnet (YAG) laser beam whose energy is 
highly absorbed by skin (Fig. 61–3E).205 It was shown in adult 
volunteers to facilitate the anesthetic effect of the topical appli-
cation of lidocaine,205 and is licensed in the U.S. and Australia 
for that purpose. In another method, a high-power pulsed laser 
creates a photomechanical wave that drives particles represent-
ing drug carriers through the stratum corneum.207–209 Preclinical 
or clinical studies for intended vaccination using such laser 
methods have not yet been reported.

Electrophoretics
Iontophoresis—fi rst demonstrated a century ago in rabbits210—
uses an electric current to drive charged molecules from an 
electrode of the same charge towards another of opposite charge 
located elsewhere on the body.22,27,211–215 Among licensed devices 
applying this technique for skin anesthesia are the LidoSiteTM 
(ActyveTM technology)216 and the IONSYSTM (E-TRANS® tech-
nology).217 A related method is electro-osmosis, which induces a 
fl ow of solvent to carry non-charged molecules.159,218 Voltages 
above 1 volt in themselves increase skin permeability, perhaps 
by opening up pathways along hair follicles. But these tech-
niques do not work well at higher molecular sizes, which char-
acterize many vaccine antigen proteins.

Thermoporation and electroporation
Thermoporation, also termed microporation, uses the heat of elec-
trical resistance to vaporize tiny openings in the stratum 
corneum.22,27,219 In the PassPortTM system,220 a disposable array 
of metallic fi laments is held momentarily against the skin by a 
device the size of a computer mouse which, upon activation, 
induces electric pulses in the fi laments (Fig. 61–3F). An adhesive 
patch containing vaccine or therapeutic agent is then applied 
over the micropores just created. In a hairless mouse model, this 
technique elicited 10–100-fold greater cellular and humoral 
responses to an adenovirus vaccine compared to intact skin, as 
well as 100 percent protection to surrogate tumor challenge (27 
percent for intact skin).219 In the same model, adenovirus-vec-
tored melanoma antigen applied to the micropores roughly 
doubled the average onset time of tumors by challenge, and 
protected 1 of 6 mice compared to 0 of 8 vaccinated controls 
with intact skin. Microporated recombinant infl uenza H5 hem-
agglutinin protected BALB/c mice from challenge with a lethal 
H5N1 strain.220a Skin micropores also permitted the passage of 
insulin in pharmacokinetic human trials with historical con-
trols,221,222 and in the other direction allowed interstitial fl uid to 
be extracted for potential glucose monitoring.223 Another method 
generates micropores with heat induced by radiofrequency 
waves (ViaDermTM).224

Electroporation uses very short electrical pulses to produce in 
the intercellular lipid matrix of the stratum corneum temporary 
pores of nanometer range diameters, which remain open and 
permeable for hours.22,225–230 In vitro and in vivo preclinical 
studies of this technique demonstrated entry into or through 
the cells of larger molecules, such as heparin (12  kDa), peptides 
and proteins (such as luteinizing-hormone-releasing hormone), 
and oligonucleotides (up to 24-mer), which hold promise for 
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polysaccharides, proteins, nucleic acids, and even adenovirus 
vectors as vaccine antigens.212,219,231–233

IM electroporation is also being pursued to enhance 
vaccination with DNA antigens.230,234,235 A hollow needle injects 
the drug conventionally into muscle while parallel solid needles 
surrounding the injected dose create the current to generate 
pores in the target muscle tissue. Investigational or marketed 
products are CythorLabTM,236 Easy Vax™,193 ElectrokineticTM 
Device (EKD),237 ECM,238 MedPulser®,234,235,239 and TriGridTM,240,241 
among others.

Sound energy
The connection between keratinocytes can be solubilized to 
facilitate drug or antigen delivery by ultrasonic waves and 
short-duration shock waves.20,22,159,242–244 These are theorized to 
induce cavitation—the formation and collapse of microbubbles
—which disrupts the intercellular bilayers within the stratum 
corneum. Low frequencies (<100  Khz) appear to work better 
than the higher frequencies used in therapeutic ultrasound 
(>1  MHz). Transdermal tetanus toxoid immunization of mice 
was enhancd 10-fold compared to the subcutaneous route when 
subjected to 20  kHz ultrasound.245 High-molecular weight mol-
ecules delivered include insulin, erythropoeitin, interferon and 
low molecular weight heparin.22,243,246,247 Various groups are pur-
suing ultrasound for enhanced drug delivery.201,248,249

Kinetic deposition
The transfection of cells by use of kinetic methods to deposit 
DNA-coated gold particles into them was pioneered in the 
1980s.250 The Helios® or PDS 1000/HE ‘gene guns’251 and the 
Accell injector252 have become standard bench tools for ‘biolis-
tic’ delivery of nucleic acid plasmids into a wide variety of 
plants and animals to tranfect them to express the coded 
genes.253,254 Delivery of DNA into the skin overcomes the 
usual polarized Th1 response when DNA is delivered into 
muscle.21,255,256 These devices are unavailable for human vaccina-
tion (patent rights are held by PowderMed257). Documenting the 
safety of DNA as antigen by any route remains a major regula-
tory obstacle for such a paradigm shift in human 
vaccination.21

Powder/particle technology
The proprietary terms epidermal powder immunization (EPI) and 
particle-mediated epidermal delivery (PMED) refer to the use of 
helium gas to blow into the epidermis at supersonic speeds 
powdered proteins, polysaccharides, or inactivated pathogens, 
or DNA-coated particles, respectively.258 This unique method 
of vaccination was developed in the early 1990s by Oxford 
BioSciences, which over the years was renamed PowderJect, 
acquired by Chiron,259 spun off as PowderMed,257 and acquired 
by Pfi zer260 in 2006. Delivery is by either reusable (XR series) or 
single-use disposable (ND series) devices (Fig. 61–3G), with the 
latter targeted for commercialization.

Conventional protein antigens for delivery by EPI are spray-
dried into powders of suitable density and size (20–70  µm),261,262 
but the economics of manufacturing such formulations may be 
an obstacle.21 For DNA vaccines delivered by PMED, plasmids 
coding for desired antigens are coated onto gold beads (1–3  µm 
in diameter) and upon their deposition into epidermal antigen-
presenting cells are eluted and transcribed.263

Human trials of DNA vaccines containing up to one 
order of magnitude less antigen than used for IM routes have 
induced humoral and cellular immune responses for hepatitis 
B in subjects both naive and previously vaccinated with 
conventional vaccine.264–267 PMED vaccination has also been 
studied for DNA priming in trials of malaria vaccine,268,269 and 
produced the fi rst seroprotective immune responses by a DNA 
vaccine for seasonal infl uenza.150,270 Clinical trials still ongoing 

or unpublished studied antigens for H5 avian infl uenza 
(DNA),271 herpes simplex virus 2,272 HIV and non-small cell lung 
cancer.273,274

In the hepatitis B and infl uenza trials cited above, there were 
no severe local reactions, but erythema, swelling, and fl aking or 
crust formation occurred in nearly all subjects, albeit resolving 
by day 28. Skin discoloration, however, persisted through day 
56 in 29 (97%) of 30 subjects,267 through day 180 in 21 (25%) of 
84 injection sites150 and beyond 12 months in 5 (25%) of 20 
patients with long-term followup.267 No anti-double-stranded 
DNA antibodies were detected. The disposition of the gold 
particles was studied in pigs, in whom most particles were 
deposited in the stratum corneum and epidermis, and eventually 
sloughed by exfoliation by 28 days.275 At days 56 and 141 after 
administration, a few particles remained in the basal epidermal 
layer and in macrophages in the dermis and regional lymph 
nodes. Preclinical studies of EPI or PMED in murine, porcine, 
and primate models have shown immunogenicity or protection 
for either powdered or DNA plasmid antigens for various 
other pathogens, including Eurasian encephalitic viruses,276 
hantaviruses,277 HIV, 278 malaria,279 SARS coronavirus280 and 
smallpox.281

Other kinetic methods
Microscission involves a stream of gas containing tiny crystals 
of inert aluminum oxide to bombard small areas of the skin. A 
mask on the skin limits the ‘sandblasting’ effect to narrow areas 
where channels are created in the stratum corneum, to which 
drug is then applied.282 Another method employs a fast and 
powerful contractile fi ber-activated pump to fi re drug at the 
skin with suffi cient velocity to penetrate the epidermis.201 A 
miniaturized form of traditional jet injection uses piezoelectric 
transducers to propel liquid microjets into the skin.282a

Adjuvants and enhancers for cutaneous vaccination
As bathers notice in their fi ngertips, prolonged wetting of the 
skin, or occluding it to hold in body moisture, produces fl uid 
accumulation in intercellular spaces and swelling of the kerati-
nocytes, which permits enhanced passage of applied agents.168 
Rubbing the skin with acetone also enhances antigen passage 
by extracting epidermal lipids.163

Bacterial exotoxins
Discovery of the remarkable adjuvant effect of bacterial ADP-
ribosylating exotoxins, such as the B (binding) subunits of 
cholera toxin (CT) and the structurally-similar, heat-labile 
toxin (LT) of enterotoxigenic E. coli (ETEC), has prompted 
much interest and work (see Chapter 9 [Cholera]).158,283–288 For 
safety reasons, these toxins have been engineered, or mutants 
selected, to reduce toxicity while retaining adjuvanticity.288–291 
Nevertheless, one such use as adjuvant in a licensed intranasal 
infl uenza vaccine was hypothesized as the cause of tempo-
rary paralysis of the 7th cranial nerve, prompting market 
withdrawal.292

