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Machine learning techniques have been applied to resting-state fMRI data to predict

neurological or neuropsychiatric disease states. Existing studies have used either a

single type of resting-state feature or a few feature types (<4) in the prediction

model. However, resting-state data can be processed in many different ways, yielding

different feature types containing complementary and/or novel information, leaving

uncertain the most informative features to provide to the classifier. In this study,

multiple resting-state features were calculated from two main analytical categories: local

measures and network measures. Feature selection was adopted using an optimized

grid-search approach selecting top ranked features from statistical tests. We then tested

three optimized frameworks: feature combination, kernel combination, and classifier

combination, all using the support vector machine as an elementary classifier, to

combine these resting-state feature types. When applied to nicotine addiction, with

a cohort size of 100 smokers and 100 non-smokers, via a 10-fold cross-validation

procedure, the feature combination and the classifier combination achieved an accuracy

of 75.5%, while the kernel combination achieved a 73.0% accuracy; all three combination

frameworks improved classification performance compared to the single feature type

based results (best accuracy 70.5%). This study not only reveals the discriminative power

of resting-state data, but also demonstrates the efficiency of combining multiple features

from one data phenotype to improve classification performance.

Keywords: feature combination, kernel combination, classifier combination, resting-state fMRI, nicotine addiction,

support vector machine

INTRODUCTION

Machine learning techniques are playing an increasingly important role in neuroscience research to
explore various brain functions (Klöppel et al., 2012; Richiardi et al., 2013; Sundermann et al., 2014;
Gabrieli et al., 2015). They have been applied to neuroimaging data to predict group membership,
whichmay lead to brain-based biomarkers of disease (Chen andHerskovits, 2010;Wang et al., 2010;
Zhang and Shen, 2012; Hart et al., 2014; Pariyadath et al., 2014; Ding et al., 2015; Jie et al., 2015;
Libero et al., 2015; Liu et al., 2015; Moradi et al., 2015; Suk et al., 2015; Arbabshirani et al., 2016).
A prominent advantage of machine learning algorithms is that they learn a computational model
from exemplar inputs, which can later be applied to new unknown samples to make predictions or
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decisions. Moreover, discriminative features selected by machine
learning techniques can uncover multivariate relationships
beyond those found by univariate analysis such as simple
statistical tests. For neuroimaging data, the model is usually
evaluated using a cross-validation (CV) procedure, in which a
set of data is split into complementary subsets separately used
for training and testing the model (Hirsch, 1991; Wolfers et al.,
2015).

Support vector machine (SVM) is one of the most
popular machine learning algorithms that has been applied
to neuroimaging data (for a review, see Orrù et al., 2012). In
binary classification, given a set of training samples, each with
a label marked for its category, a SVM constructs a separating
hyperplane that maximizes the margin between samples (Cortes
and Vapnik, 1995; Burges, 1998). However, frequently the sets
are not linearly separable in the original input space. In this
case, these samples are first mapped into a higher dimensional
space using a kernel function, which presumably makes the
separation easier in the transformed space. A commonly adopted
kernel function is the Gaussian radial basis function (RBF) that
maps the input samples into a Hilbert space, corresponding to
a non-linear SVM called RBF kernel SVM (RBF-SVM) (Burges,
1998).

Resting-state fMRI is a functional brain imaging method
that measures spontaneous fluctuations in blood-oxygen-level
dependent (BOLD) signals that occur in the absence of an explicit
task (for a review, see Lee et al., 2013). Thus, the resting-
state approach is ideal to examine brain function in patients
who may experience difficulty in performing tasks. Resting-state
data are widely investigated using machine learning approaches
(Deshpande et al., 2010; Shen et al., 2010; Dai et al., 2012; Eloyan
et al., 2012; Zeng et al., 2014; Iidaka, 2015; Liu et al., 2015;
Rehme et al., 2015). For example, our group previously applied
SVM-based classification to resting-state functional connectivity
(rsFC) data from 21 smokers and 21 non-smokers to successfully
predict smoking status (Pariyadath et al., 2014). Three network
characteristics, including network representativeness, within
network connectivity, and between network connectivity were
tested, separately. Among these, within network connectivity
offered maximal information for predicting smoking status
with an accuracy of 78.6% using leave-one-out cross-validation
(LOOCV).