Iomai technology
Skin vaccination using CT or LT as adjuvants and antigens has 
been advanced principally by Iomai,293 which calls the process 
transcutaneous immunization,294–296 although others have also 
studied this technique.297 Such toxins may be administered by 
themselves as antigen to induce immunity against ETEC causing 
traveler’s diarrhea or against Vibrio cholera, either with298 or 
without299,300 ETEC colonization factor (Fig. 61–1). A random-
ized, blinded fi eld trial among travelers to Central America 
found 75% effi cacy for the LT patch in protecting from 
moderate/severe diarrhea.300a Their adjuvant effect has been 
explored for infl uenza vaccines, which have generally the 
lowest rates of immune response and effi cacy among licensed 
vaccines, particularly in the very young and old. Applying an 

Ch061-X3611.indd 1363Ch061-X3611.indd   1363 2007/12/7 06:38:052007/12/7    06:38:05



1364 Section 3 • Vaccines in development and new vaccine strategies

Q

LT patch near the site of injection of conventional parenteral 
infl uenza vaccine was found to improve HI titers in the serum 
and mucosa of both young and aged mice301,302 and to increase 
or show an improving trend for adult volunteers over 60 
years.303 The use of CT or LT as cutaneous adjuvant has resulted 
in improved immune responses or challenge protection in 
animal models for tetanus,304 anthrax,305,306 malaria307 and Heli-
cobacter pylori.308 Clinical trials found no serious reactions,299 
but pruritis and maculopapular rash at the patch site, were 
found in 13%,303 74%298 and 100%300 of patients exposed to LT-
containing patches for 6 hours; 17% progressed to vesicle 
formation.300 Delayed type hypersensitivity contact dermatitis 
was observed when using recombinant colonization factor.298

Chemical, protein and colloidal enhancers
Chemical penetration enhancers under consideration as skin 
adjuvants, alone or in conjuction with iontophoresis, ultra-
sound, and electroporation methods, include oleic and retinoic 
acids,167 dimethylsulfoxide (DMSO), ethanol, limonene and 
polysorbate, among others.22 Flagellin, a bacterial surface com-
ponent protein, was engineered to express infl uenza nucleopro-
tein epitope and applied to the bare skin of mice, inducing 
virus-specifi c interferon-γ T cells.158 Certain colloids may serve 
as antigen carriers.23 Deformable lipid vesicles (‘transfersomes’) 
containing tetanus toxoid applied to animal skin yielded com-
parable immune responses with alum-adjuvanted tetanus 
toxoid given IM.309

Combination methods
Other novel methods of delivery include the use of short needles 
to poke an initial opening into the skin, followed immediately 
by SC or IM jet injection with much lower pressures than oth-
erwise would be needed.310,311 Another method is termed a 
needle-free solid dose injector (GlideTM).312 It uses a spring-loaded 
device to push a sharp, pointed, biodegradable ‘pioneer tip’ and 
the solid or semisolid medication behind it in the chamber—
both about the width of a grain of rice—into subcutaneous 
tissues.

Jet injection

Jet injectors (JIs) squirt liquid under high pressure to deliver 
medication needle-free into targeted tissues.313–318 Invented in 
France in the 1860s (Fig. 61–4A),313,319,320 the technology was fi led 
for patent in 1936,321 and reintroduced in the 1940s as the 
Hypospray® 322,323 for patient self-injection with insulin (Fig. 61–
4B; Table 61–1). In the 1950s, the U.S. military developed high-
speed models (once referred to as ‘jet guns’) for mass vaccination 
programs (Fig. 61–4C).371–375 Over the last half-century, JIs have 
administered hundreds of millions, if not billions, of vaccine 
doses for mass campaigns against smallpox,1,376–381 
measles,376,378,381–384 polio,374,385 meningitis,386-388 infl uenza,389,390 
yellow fever,376,381,391,392 cholera393 and other diseases.18,394–397 
During the swine infl uenza mass campaign of 1976–1977 in the 
U.S., a substantial proportion of the approximately 80 million 
doses distributed that season were administered by JIs (CDC, 
unpublished data).398 JIs have also been used for a wide variety 
of therapeutic drugs, including local399,400 and pre-general401,402 
anesthetics, antibiotics,403,404 anticoagulants,405,406 antivirals,407 
corticosteroids,408,409 cytotoxics,410 immunomodulators,155,411 
insulin323,348,412 and other hormones413–415 and vitamins.416

Mechanical and clinical aspects

Designs, power supplies, types
Common features of all JIs include a dose chamber of suffi cient 
strength to hold the liquid when pressurized, a moving piston 
at the proximal end to compress the liquid, and a tiny orifi ce 

(commonly ∼0.12  mm in diameter, ranging from 0.05 to 
0.36  mm)316,368 at the distal end to focus the exiting stream for 
delivery into the patient. The pistons of the majority of modern 
JIs are pushed by the sudden release of energy stored in a com-
pressed metal spring, while some use compressed gas such as 
carbon dioxide (CO2) or nitrogen (N2) (Table 61–1). Two inves-
tigational ones are powered by the expanding pressure of chem-
ical combustion.197,334 The source of energy to compress the 
spring is usually supplied manually or pedally through an inte-
gral or separate tool to apply mechanical advantage and/or 
hydraulic pressure. A few use electrical power from batteries or 
wall (main) electrical current.

Although devices vary, peak pressures within the dose 
chambers range from 14–35  MPa (∼2,000–5,000  psi) and occur 
quite early in order that the stream can puncture the skin. After 
the peak, pressures drop about one-third to two-thirds during 
a descending plateau phase until rapid tailoff at the end of the 
piston’s stroke. The velocity of the jet stream exceeds 100 meters 
per second.417 Complete injection lasts about 1/3 to 1/2 second, 
depending on volume delivered, orifi ce cross-section, and other 
variables.

JIs may be classifi ed in various ways: by their energy storage 
and sources described above, by intended market (human vs. 
veterinary), by intended usage (e.g., repeated self-administration 
of insulin by the same patient vs. use to vaccinate consecutive 
patients), by how the dose chamber is fi lled (medication vial 
attached ‘on tool’ vs. fi lled ‘off tool’), by reusability of the entire 
device (single-use disposable vs. reusable), and by reusability 
of the fl uid pathway and patient-contact components (multi-use 
vs. disposable). This last criterion results in a key distinc-
tion between multi-use-nozzle jet injectors (MUNJIs) and 
disposable-cartridges jet injectors (DCJIs), with major 
implications for immunization safety (discussed below).

Deposition in target tissues
In vivo imaging indicated jet-injected medication tends to spread 
along paths of least resistance in a generally conical distribu-
tion.328,418–423 The depth achieved depends primarily on the 
power imparted to the liquid and variables such as 
orifi ce diameter, viscosity of the dose, tautness and thickness of 
the skin and fat layer, and angle of injection, among other 
factors.316,317,322,417,418,424,425 The SC compartment is the only one 
accessible by most marketed DCJIs, as well as by MUNJIs used 
in dental anesthesia345,346 and self-administration of insulin, hor-
mones, and other drugs. Most MUNJIs developed for mass 
vaccination campaigns are powered to reach IM tissues, e.g., the 
Ped-O-Jet and Med-E-Jet, as is one DCJI, the Biojector® 2000, 
which varies the orifi ce of different cartridges to deliver either 
IM or SC.50 Given great patient variation, it is no surprise that 
imaging studies suggest JIs often miss the intended IM or SC 
compartment.426 But this may have little clinical relevance, and 
be no different than needle injections for which fat pad thick-
ness is often underestimated in selecting needle length, or 
which is not fully inserted.427,428

As mentioned in the cutaneous immunization section above, 
jet injectors are capable of classical ID delivery by use of 
specialized nozzles (Fig. 61–2G). The most widely used Ped-O-
Jet® administered tens of millions of smallpox vaccine doses for 
the fi rst half of the WHO Smallpox Eradication Programme in 
South America and West Africa in the late 1960s to early 1970s, 
until invention of the simpler and swifter bifurcated needle.1,49,381 
Jet injectors also delivered ID the BCG vaccine429–434 and various 
tuberculosis skin testing antigens (TST).435–443 However, 
variations in consequent TST reaction sizes43,444 led WHO to 
discourage JI use for BCG and TST.445,446 In the absence of an ID 
nozzle, many have attached spacers or tubing to a regular 
nozzle, creating a gap between orifi ce and skin, which 
weakens the jet and provides space for a bleb that leaves the 
dose in the skin.97,377,378,440,447 This ID technique is still pursued 
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investigationally for local anesthesia448 and DNA vaccines (Fig. 
61–2H).51,52,330 Intrapulmonary injections (between the ribs) of 
antibiotics, bronchodilators, and steroids were performed in 
Russia.333

Immune response
A large clinical literature documents the immunogenicity of JIs 
to be usually equal to and sometimes better than that induced 

by conventional needle and syringe for a wide variety of vac-
cines.314,315,317 Among inactivated and toxoid vaccines, this 
includes anthrax,449,450,520,521 cholera,451 whole cell diphtheria-
tetanus-pertussis (DTPw),138,139,381,452 hepatitis A,452–455 hepatitis 
B,131,456,457 infl uenza,73,78,86,389,452,458–461 plague,450,450 polio,462 
tetanus,355,397,452,463 typhoid452,464 and typhoid-diphtheria.142 With 
the exception of the variable delayed hypersensitivity responses 
to BCG discussed earlier, other live vaccines inducing suit-
able immune responses when administered by JI into their 
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Figure 61–4 Selected Multi-use-Nozzle Jet Injectors (MUNJIS) and Disposable-cartridge Jet Injectors (DCJIs). MUNJIs: (A) Aqua-puncture 
device of Galante et Compagnie,320 circa 1866, of historical interest as fi rst known jet injector. (From Béclard F. Présentation de l’injecteur de 
Galante, Séance du 18 décembre 1866, Présidence de M. Bouchardat. Bulletin de l’Académie Impériale de Médecine (France), 32:321–327,
1866320 with permission.) (B) Hypospray®,360 the fi rst commercial jet injector introduced in the 1940s, with reusable, resterilizable MetaPuleTM

cartridges. (From Perkin FS, Todd, GM, Brown TM, Abbott HL. Jet injection of insulin in treatment of diabetes mellitus. Proceedings of the 
American Diabetes Association 10:185–199, 1950323 with permission.) (C) Ped-O-Jet®,345 most widely used jet injector worldwide; metal springs 
compressed by hydraulic fl uid from foot pump or electric pump; SC/IM and ID nozzles available. (D) Med-E-Jet®,341 springs compressed either 
by CO2 gas cylinder within the handle, capable of about a dozen injections, or by connecting pneumatic hose to bottom of handle from separate
tank or electric compressor pump; includes nozzle spacer for intradermal injections. (E) MadaJet®,346 used primarily for local anesthesia in 
dentistry and medicine; plastic tube over nozzle intended to reduce splashback onto reusable nozzle. (F) GentleJet®,324 used primarily for self-
administration of insulin. DCJIs (also see Biojector® 2000 in Fig. 61–2H): (G) Medi-Jector® VISION®,326 used primarily for self-administration of 
insulin. (H) J-Tip®,352 fully disposable upon single use; powered by compressed nitrogen gas. (I) Injex®,339 metal spring compressed by separate 
cocking device. (J) VitajetTM 3,50 used for self-administration of insulin and licensed under other tradenames (Table 61–1) for growth hormone. (K)
and (L) Investigational LectraJet® HS (high-speed motorized) and LectraJet® M3 (manual) models,335 which utilize common cartridge capable of 
rapid, fi ngers-free loading and unloading from magazine. (M) Investigational VitavaxTM,50 designed primarily for routine immunization with manual 
cocking of springs; different autodisabling cartridges for SC, IM, and ID injections. (N) PharmaJet®,358 powered by metal spring compressed with 
off-tool device; blue model for adults, green and violet (not shown) for children-elderly and infants, respectively; spring power varied for SC, IM, 
and ID injections via common cartridge.
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usual tissue compartment are measles,93,95,101,377,381–383,391,447,465,466 
measles-mumps-rubella,467 measles-smallpox,377,378,391 measles-
smallpox-yellow fever,377,391 smallpox,1,48,49,377,381,447,465,468–470 BCG-
yellow fever,90 and yellow fever.89,90,91,377,381,392

The immunogenicity or effi cacy of traditional meningococcal 
polysaccharide vaccines administered by JIs have been 
demonstrated for serogroup A in the clinic137,472 and in outbreaks 
in the meningitis belt of western sub-Saharan Africa,386,473–477 as 
well as for serogroup C in South America,478–480 and Africa.386,477 
Jet injection of the newer Vi capsular polysaccharide typhoid 
vaccine resulted in 87% seroconversion vs. 69% by needle-
syringe (p  <  0.05).452 There have not yet been published clinical 
studies of JI for modern protein-conjugated polysaccharide 
vaccines for Haemophilus infl uenzae type b, pneumococcus, or 
meningococcus.

A wide variety of investigational recombinant nucleic acid 
vaccines are being delivered in preclinical and clinical trials 
using various JIs.51,330,331,336,363,481–486

Reactogenicity
Comparisons of immediate pain between JIs and needles used to 
deliver IM and SC injections depend on the medication involved. 
Insulin, other non-irritating drugs, and non-adjuvanted vaccines 
are reported to result in either reduced or equivalent pain com-
pared to needles,322,377,389,401,415,416,424,467 but not always.461 True 
double-blinded, needle-controlled studies for such subjective 
criteria are nearly impossible to design and thus lacking.

Vaccines with alum adjuvants or other irritating components 
tend to result in higher frequencies of delayed local reactions 
(e.g., soreness, edema, erythema) when jet-injected, probably 
because small amounts remain in the track through skin and 
superfi cial tissue. These include vaccines for diphtheria-tetanus-
pertussis (whole-cell),139,381,394,452 hepatitis A,452,453,455,487 hepatitis 
B,131,456,457 tetanus,355,395,397,452,463,488 tetanus-diphtheria,142 tetanus-
diphtheria-polio394 and typhoid.452,464,489,522 In most cases, local 
reactions were mild, resolved within days, and were not 
reported to compromise clinical tolerance and safety. A chronic 
granuloma was reported following JI vaccination with tetanus 
toxoid adsorbed to alum,490 and pigmented macules persisted 
in a few hepatitis B vaccinees.456

Other adverse events
Bleeding, and less often ecchymosis, are reported to occur at the 
jet injection site more frequently than with needle injec-
tions.78,322,348,371,373,374,385,389,401,405,414,416,424,444,452,462,491–493 Rarely, the jet 
stream may cause a laceration if the health care worker has not 
properly immobilized the limb and injector in relation to 
each other during injection.322,373,389,416,452 Rare case reports of 
other adverse events include transient neuropathy494,495 and 
hematoma.409,496

Safety of multi-use-nozzle jet 
injectors (MUNJIs)

Beginning in the 1960s, concerns arose for potential iatrogenic 
transmission of bloodborne pathogens by multi-use-nozzle jet 
injectors (MUNJIs), which use the same nozzle to inject consecu-
tive patients without intervening sterilization.488,492,493,497 Unpub-
lished bench and chimpanzee studies indicated hepatitis B 
contamination could occur because blood or HBsAg remained 
in nozzle orifi ces despite recommended alcohol swabbing 
between injections.498 Others, however, reported negative results 
in bench or animal testing to try to detect contamination,372,405,499,500 
or pointed to the lack of epidemiologic evidence of a 
problem.394,499,501,502 Then in 1985, Brink et al described a careful 
animal model in which a Med-E-Jet transmitted lactic dehydro-
genase (LDH) virus between mice in 16 (33%) of 49 animals.503

A few months later, fact superseded theory when a Med-E-
Jet caused an outbreak of several dozen cases of hepatitis B 
among patients in a California clinic.504-506 Subsequent clinical,507 
fi eld,508,509 bench,510 animal511,512 and epidemiologic,513,514 studies 
added more evidence that MUNJIs could transmit pathogens 
between patients. This led to warnings and discontinuation of 
their use by public health authorities,515,516 and market 
withdrawal of the Ped-O-Jet and discontinuation of its U.S. 
military use in 1997.318,517 

There have been efforts in the 2000s to reengineer MUNJIs 
with disposable caps or washers with a central hole for the jet 
stream to prevent blood or tissue fl uid from reaching
the nozzle.342 However, clinical studies revealed the caps 
were unable to prevent HBV contamination of subsequent in 
vitro injections assayed by PCR after injections of high-titer HBV-
carrier volunteers.518,518a MUNJIs also face doubts raised by high-
speed microcinematography revealing extensive splashback,317 
and the challenge of proving that contamination does not occur 
and of convincing policymakers to set any level of acceptable 
risk. Despite the withdrawal of MUNJIs for vaccination, models 
such as the MadaJet346 and SyriJet345 continue to be used in 
dentistry and medicine for delivery of local anesthetics.

MUNJIs allowed a single health worker to vaccinate 600 or 
more patients per hour.315,373,375,389 Their withdrawal poses 
challenges for conducting mass immunization campaigns for 
disease control programs and in response to pandemic or 
bioterror threat. Indeed, while the Soviet biological warfare 
effort was underway in secret,519 numerous clinical trials were 
published of high-speed Russian MUNJIs capable of rapidly 
protecting soldiers or civilians against potential biowarfare 
agents such as anthrax, botulism, plague, smallpox and 
tularemia.314,449,450,470,489,520–523

Disposable-cartridge jet injectors (DCJIs)

To overcome concerns over MUNJIs and their withdrawal, 
since the early 1990s, a new generation of safer, disposable-car-
tridge jet injectors (DCJIs) have appeared on the market (Table 
61–1).318 Each cartridge has its own sterile orifi ce and nozzle and 
is discarded between patients. Most are used for self-adminis-
tration of insulin and other hormones. An exception is the Bio-
jector® 2000 (Fig. 61–2H)50 which was designed for vaccination 
and delivers approximately one million doses per year at 
private, public, and U.S. Navy and Coast Guard immunization 
clinics. Another DCJI for SC delivery only, the Injex® 50 (Fig. 
61–4I),339 produced satisfactory immune responses to measles-
mumps-rubella vaccine boosters.467

To meet developing world needs for needle-free vaccination 
systems that are economical, autodisabling to prevent reuse, 
and suitable for both mass campaigns and routine immunization, 
DCJIs such as the PharmaJet358 and the investigational 
LectraJet® 24,335 and the VitavaxTM 50 are in research and 
development (Fig. 61–4 K, L, M, N). Financial support for DCJI 
R&D has been provided by private sources, by the U.S. 
Government (CDC), and by the Program for Appropriate 
Technology in Health (PATH)353 under a grant from the Bill and 
Melinda Gates Foundation. 