As in the above example, most studies that applied machine
learning techniques to resting-state data used either a single
type of resting-state feature (Shen et al., 2010; Zeng et al., 2014;
Iidaka, 2015; Liu et al., 2015; Rehme et al., 2015) or just a few
feature types (<4) (Deshpande et al., 2010; Dai et al., 2012) to
do prediction. However, resting-state data can be processed in
many different ways, yielding different feature types containing
complementary and/or novel information. When applied to
brain disorders using machine learning, these feature types may
also provide disparate discriminative information. Furthermore,
they may be combined in different ways, potentially leading to an
improved model performance.

The purpose of the present methodological study was to
determine the optimal resting-state feature types to enter
into several classification models. Multiple resting-state feature

types were calculated from two main data categories: local
measures and network measures. Feature selection was adopted
using an optimized grid-search approach selecting top ranked
features from two-sample t-tests. We then implemented three
optimized classification frameworks: feature combination, kernel
combination, and classifier combination, all using the RBF-SVM
as an elementary classifier.

MATERIALS AND METHODS

Participants
In order to evaluate their performance, the three frameworks
were applied to existing nicotine addiction data from our lab.
One hundred cigarette smokers and 100 non-smoking healthy
control participants matched on age and gender (see Table 1 for
demographics) were enrolled under several protocols approved
by the Institutional Review Board of the National Institute on
Drug Abuse Intramural Research Program (NIDA-IRP). Smokers
were not currently trying to quit or seeking smoking cessation
treatment and were allowed to smoke ad libitum prior to the scan
session. Controls were included if they had smoked fewer than
25 cigarettes in their lifetime and none in the past year. Potential
participants were assessed with a comprehensive medical history
and physical exam, general urine and blood laboratory panels,
a computerized Structured Clinical Interview for DSM-IV with
follow-up clinical interview, and a drug use survey. Participants
were excluded if they had any major medical illness, history
of neurological or psychiatric disorders, or current or past
dependence on any drug other than nicotine. All participants
provided written informed consent approved by the NIDA-IRP
IRB and received monetary compensation for their participation.

Data Acquisition and Preprocessing
Functional MRI data were collected at the NIDA-IRP on a 3T
Siemens Allegra MRI scanner (Erlangen, Germany) equipped
with a standard radio frequency birdcage head coil. During
the resting-state scanning, 39 slices, without interslice gap, 30◦

from AC-PC, were prescribed to cover the whole brain. The
resting-state data were acquired using a single-shot gradient

TABLE 1 | Demographics of the participants.

Smokers Non-smokers

Number 100 100

Age 31.9 ± 9.5 32.6 ± 9.9

Gender 53 M, 47 F 53 M, 47 F

FTND 5.3 ± 1.9 –

CPD 18.2 ± 6.8 –

Smoking years 15.3 ± 9.4 –

Lifetime usage 14.5 ± 11.9 –

P > 0.6 on age between smokers and non-smokers.

FTND: Fagerström Test for Nicotine Dependence.

CPD: cigarettes per day.

Lifetime usage: measured in pack-years (= CPD × smoking years/20).

M/F: male/female.

Age, FTND, CPD, smoking years and lifetime usage are calculated in mean ± SD.
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echo-planar imaging (EPI) sequence with repetition time (TR)
of 2,000 ms, echo time (TE) of 27 ms, flip angle (FA) = 80◦,
field of view (FOV) of 220 × 220 mm, and acquisition matrix
of 64 × 64, resulting in 300 volumes for each subject. For
registration purposes, high-resolution anatomical images were
acquired using a 3D magnetization prepared rapid gradient-echo
(MPRAGE) T1-weighted sequence in 1 mm3 isotropic voxels
(TR= 2,500 ms, TE= 4.38 ms, FA= 8◦).

Data preprocessing were conducted in AFNI (Cox, 1996)
including slice timing and head motion correction. Data were
then spatially normalized to a template in Talairach space to a
resampled resolution of 3 × 3 × 3 mm3. White matter (WM)
and cerebrospinal fluid (CSF) signals, originating presumably
from such systemic effects as respiration and cardiac-induced
pulsations, were accounted for individually by extracting the first
three principal components from a WM time course ensemble
and the first three principal components from a CSF time course
ensemble (Behzadi et al., 2007). Here the WM and CSF masks
were generated by segmenting the high resolution structural
images in AFNI (3dSeg) and down sampling the obtained WM
and CSF masks to the same resolution as the functional data.
In addition to these physiological regressors, time courses of the
six motion parameters also served as uninteresting covariates.
The data were temporally band-pass filtered (0.01–0.1 Hz) and
uninteresting covariates were removed simultaneously using
3dBandpass in AFNI. Next the data were spatially smoothed
with an 8 mm full-width half-maximum (FWHM) Gaussian
kernel to increase spatial signal to noise ratio. Finally, data were
censored for motion with a threshold of 0.35 for a frame-to-
frame change in Euclidean norm of the six motion parameters
(Power et al., 2012, 2014, 2015). Two smokers whose censored
volumes exceeded 1/3 of the original time series were removed
from further analysis (The excluded subjects are not included
in Table 1). All remaining subjects had at least 80% of their
data retained. Further, there was no significant difference (p =

0.995) between groups on the numbers of time points that were
censored. Most of the feature sets were calculated using the
censored data, however, as noted in the following section, some
of them utilized the uncensored data.

Feature Extraction
Since resting-state data can be processed in many different ways
yielding different feature types, we calculated multiple resting-
state feature types from two main analysis categories: local
measures and network measures. These feature types are detailed
below. Our motivation for extracting these feature types were
2-fold: first, these are among themost commonways that resting-
state data are analyzed; second, it has been demonstrated that
nicotine dependent individuals show abnormalities in many of
these resting-state features, with the expectation therefore of
maximizing our ability to separate the groups (Sutherland et al.,
2012; Ding and Lee, 2013; Fedota and Stein, 2015; Wu et al.,
2015).

Local Measures
Four local measures including the amplitude of low frequency
fluctuations, regional homogeneity, voxel-mirrored homotopic

connectivity, and functional connectivity strength, were
calculated. We consider these as local measures given that
they represent values in each brain region (i.e., nodes in graph
theory).

Amplitude of Low Frequency Fluctuations (ALFF)
ALFF measures regional spontaneous fluctuations in BOLD
signal intensity in the resting-state brain. Briefly, the time
series of preprocessed but uncensored data was transformed to
the frequency domain using a fast Fourier transform (FFT).
The square root of the power spectrum was calculated at
each frequency and then averaged across 0.01–0.1 Hz at each
voxel. This averaged square root was taken as the ALFF (Zang
et al., 2007). For standardization purpose (i.e., reducing the
global effects of variability across subjects), the ALFF of each
voxel was divided by the global mean ALFF value for each
subject.

Regional Homogeneity (ReHo)
Based on the hypothesis that intrinsic brain activity is manifest
by clusters of voxels rather than single voxels, ReHo evaluates
the degree of regional similarity or synchronization of fMRI
time courses (Zang et al., 2004). It is defined as the Kendall’s
coefficient concordance (KCC) (Kendall and Gibbons, 1990) of
time series within a given voxel and its nearest neighbors. In the
current analyses, the number of neighboring voxels was set to 26,
which included voxels on the faces, edges, and the corners of a
given voxel. For standardization purpose, as used in the ALFF
calculation, the ReHo of each voxel was divided by the global
mean ReHo value for each subject.

Voxel-Mirrored Homotopic Connectivity (VMHC)
Functional homotopy, the synchrony in spontaneous activity
between geometrically corresponding interhemispheric regions,
is a fundamental characteristic of the brain’s functional
architecture (Salvador et al., 2005). It can be quantified by
calculating the Pearson correlation coefficient between each
voxel’s time series and that of its symmetric inter-hemispheric
counterpart (Zuo et al., 2010). Correlation values were then

transformed by Fisher’s Z-transformation
(

z = 1
2 log(

1+r
1−r )

)

to

approach a normal distribution.

Functional Connectivity Strength (FCS)
FCS at a voxel is defined as the average functional connectivity
(FC) between that given voxel and all other voxels in the
brain, i.e., FCSi = 1

N−1

∑

j 6=i FCij (Liang et al., 2013). In

this experiment, we only considered FCS within gray matter
(GM) voxels. Pearson correlation coefficients between each
voxel and all other voxels in an individual’s GM mask were
calculated and transformed into z-scores using Fisher’s Z-
transformation; FCS maps were then computed. Here the GM
mask was derived from the segmentation step during data
preprocessing.