Respiratory vaccination

Since early in the history of immunization, the respiratory tract 
has been considered a highly promising route for vaccine deliv-
ery. However, only since the year 2000 have advances in respi-
ratory vaccines and their delivery systems begun to play a role 
in routine immunization practices, as heralded by the licensure 
of an intranasal (IN), live attenuated infl uenza vaccine (FluMist®) 
in the United States (see Chapter 16 [infl uenza, live]). Two 
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major advantages of respiratory immunization are that it avoids 
needles and generally provides stronger mucosal immunity 
than parenteral immunization.

The great majority of human pathogens gain access across 
mucosal surfaces in the gastrointestinal, respiratory, or geni-
tourinary tracts. Mucosal immunity includes humoral and 
cellular components and prevents infection at these portals of 
entry. In contrast, systemic (humoral and cellular) immunity 
clears infection only after invasion by limiting replication and 
destroying the pathogens. Ideally, both mucosal and systemic 
immunity should be raised against targeted pathogens. Strong 
mucosal immunity may enhance the benefi ts of immunization 
for some diseases. For example, by preventing the initial 
infection, mucosal immunity reduces the risk of transmission to 
others, in addition to preventing clinical disease. Prevention of 
infection at the mucosal surface may be especially important for 
diseases in which effective systemic immunity has been diffi cult 
to achieve, such as for tuberculosis and AIDS.

Every mucosal surface for administering vaccines has been 
studied with a variety of antigens in animal models, including 
the oral, conjunctival, rectal and vaginal routes. Several human 
vaccines are already licensed and in use for delivery by oral 
ingestion, including vaccines for polio, cholera, rotavirus, 
typhoid and adenovirus, which are described in detail in other 
chapters. This chapter, however, will focus only on vaccines and 
technologies for respiratory tract immunization, including 
devices for depositing vaccines in the target area, delivery 
systems to optimize presentation of antigen to the respiratory 
immune tissues, and adjuvants to enhance the immune 
response.

Antigen presentation and processing in the 
respiratory tract

Pathogens and vaccine antigens enter the respiratory tract in 
airborne particles through oral or nasal inhalation and deposit 
on respiratory surfaces. Air inspired through the nose is effec-
tively fi ltered by the nasal hairs, by the external nasal valves 
which restrict the airfl ow from the nares into the internal nasal 
passages and by the convolutions of the turbinates. For example, 
Djupesland et al showed only 25% of large, high speed droplets 
(average 43  µm) of a traditional nasal spray traversed the exter-
nal nasal valve.524

Particles that deposit on nasal mucus join the fl ow of mucus 
which is swept by ciliated epithelia toward the pharynx, where 
it is swallowed. Immune surveillance of antigens in the mucus 
fl ow occurs by uptake into epithelial cells, intraepithelial 
dendritic cells, surface macrophages and microfold (M) 
cells.525,526 M cells are specialized epithelial cells which take up 
macromolecules, viruses and bacteria by endocytosis, and then 
present them to lymphocytes and dendritic cells that congregate 
in special pockets in the M cells. The predominant organized 
lymphoid tissue of the human respiratory tract is located in the 
pharynx, where the adenoids and other tonsils (collectively 
known as Waldeyer’s ring) surround the nasal and oral passages. 
The epithelium overlying these tissues is rich with M cells.527 
Increased deposition of vaccine antigen in the posterior nasal 
passages and nasopharynx near Waldeyer’s ring may be 
desirable to maximize the immune response. Breath actuation 
of a nasal spray and nasal inhalation of smaller aerosol particles 
(5–20  µm) are two methods to increase nasopharyngeal 
deposition (Fig. 61–5A,B).524,528

The nasal fi ltration system is bypassed by mouth breathing 
(e.g., for vaccine delivery, through a mask or oral prong). In 
such case, particles impact in the oropharynx, larynx, or trachea. 
The bifurcation of the trachea into the right and left bronchi 
starts a series of bifurcations which trap airborne particles. Only 
very small, light, and slow-moving particles inhaled via either 

nose or mouth succeed in navigating the tortuous pulmonary 
passages to deposit in the lower airways. The smallest particles 
(<3  µm) may reach the alveoli, where they can be rapidly 
absorbed into systemic circulation. The complex branching of 
the lung passages also results in an astonishing alveolar surface 
area exceeding 100 square meters in a human adult male, 
compared with an average of about 150 square centimeters 
(0.015  m2) in the nasal airways.529 The lower airways in humans 
do not typically have organized lymphoid tissues, but they do 
have abundant numbers of intraepithelial dendritic cells and 
alveolar macrophages which process antigens.530

Antigen presenting cells from the respiratory tract drain to 
regional lymph nodes where the B cells preferentially switch to 
IgA plasmablasts. These plasmablasts ‘home’ back to the airway 
epithelium to provide antigen specifi c IgA protection.531 T cells 
also play a major role in mucosal immunological memory 
responses. Some lymphocytes exposed to antigen in the 
respiratory tract migrate to provide protection at remote 
mucosal sites, such as the vagina. This integrated network of 
immune cells and tissues is known as the common mucosal 
immune system.532,533 Because the respiratory tract is exposed 
to a myriad of non-pathogenic macromolecules, there are 
mechanisms for down-regulating the immune response to 
antigenic exposure. This is known as immunological toler-
ance and must be considered when developing respiratory 
immunization strategies.534

Challenges for respiratory delivery of vaccines

The fi rst challenge in respiratory immunization is to identify the 
appropriate target tissue. Most respiratory drugs traditionally 
target two areas. The nasal passages are the desired site of 
action for decongestants, while the lower airways are targeted 
by asthma medications. The optimal target tissue is not yet 
determined for most potential respiratory vaccines and may be 
different for different vaccines. The pharyngeal tonsils are likely 
candidates because of their key role in immunologic priming, 
however, some vaccines may require deposition in the lower 
airways. Scientifi c methods for evaluating and comparing dif-
ferent vaccine target tissues areas are not yet well developed. 
Interspecies differences in respiratory immunologic tissue orga-
nization makes it diffi cult to use animal models to determine 
optimal vaccine target tissues. Moreover, the relative size and 
anatomy of the respiratory tract of common research animals 
differ greatly from humans. For example, in small animals such 
as rodents, the use of nose drops may result in deposition to the 
entire respiratory tract which would not be the case in humans. 
Balmelli, et al estimated that 30% of 20  µL of vaccine given to 
mice as IN drops deposited into the lungs.535 A second challenge 
to research is the lack of susceptibility in many animal models 
to many human diseases of interest. This makes it diffi cult to 
use live vectors as vaccines or to do challenge studies to deter-
mine vaccine protection. Such limitations impede the transla-
tion of promising results from animal research into safe and 
effective vaccines for human use.

A third challenge for respiratory immunization is the 
diffi culty in delivering a consistent dose. The mass or volume of 
the dose delivered depends on many factors, including variability 
in performance by the respiratory delivery device, the behavior 
and technique of the person administering the vaccine, and 
differences in anatomy and physiology in the vaccinates 
(animals) or vaccinees (humans).536 Fortunately, for many 
vaccines there is a wide margin between the dose necessary to 
induce protection and the dose at which the risk of adverse 
events increases. The licensure in 2006 in the United States and 
Europe of the fi rst inhalable insulin (ExuberaTM), a drug for 
which dose accuracy and consistency is critical, suggests that 
this challenge can be overcome for respiratory vaccines.537
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A fourth major challenge is that accepted ‘correlates of 
protection’ for mucosal immune responses have yet to be 
determined. In contrast, for many diseases there are well-
established laboratory assays of systemic immunity—such as 
antibody titers above certain cutoffs—that have served for 
many years as indicators of protection from disease.

Several immunization safety issues represent further 
challenges for respiratory vaccines. One is the risk that vaccine 
viruses, antigen, or adjuvant might affect nearby cranial 
nerves,292 or travel along the olfactory nerve through the 
cribiform plate into the brain with resulting adverse central 
nervous system effects. Another risk that must be addressed is 
cross-contamination, in which respiratory pathogens from one 
patient may contaminate the respiratory immunization device, 
with the risk of their spread to subsequent patients using the 

device. Other safety issues for vaccines targeting lower airways 
include the possible induction or exacerbation of bronchospasm 
and/or pulmonary infl ammation, which can be life-threatening. 
Also, respiratory vaccine aerosols may spread beyond the 
intended vaccinee to other persons in the vicinity. Finally, 
certain live virus or bacterial vaccines might have a pathogenic 
effect on persons immunocompromised by HIV or other 
conditions.

Remaining challenges relate to the delivery devices. Although 
many devices already exist for delivering drugs to the respiratory 
tract, very few of them are designed for vaccine delivery. Most 
respiratory drug devices deliver repetitive doses to a single 
patient. In contrast, the expected usage for vaccination devices 
is to deliver single doses to multiple patients, which raises the 
cross-contamination issue mentioned above. Although single-

A

F

B

E

C

D

Figure 61–5 Selected Devices for Respiratory Vaccination. (A–B) Computer-assisted rendering of sagittal (A) and coronal (B) sections 
illustrating intranasal delivery by investigational OptimistTM (OptiNose AS543) device. Exhaling into the device lifts the soft palate, closing off the 
nasal cavity. The breath actuates the release of liquid or powder particles and carries them beyond the nasal valve to target sites. The air fl ow 
passes through the communication posterior to the nasal septum and exits through the other nasal passage. (C) Investigational dry powder 
inhaler prototype (Becton, Dickinson and Co.53). Air from the syringe barrel ruptures the membranes of a capsule containing the vaccine powder 
and delivers it to the nasal tract. Inset shows detail of vaccine capsule. (Inset from Huang J, Garmise JR, Crowder MT, et al. A novel dry powder 
infl uenza vaccine and intranasal delivery technology: introduction of systemic and mucosal immune responses in rats. Vaccine 23:794–801,
2004546 [Fig. 1a, p. 796], with permission.) (D) AeroLifeTM prototype (investigational, AerovectRx, Inc.,548 originally known as the VaccinAireTM

device, developed by Centers for Disease Control and Prevention and Creare, Inc.818). The nebulizer utilizes battery-powered piezoelectric energy 
to drive an aerosol from a perforated mesh plate to a disposable patient interface (nasal prong, oral prong or mask). Droplet size can be tailored 
for upper or lower airway delivery. (E) Classic Mexican Device (investigational); a non-medical electric compressor (not shown) delivers roughly 9 
liters of air per minute at a pressure of 30–40 pounds per square inch to a jet nebulizer which is kept in crushed ice to maintain vaccine potency. 
The vaccine aerosol (roughly 0.15  cc) is delivered through a disposable paper cone held close to the patient’s face for 30 seconds.538–541

(F) AccuSprayTM nasal spray syringe (Becton, Dickinson and Co.53); licensed to deliver FluMistTM infl uenza vaccine. Prefi lled and stored frozen 
for single patient use after thawing. The total volume is 0.5  mL, a dose separator stops delivery at 0.25  mL, and the remaining 0.25  mL is 
delivered to the opposite nostril.
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use, disposable devices might solve this, they may be costly. 
Some aerosol drug delivery devices require patient education 
to obtain the needed cooperation for adequate dose delivery, 
which is diffi cult in the brief time typical for vaccination. 
Some respiratory delivery methods are not effective for young 
children, who receive many vaccines. Although current 
respiratory drug delivery devices typically target the anterior 
nasal passages or the lower airway, respiratory vaccination may 
work best by deposition in the quite different area of the 
pharyngeal tonsils. New delivery technologies to meet the 
requirements of respiratory immunization are required if this 
route is to become practical and accepted. As a young fi eld, 
published research on devices used in respiratory vaccination 
of humans or animals is limited. In most reported animal 
studies, the IN delivery device is not mentioned at all, or a 
laboratory pipette unsuitable for humans is used for 
instillation.

Current progress in vaccination via the 
respiratory tract

Respiratory vaccination devices
The only device currently licensed and in use in the United 
States for respiratory delivery of a vaccine is the AccuSprayTM 
(Becton, Dickinson and Company (BD)),53 which is used to 
deliver FluMistTM infl uenza vaccine. The AccuSprayTM is a nasal 
spray syringe preloaded for single patient use (Fig. 61–5F). It 
produces particles with a mean aerosol diameter of 70 microns 
in a total dose of 0.5  mL, with 0.25  mL delivered consecutively 
through each nostril. Key advantages of this device are that it 
is simple to use, inexpensive, disposable and very diffi cult to 
refi ll and reuse. The large particle size minimizes deposition to 
the lower airways which reduces the risk of pulmonary adverse 
events.

Another respiratory immunization device that has been used 
in humans is the jet nebulizer system known as the Classic 
Mexican Device (CMD, Fig. 61–5E). With slight modifi cations, 
this nebulizer delivered live attenuated measles vaccines in 
multiple clinical trials in Mexico and South Africa, and in a mass 
campaign which vaccinated over 3 million Mexican children 
against measles.538,539,540,541 The system consists of a general-use 
(non-medical) compressor which delivers air to a jet nebulizer 
(IPITM) which holds the vaccine in crushed ice to maintain 
potency. The vaccine aerosol is delivered through a disposable 
cone (modifi ed paper cup) which is held close to the patient’s 
face for 30 seconds. Typically, the aerosolized vaccine dose is 
roughly 0.15  mL, and the mass median aerosol diameter of the 
emitted particles is 4.3  µm.542

The OptiMistTM is a breath-actuated nasal spray device for 
liquid or powders which delivers only during oral exhalation.543 
Because oral exhalation closes the connection between nose and 
throat, pulmonary deposition is avoided and delivery to the 
posterior nasal segments is increased (Fig. 61–5A,B).524 In a 
human study, inactivated infl uenza vaccine self-administered 
using the OptiMistTM resulted in signifi cant increases in 
virus-specifi c IgA in nasal secretions and protective levels of 
virus-specifi c serum antibodies after two doses in >80% of 
subjects.544

A Combitips-plus syringe (Eppendorf) was used to deliver 
a dry powder Neisseria menigitidis vaccine IN to human subjects. 
IN-vaccinated subjects had serum bactericidal antibody titers 
comparable to those vaccinated by conventional injection, and 
92% of IN vaccinees had protective titers after the second dose. 
One-third of IN vaccinees reported mild side effects, compared 
to two-thirds of injection vaccinees reporting mild injection 
pain.545

BD53 has demonstrated the utility of a novel device for 

delivery of vaccine powder (Fig. 61–5C). Air from a syringe 
barrel ruptures the membranes of a capsule containing the 
vaccine and delivers the powder to the nasal tract. The device 
was effective in nasal delivery of infl uenza vaccine to rats and 
of anthrax vaccine to rabbits.54,546

The Centers for Disease Control and Prevention (CDC) 
developed a nebulizer for vaccine delivery which utilizes a 
disposable aerosol-generating element and disposable patient 
interface to prevent cross contamination (Fig. 61–5D). The 
aerosol it generates can provide either 10–25  µm droplets for 
upper airway delivery or <5  µm droplets for lower airway 
delivery, and can be used with a disposable nasal prong, oral 
prong or mask. Delivery of live attenuated measles vaccine with 
this device through a nasal prong was shown to be safe and 
immunogenic in macaques.547 Ongoing research focuses on 
maximizing delivery to the nasopharynx. The AerovectRxTM 
company548 has acquired the rights to manufacture and distribute 
this technology.

Adjuvants for respiratory delivery 
of vaccine

Non-replicating antigens delivered via the respiratory tract are 
typically poorly immunogenic and may require adjuvants to 
stimulate an appropriate immune response. Adjuvants which 
have been studied for respiratory delivery of vaccines include 
bacterial toxins and their derivatives, other bacterial compo-
nents, bacterial DNA motifs, cytokines and chemokines, 
plant derivatives and other adjuvants (Table 61–2).549–553 
Cholera toxin (CT) and E. coli heat labile toxin (LT) are potent 
respiratory immunization adjuvants but are considered too toxic 
for use in humans.551,554–559 LT was an adjuvant in a commercially 
available IN infl uenza vaccine in Switzerland which was 
withdrawn from the market in 2001 due to an increased risk of 
Bell’s palsy among vaccinees.292,560 Although the pathogenesis of 
Bell’s palsy has not been clearly defi ned, CT and LT have been 
shown to accumulate in the olfactory bulbs of Balb/c mice fol-
lowing nasal administration, sometimes with concurrent infl am-
mation, which suggests a risk for adverse neurological effects.561 
As a result, recent adjuvant research has focused on alternative 
subunits and variants of CT and LT.562–580 Several of these, such 
as CTA1-DD, do not accumulate in the olfactory bulb of BALB/c 
mice.581

Other bacterial products which induce potent activation of 
the innate immune system include bacterial lipopolysaccharide 
(LPS) and its derivative, monophosphoryl lipid A (MPL), as 
well as bacterial outer membrane protein proteosomes, fl agellins, 
lipopeptides and fi lamentous hemagglutinins582–593 (Table 61–2). 
An IN, proteosome-based, inactivated infl uenza vaccine 
produced serum and mucosal antibodies in human subjects.583 
CpG oligodeoxynucleotides (CpG ODNs) are short segments of 
synthetically constructed single stranded deoxynucleotides 
which contain CpG motifs found in bacterial DNA. These motifs 
are recognized as pathogen associated molecular patterns 
(PAMPs) by the innate immune system and are potent 
adjuvants.594–597 Abe et al found that a non-typeable Haemophilus 
infl uenzae (NTHi) vaccine, delivered IN with CPG ODNs, 
produced similar mucosal IgA and serum IgG responses as 
vaccine delivered with CT. Enhanced clearance of NTHi from 
the nasopharynx following challenge was shown equally in 
both groups.598 However, in another study, daily injection of 
high dose (60  µg) CpG resulted in lymphoid follicle destruction 
and immunosuppression with liver necrosis after 20 days.599 
Therefore, potential adverse effects of CpG ODNs should be 
carefully monitored.

Because many adjuvants induce enhanced immune responses 
through the activation of chemokines and cytokines, investigators 
have studied these molecules themselves as adjuvants that 

Ch061-X3611.indd 1373Ch061-X3611.indd   1373 2007/12/7 06:38:192007/12/7    06:38:19



1374 Section 3 • Vaccines in development and new vaccine strategies

Q Ta
bl

e 
61

–2
 E

xa
m

pl
es

 o
f A

dj
uv

an
ts

 fo
r R

es
pi

ra
to

ry
 V

ac
ci

na
tio

n 
Su

cc
es

sf
ul

ly
 T

es
te

d 
in

 A
ni

m
al

s

A
dj

uv
an

t
V

ac
ci

ne
s

S
tu

di
ed

 In
S

er
um

 
Ig

G
M

uc
os

al
 

Ig
A

C
ha

lle
ng

e 
P

ro
te

ct
io

n
R

ef
er

en
ce

s

B
ac

te
ri

al
 T

o
xi

ns

C
ho

le
ra

 T
ox

in
 (C

T)
Tr

ic
ho

m
on

as
, M

al
ar

ia
, C

hl
am

yd
ia

 tr
ac

ho
m

at
is

, 
St

re
pt

oc
oc

cu
s 

py
og

en
es

M
ic

e
+

+∧
+

+
∧

+
+

55
4,

 5
55

, 5
56

, 5
57

C
T-

B
 s

ub
un

it
P

ne
um

oc
oc

cu
s,

 G
ro

up
 A

 S
tre

pt
oc

oc
cu

s,
 H

um
an

 
P

ap
ill

om
a 

Vi
ru

s 
(H

P
V)

, T
et

an
us

, G
on

or
rh

ea
, G

ro
up

 B
 

S
tre

pt
oc

oc
cu

s,
Po

rp
hy

m
on

as
 g

in
gi

va
lis

, D
ip

ht
he

ria
, 

S
im

ia
n 

Im
m

un
od

efi
 c

ie
nc

y 
Vi

ru
s 

(S
IV

)

M
ic

e
++

++
++

∧
∧

+
+

+ 
+

+ 
∧

∧
∧

+
+

+
56

2,
 5

63
, 5

64
, 

56
5,

 5
66

, 5
67

, 
56

8,
 5

69
, 5

70

C
T 

m
ut

an
ts

,
C

TA
1-

D
D

C
. t

ra
ch

om
at

is
, H

um
an

 Im
m

un
od

efi
 c

ie
nc

y 
Vi

ru
s 

(H
IV

), 
In

fl u
en

za
, H

el
ic

ob
ac

te
r p

yl
or

i, 
H

P
V

M
ic

e,
 M

ac
aq

ue
s

+
∧

∧ 
∧

+
∧

∧
∧

+ 
+∧

∧
56

4,
 5

71
, 5

72
, 

57
3,

 5
74

, 5
75

, 
57

6,
 5

81

Es
ch

er
ic

hi
a 

co
li 

he
at

 la
bi

le
 to

xi
n 

(L
T)

M
en

in
go

co
cc

us
, P

. g
in

gi
va

lis
, M

ea
sl

es
M

ic
e

+
+ 

∧
+

∧
55

8,
 5

59
, 5

68

LT
-B

 s
ub

un
it

M
en

in
go

co
cc

us
M

ic
e

+
+

78
4

LT
 m

ut
an

ts
In

fl u
en

za
, M

en
in

go
co

cc
us

, R
ic

in
, P

. g
in

gi
va

lis
,

M
ea

sl
es

M
ic

e,
 H

um
an

s
+

+
+

+
+ 

∧
∧

+
+

+ 
+ 

∧
∧

∧
55

9,
 5

68
, 5

77
, 

57
8,

 5
79

, 5
80

O
th

er
 B

ac
te

ri
al

 P
ro

d
uc

ts

P
ro

te
os

om
es

, O
ut

er
 m

em
br

an
e 

ve
si

cl
es

R
es

pi
ra

to
ry

 S
yn

cy
tia

l V
iru

s 
(R

S
V)

, L
ei

sh
m

an
ia

, 
In

fl u
en

za
, H

ep
at

iti
s 

B
, M

ea
sl

es
, P

la
gu

e,
M

ic
e,

 H
um

an
s

+
+

+ 
∧ 

∧
+

+
+

∧ 
∧

+
+

+
+ 

∧
58

2,
 5

83
, 5

84
, 

58
5,

 5
86

, 5
87

, 8
17

Li
po

po
ly

sa
cc

ha
rid

e
M

ea
sl

es
, L

ei
sh

m
an

ia
, M

en
in

go
co

cc
us

, I
nfl

 u
en

za
, 

P
la

gu
e

M
ic

e
+

∧
+

∧
+

58
5,

 5
86

, 5
87

M
on

op
ho

sp
ho

ry
l L

ip
id

 A
 (M

P
L)

A
nt

hr
ax

, S
IV

, M
en

in
go

co
cc

us
M

ic
e,

 R
ab

bi
ts

, M
ac

aq
ue

s
+

+ 
∧

+
+ 

∧
+ 

∧
58

8,
 5

89

Li
po

pe
pt

id
es

H
IV

, M
ea

sl
es

M
ic

e,
 C

ot
to

n 
ra

ts
+

+
+

+
+

59
0,

 5
91

Fl
ag

el
lin

s
P

la
gu

e,
 T

et
an

us
M

ic
e,

 M
on

ke
ys

+
∧

+
∧

+
∧

59
2,

 5
93

B
ac

te
ri

al
 D

N
A

 M
o

tif
s

C
pG

 O
D

N
s

Te
ta

nu
s,

 T
ub

er
cu

lo
si

s,
 H

ae
m

op
hi

lu
s 

in
fl u

en
za

e,
 

Tr
ic

ho
m

on
as

, H
. p

yl
or

i, 
S.

 p
yo

ge
ne

s
M

ic
e,

 G
ui

ne
a 

pi
gs

, R
ab

bi
ts

 
+

+
+ 

+
+ 

∧
+

+
+

+
+

+
+

+
+

55
4,

 5
56

, 5
94

, 
59

5,
 5

96
, 5

97
, 5

98

C
yt

o
ki

ne
s/

C
h

em
o

ki
ne

s

In
te

rle
uk

in
s 

(IL
-1

, I
L-

5,
 IL

-6
, I

L-
12

, I
L-

15
, I

L-
23

) G
M

-C
S

F 
Ty

pe
 1

 In
te

rfe
ro

n
Tu

be
rc

ul
os

is
, H

um
an

 P
ap

ill
om

a 
Vi

ru
s 

(H
P

V)
, 

H
er

pe
s 

S
im

pl
ex

 V
iru

s 
(H

S
V)

, H
IV

, S
im

ia
n/

H
um

an
 

Im
m

un
od

efi
 c

ie
nc

y 
Vi

ru
s 

(S
H

IV
),

P
ne

um
oc

oc
cu

s,
 

In
fl u

en
za

M
ic

e,
 M

ac
aq

ue
s

+
+

+
∧

∧ 
∧ 

∧
+

+
+

+ 
∧

∧
∧

+
+

∧
∧

∧
∧ 

∧
57

3,
 6

00
, 6

01
, 

60
2,

 6
03

, 6
04

, 
60

5,
 6

07

P
la

nt
 D

er
iv

at
iv

es

Q
ui

lla
ja

 S
ap

on
in

s
P.

 g
in

gi
va

lis
, H

IV
M

ic
e

∧
∧

∧
∧

∧
56

8,
 6

11

O
th

er
 A

dj
uv

an
ts

C
hi

tin
, C

hi
to

sa
n

A
nt

hr
ax

, I
nfl

 u
en

za
M

ic
e,

 R
ab

bi
ts

∧
∧

∧
∧

+ 
∧

58
8,

 8
04

+ 
D

en
ot

es
 a

 re
sp

ira
to

ry
 v

ac
ci

na
tio

n 
st

ud
y 

in
 w

hi
ch

 a
n 

im
m

un
e 

re
sp

on
se

 w
as

 d
em

on
st

ra
te

d 
us

in
g 

th
e 

ad
ju

va
nt

, b
ut

 u
na

dj
uv

an
te

d 
va

cc
in

e 
w

as
 n

ot
 s

tu
di

ed
 a

s 
a 

co
nt

ro
l.

∧ 
D

en
ot

es
 a

 re
sp

ira
to

ry
 v

ac
ci

na
tio

n 
st

ud
y 

in
 w

hi
ch

 th
e 

im
m

un
e 

re
sp

on
se

 w
as

 in
cr

ea
se

d 
w

ith
 th

e 
ad

ju
va

nt
 c

om
pa

re
d 

to
 v

ac
ci

na
tio

n 
w

ith
ou

t t
he

 a
dj

uv
an

t.

Ch061-X3611.indd 1374Ch061-X3611.indd   1374 2007/12/7 06:38:192007/12/7    06:38:19



1375Alternative vaccine delivery methods 61
Chapter

616

Q

might minimize any adjuvant toxicity (Table 61–2).600–605 
Chemokines and cytokines have been added directly to the 
vaccine, or encoded for expression by a live vector or DNA 
vaccine.606 Bracci and colleagues found a single IN dose of an 
inactivated infl uenza vaccine provided full protection against 
virus challenge in mice when type 1 IFN was included as an 
adjuvant. The same vaccine dose was only partially effective 
(40%) without it.607

Chitin is a natural polysaccharide found in crustaceans. Its 
partial deacetylation yields chitosan, which is widely used in 
food products, as an excipient in drugs, and as a nutritional 
supplement.608 Chitin and chitosan have mucoadhesive 
properties and stimulate the innate immune system.609 In 
humans, the addition of chitosan to an IN vaccine based on 
CRM-197 diphtheria antigen signifi cantly increased toxin-
neutralizing antibody levels.610 The saponins of the Quillaja 
saponaria tree are potent adjuvants with high toxicity. Quil A, 
QS-21 and ISCOPREP 703 are subcomponents with less 
toxicity.552 As adjuvant to an IN DNA HIV-1 vaccine studied in 
mice, QS-21 consistently increased antigen-specifi c serum IgG 
and mucosal IgA compared to vaccine without adjuvant.611 Quil 
A and ISCOPREP 703 are commonly used as components of 
immunostimulating complexes (ISCOMs), antigen delivery 
vehicles described in more detail in the next section. Combining 
adjuvants may synergistically enhance immune protection with 
respiratory immunization. For example, IN immunization of 
mice with a recombinant infl uenza HA (rHA) antigen, with a 
combination of proteosomes and LPS adjuvants, enhanced 
serum IgG and mucosal IgA antibodies up to 250-fold compared 
to vaccine alone.587

Delivery vehicles for vaccination via the 
respiratory tract

Once the device has delivered vaccine to the appropriate region 
of the respiratory tract, suffi cient quantities of the antigen (and 
adjuvant) must penetrate mucosal barriers to gain access to 
appropriate cells to activate the immune system. The vehicles 
or vectors which may be used for this purpose include live 
attenuated viruses (including those acting as vectors for exoge-
nous antigen), live attenuated bacteria (including vectors), com-
mensal bacterial vectors, virosomes, virus-like particles (VLPs), 
liposomes, lipopeptides, ISCOMS, microparticles and nanopar-
ticles (Table 61–3).612–616

Live viruses
Viruses are prototypical antigen delivery vehicles because they 
enter and commandeer cells to replicate themselves, thus mul-
tiplying the available antigen which they encode. Also, viruses 
can induce a natural adjuvant effect through activation of che-
mokines and cytokines. The most widely studied respiratory 
delivery vehicles are live attenuated strains of pathogenic 
viruses.591,617–622,624–626,628–636 Their major risks are possible rever-
sion to virulence, potential neurotoxicity via the olfactory route, 
and the risk of pathogenic effects in immunocompromised 
persons.

Live, attenuated cold adapted infl uenza vaccine (CAIV, 
FluMist®)637 is the only vaccine currently licensed for delivery 
by the respiratory tract. Its development, testing and licensure 
are reviewed in detail in Chapter 16 [infl uenza, live]. As a model 
respiratory immunization, IN CAIV demonstrates several 
potential benefi ts of live virus respiratory immunization. 
It produces both mucosal and systemic immunity and 
provides higher protective effi cacy than injected inactivated 
vaccine.638–641c It also provides heterotypic immunity against 
infl uenza strains that had antigenically drifted from the vaccine 
strains.642 Finally, it may reduce the risk of infl uenza transmission 
because it reduces respiratory shedding among children 

challenged with a vaccine virus.642 Also, modest coverage with 
CAIV among school children reduced infl uenza-related illness 
rates in unvaccinated adults in a community.643

Apart from infl uenza, measles has been the disease for which 
vaccine delivery via the respiratory tract has been most 
thoroughly studied. In a review by Cutts et al through 1997,104 
and in more recent studies, three basic immune response 
patterns were revealed upon measles vaccine delivery. First, 
drops or sprays delivered to the conjunctiva, oral or nasal 
mucosa produced inconsistent immune responses.101,644–652 
Second, among older children (>12 months), delivery of small-
particle aerosols via inhalation typically produced immune 
responses in very high proportions of subjects. Immune 
responses to aerosol vaccinees were usually equivalent to or 
greater than to injected vaccines.540,541,644,645,649,650,653–665 For 
example, Dilraj et al found that 96.4%, 94% and 86% of 
schoolchildren who received aerosol measles vaccine had 
antibody titers >300  IU/L at 1, 2 and 6 years after vaccination, 
respectively, compared to 91.4%, 87% and 73% among injected 
vaccinees.541,664,665 In addition to the clinical trials, de Castro 
reported >3.7 million children in Mexico were vaccinated by 
aerosol with no serious adverse events noted.666 A subsequent 
outbreak investigation showed measles attack rates of 0.8% 
among aerosol-vaccinated children compared to 14.6% among 
injection vaccinees and 26.2% among the unvaccinated. The 
third pattern noted is that the aerosol route among children ≤12 
months of age usually produced an immune response lower 
than that by injection when the two routes are compared 
directly.538,539,648,655–659,662,667,668 For example, Wong-Chew et al 
found vaccination by injection provided immunity in 100% of 
12-month-old and 9-month-old infants, while the rates among 
aerosol recipients were only 86% and 23%, respectively.538,539

No severe adverse events following aerosol measles 
vaccination have been reported in any of the studies. Rates of 
minor adverse events, when reported, have typically been 
less than or the same as vaccination by injection.538,539,541,661,663,669 
Based on the encouraging results of prior trials, the World Health 
Organization (WHO), in partnership with CDC and the American 
Red Cross, leads the Measles Aerosol Project. Its goal is licensure 
in the developing world of at least one live, attenuated aerosol 
measles vaccine consisting of the delivery device and the 
associated vaccine. The project has already documented 
immunogenicity, and safety (the lack of local or systemic toxicity) 
in animal studies.547 Three devices were selected for Phase I 
clinical trials based on the criteria of 1) critical performance 
data, 2) usability under fi eld conditions, 3) vaccine potency 
during nebulization and 4) existing licensure for other uses. As 
of December, 2006, phase I clinical trials are in progress in 
India.

IN delivery of live attenuated rubella vaccine was investigated 
during the 1970s in multiple clinical trials.670–677 Ganguly et al 
demonstrated that drops or spray produced mucosal 
IgA antibody, equivalent serum IgG antibody, and better 
protection against reinfection by IN challenge of vaccine virus 
compared to subcutaneous vaccination.672 The IN subjects, 
however, had higher rates of mild adverse events, usually 
rhinitis and sore throat. More recently, Sepulveda et al found 
aerosolized measles-rubella combination vaccine in school-age 
children not previously vaccinated against rubella produced 
high levels of rubella immunity, equivalent to subcutaneous 
administration. Fewer adverse events were reported in the 
aerosol group.661

Recombinant viruses acting as vectors by incorporation of a 
gene expressing a heterologous antigen have similar advantages 
as conventional attenuated live virus vaccines. They deliver the 
antigen code into cells and get it replicated to activate 
the immune system. Viruses used as vaccine vectors ideally 
should have very low pathogenic potential, even in the 
immunocompromised, and the capacity to hold the necessary 
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foreign genes expressing the desired antigens, promoters and 
adjuvants. Viruses which naturally infect or grow in respiratory 
tissues are especially well suited as vectors for respiratory 
immunization. Some viruses studied as vaccine vectors in 
animal models include adenoviruses, poxviruses, vesicular 
stomatitis virus and adeno-associated virus.678–689 IN adenovirus 
vectors produced immune responses against many diseases in 
several animal models (Table 61–2).169,171,690–706 For example, a 
replication defective adenovirus expressing M. tuberculosis 
antigen delivered IN to mice provided better protection against 
respiratory challenge than BCG vaccine.697 Vaccinia strains, 
such as modifi ed vaccinia Ankara (MVA), have also been used 
as effective vectors for respiratory immunization.603,707–709 For 
example, an IN MVA vector expressing an HIV-1 antigen 
induced antigen-specifi c mucosal CD8(+) T-cells in genital tissue 
and draining lymph nodes of mice, along with serum and 
vaginal antibodies.710 One caveat to vectored vaccines is that 
pre-existing immunity in the population to the vector virus, 
either by natural exposure or by previous use in another vaccine, 
may reduce its effectiveness.

Live bacteria
Bacteria have a major advantage over viruses as vaccine vectors 
because of their higher capacity for insertion of the heterologous 
genes expressing antigens, adjuvants, or plasmids for DNA vac-
cination (described in the next section).613 Animal models of 
respiratory immunization have been used to study attenuated 
respiratory pathogens such as Mycobacterium bovis bacille 
Calmette–Guérin (BCG) and attenuated Bordetella pertussis, as 
well as non-respiratory pathogens such as salmonella and shi-
gella (Table 61–2).711–713 Commensal bacteria such as food grade 
strains of lactococcus, lactobacillus and Streptococcus gordonii 
have also been explored as vaccine vectors.714–717 Bacterial 
expression of adjuvants such as CTB, IL-6 and IL-12 has been 
shown to increase the respiratory vaccine immune response.718,719 
A potential risk of administering live microbes was revealed in 
mice who developed dose-dependent granulomatous BCG infi l-
tration of the lungs after IN but not subcutaneous vaccination.720 
As with viruses, pre-existing immunity to the bacterial vector 
may diminish the immune response.721

Several studies in mice have demonstrated an improved 
immune response to conventional BCG vaccine delivered IN or 
by aerosol inhalation, compared to injection.708,718,720,722–726 The 
studies that also included a challenge found superior protection 
of the respiratory route over injection. Attenuated M. tuberculosis 
has also been immunogenic by the respiratory route.727 
Recombinant BCG has been used to express various heterologous 
antigens, including simian immunodefi ciency virus, Borrelia 
burgdorferi and Streptococcus pneumoniae.728–731 IN, live attenuated 
pertussis vaccine protected against pertussis in mice.732–735 IN 
recombinant B. pertussis expressing antigens of Clostridium 
tetani, Haemophilus infl uenzae, Neisseria meningitidis, or Schistosoma 
mansoni demonstrated strong immune responses in mice.736–739

Attenuated recombinant salmonella vaccines produced 
strong immune responses against a wide variety of pathogens 
when delivered IN in rodents.740–749 Similar results were reported 
for IN shigella vectors against enterotoxigenic E. coli and 
tetanus.750,751

DNA vaccines
DNA vaccination involves the delivery of eponymous plasmids 
directly into host cells to express the desired antigens.752 Deliv-
ery of ‘naked’ DNA to the respiratory tract as a vaccine has been 
studied in animal models for many diseases.753–771 For example, 
Kuklin found nasal delivery of a herpes simplex DNA vaccine 
generated higher levels of vaginal IgA than by the IM route, 

although the IM vaccine produced stronger serum antibodies 
and better protection against challenge.772 Live attenuated 
bacteria, especially salmonella and shigella, have been 
vectored to produce DNA for IN vaccination.750,773–776 For 
example, cotton rats vaccinated with attenuated salmonella 
vaccine expressing DNA encoding for measles antigens 
resulted in signifi cant reduction in measles virus titers in lung 
tissues following challenge.777 Virosomes, liposomes and mic-
roparticles—discussed next—have also delivered respiratory 
DNA vaccines.778–781

Non-replicating vaccine delivery systems
Non-replicating vaccine delivery systems, including ISCOMs, 
liposomes, microparticles, nanoparticles, virosomes and virus-
like particles (VLP), mimic live viruses in how they deliver 
antigen and adjuvant. They are particles about the same size as 
viruses, allowing similar uptake by antigen presenting cells. 
Many include a lipid component to increase cell membrane 
permeability, as well as viral or bacterial proteins to activate the 
immune system. Liposomes are vesicles composed of a phos-
pholipid bilayer membrane. Antigen can be packaged in its 
aqueous core, inside the lipid bilayer, or on the outside of the 
membrane.782–784 A liposomal HIV-1 delivered IN to mice 
resulted in strong IgG and IgA responses in serum and vaginal 
washes.785 VLPs are aggregates of viral proteins that may include 
a lipid component.786 IN immunization of mice with a VLP 
infl uenza vaccine demonstrated a higher antibody response 
than injection of the same vaccine, and provided 100% protec-
tion to challenge by 5 LD50.787 Virosomes have lipid bilayer 
membranes with embedded viral proteins and resemble viruses 
except they lack the genetic material needed to replicate.788,789 
An IN virosomal anti-cancer vaccine enhanced the immuno-
logic and protective activity of the vaccine in mice.790

ISCOMs are cage-like structures roughly 40  nm size composed 
of 12 subunits of saponin (such as Quil A) and cholesterol. 
Several antigens administered IN in ISCOM-based vaccines 
produced strong systemic and mucosal immune re-
sponses.575,791–795 For example, an IN respiratory syncytial virus 
ISCOM vaccine induced high levels of serum IgG and IgA in the 
respiratory tract which persisted for 22 weeks.791 Respiratory 
delivery can also be enhanced by packaging antigens and 
adjuvants into microparticles or nanoparticles composed of 
polymers of biodegradable materials such as polylactide (PLA) 
and polylactide co-glycolide (PLGA), or into biopolymers 
such as chitin or chitosan.796–802 Microparticles can be designed to 
slowly release antigens to increase the duration of antigen 
presentation. Carcaboso et al reported that mice immunized 
IN with a synthetic malaria vaccine encapsulated into 1.5 micron 
microparticles of PLGA had signifi cantly higher antigen-
specifi c serum IgG titers than control mice vaccinated 
subcutaneously with alum adjuvant.803 IN immunization of mice 
with an infl uenza vaccine in chitin microparticles yielded 
protection against virus challenge, even against a non-vaccine 
strain.804

Dry powder aerosol formulations
Vaccines based on any of the above delivery systems could 
potentially be produced as dry powders with particle sizes suit-
able for delivery to the respiratory tract.805–807 With appropriate 
formulation, powders can be highly thermostable which reduces 
the need for the cold chain. Powders can be prepackaged in 
inexpensive, single use respiratory delivery devices and deliv-
ered dry without aqueous reconstitution. Dry powder delivery 
to the lung typically requires active inhalation and thus may be 
diffi cult with small children. However, two potential delivery 
solutions for this age group are direct nasal delivery and dis-
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pensing the powder into a reservoir or ‘spacer’ from which the 
child can breathe normally. An IN infl uenza dry powder vaccine 
elicited high titers of nasal anti-infl uenza IgA as well as serum 
antibody titers equivalent to injected vaccine when adminis-
tered to rats.546 The powder formulation showed no loss of 
potency when stored at 25ºC and 25% relative humidity (RH) 
for up to 12 weeks. In one experiment it maintained full potency 
for 2 weeks at 40ºC and 75% RH. Impermeable packaging which 
maintains powders dry at very low humidity may maintain 
potency to substantially increase their shelf life. IN dry powder 
formulations of an anthrax vaccine have provided complete 
protection against inhalational anthrax challenge (103 LD50) in 
rabbits while providing superior stability compared to liquid 
formulations.54,807a,807b

Dry powder formulations have also been tested for measles 
vaccines. Early formulations milled to a fi ne powder retained 
adequate potency, but immune responses were poor when 
delivered to the respiratory tract of macaques.805,807 AKTIV-
DRY808 used a novel spray-drying system to manufacture and 
test powder formulations of live attenuated measles vaccines. 
Measles virus plaque assays demonstrated potency losses in the 
drying process of 0 to 22%, which is comparable to losses seen 
with lyophilization.809 AKTIV-DRY is working with key partners 
including the Serum Institute of India(SII), CDC and the 
University of Colorado on a fi ve-year project funded at over $19 
million under the Grand Challenges in Global Public Health 
program to refi ne the formulation, complete animal and clinical 
testing, license the vaccine and establish dry powder measles 
vaccine production capacity at SII.810

Respiratory vaccination in veterinary practice

The respiratory route is common in veterinary medicine.811 
Aerosol vaccines for the IN route or pulmonary inhalation are 
commercially available for cows (bovine herpes virus-1, para-
infl uenza virus-3), pigs (Salmonella), horses (infl uenza, Strepto-
coccus equi), dogs (Bordetella bronchiseptica), cats (feline calcivirus, 
feline herpesvirus-1) and chickens (infectious bronchitis virus, 
infectious laryngotracheitis virus, Newcastle disease virus). 
Almost all of the respiratory veterinary vaccines use live attenu-
ated pathogens.

Respiratory vaccines against potential biological 
weapons and pandemic threats

Many bioterror or biowarfare agents cause life-threatening 
respiratory infections, and could be dispensed as aerosols. Thus, 
vaccine-induced mucosal immunity may be very useful. Com-
pared to the parenteral route, respiratory vaccination increased 
survival following aerosol exposure of deadly agents in animal 
studies. For example, a microsphere-based liquid anthrax 
vaccine delivered IN to mice completely protected against 
aerosol challenge with anthrax spores.812 Two doses of human 
parainfl uenza virus vectored Ebola vaccine were highly immu-
nogenic in macaques and protected all animals against lethal 
Ebola virus challenge.812a A powdered formulation anthrax 
vaccine with CPG ODNs administered IN to rabbits also pro-
vided full protection.54 Other bioterror agents for which respira-
tory vaccines have shown increased protection against aerosol 
challenge include Francisella tularensis, staphylococcal entero-
toxin B (SEB), Burkholderia mallei (glanders) and Yersinia pestis 
(plague).813–817

The threat of a global pandemic of respiratory disease such 
as infl uenza or severe acute respiratory syndrome (SARS) is a 
major public health concern. Respiratory vaccination may be 
useful in a pandemic setting because of the ease of administration 
for mass vaccination and the potential for enhanced mucosal 

immunity resulting in decreased disease transmission. Simple 
respiratory vaccination devices, such as single use dry powder 
inhalers, could be widely distributed to avoid the need to 
congregate for mass vaccination. IN delivery of salmonella 
vectored vaccine against the SARS coronavirus resulted in 
higher production of specifi c IgG and IgA than orogastric, 
intraperitoneal, or intravenous administration and provided 
high levels of specifi c cytotoxic T lymphocytes in Balb/c mice.817a 
Two doses of IN, live attenuated, H5N1 infl uenza A vaccine 
fully protected mice and ferrets against pulmonary replication 
of homologous and heterologous wild type H5N1 strains.817b 
Protection against antigenically diverse strains is highly 
desirable for a pandemic vaccine because of rapid changes in 
the infl uenza surface antigens.

Conclusion

Cutaneous, jet-injected, respiratory and other novel delivery 
methods may overcome the drawbacks of the traditional needle 
and syringe. However, demonstrating non-inferiority to the tra-
ditional route for existing vaccines will require expensive clini-
cal data not yet generated for some of these methods.21 Economic 
analysis that recognizes the hidden costs of needles and syringes 
may justify the necessary R&D investment. For diseases not 
yet vaccine-preventable—such as gonorrhea, herpes simplex, 
HIV, Chlamydia, respiratory syncytial virus, parainfl uenza and 
SARS—these alternate routes, taking advantage of the cutane-
ous or respiratory immune systems and their novel adjuvants 
and immunopotentiators, may fi nally provide vaccines to 
conquer them.
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