We used the Resting-State fMRI Data Analysis Toolkit (Song
et al., 2011) to calculate the ALFF, ReHo, and VMHC maps. For
all local measures, mean values were extracted from individuals
using the 116 region standard Automated Anatomical Labeling
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(AAL) template (Tzourio-Mazoyer et al., 2002) which served as
input features for the classifiers. The use of the AAL template
aimed to reduce feature dimensions and improve signal-to-noise
ratio.

Network Measures
We categorize the following as network measures given that they
characterize the relationship between pairs of brain regions (i.e.,
edges in graph theory). Two kinds of network measures were
considered in this study: One was seed-based brain networks,
measuring the correlation between one voxel cluster (i.e., the
seed) and all other voxels in the brain; the other, including
temporal correlation and Granger causality, was the interaction
of signals between all pairs of AAL regions.

Seed-Based Brain Networks
Seed-based methods were applied using AFNI to extract five
widely studied large-scale brain networks: the default-mode
network (DMN), executive-control network (ECN), salience
network (SN), striatum network (StrN), and limbic network
(LN). Notably, the DMN, ECN, and SN have been implicated to
work in an interacting fashion, including in nicotine dependence
(Sridharan et al., 2008; Bressler and Menon, 2010; Bonnelle et al.,
2012; Sutherland et al., 2012; Jilka et al., 2014; Lerman et al.,
2014; Liang et al., 2015; Uddin, 2015). Additionally, the StrN and
LN are two networks putatively related to drug addiction (Kelley
and Berridge, 2002; David et al., 2005; Everitt and Robbins,
2005; Gu et al., 2010; Janes et al., 2012). Seed regions were
defined by placing bilateral 3 mm radius spherical regions of
interest (ROIs) in the posterior cingulate cortex (PCC) as an
exemplar constituent of the DMN (Greicius et al., 2003), the
dorsal lateral prefrontal cortex (dlPFC) for the ECN (Seeley et al.,
2007), the insula for the SN (Seeley et al., 2007), the caudate
for the StrN (Di Martino et al., 2008), and the amygdala for
the LN (Gu et al., 2010); see Table 2 for center coordinates of
seeds. For each brain network seed, a reference time course
was generated by averaging the time course from all voxels
within the ROI. Subsequently, a correlation coefficient (CC)
map was obtained by correlating each voxel’s time course with
the corresponding reference time course. The CC maps were
then transformed by Fisher’s Z-transformation into z-scoremaps.
Finally, these z-scored brain network maps were partitioned
into 116 ROIs using the standard AAL atlas, and mean values
within each AAL region served as input features for the
classifiers.

TABLE 2 | Seeds locations used to define brain networks.

Brain networks Seed location Center (Talairach

coordinates)

Default-mode network (DMN) PCC (±2, −51, 27)

Executive-control network (ECN) dlPFC (±43, 36, 21)

Salience network (SN) Insula (±40, 6, −6)

Limbic network (LN) Amygdala (±23, -5, −15)

Striatum network (StrN) Caudate (±8, 6, −4)

Temporal Correlation (TC)
Functional connectivity refers to the functionally integrated
relationship between different brain regions regardless of the
apparent physical connectedness (Friston, 2011). One definition
is the TC between spatially remote neurophysiological events
(Biswal et al., 1995). In contrast to the above seed-based
network measures, which compute the functional connectivity
between a well-defined, a priori hypothesized ROI and all other
voxels, the TC here is calculated pairwise using mean time
series extracted from standard AAL template regions. Pearson
correlation coefficients were computed between mean time series
extracted from the 116 standard AAL regions, and transformed
into z-scores using Fisher’s Z-transformation. Due to symmetry,
we only took the lower triangle z-score matrices as our input
features.

Granger Causality (GC)
In contrast to temporal correlation, one may attempt to measure
causal influence exerted by one neuronal system onto another
(Goebel et al., 2003; Friston, 2011). Granger causality analysis
(GCA) has been proposed to estimate the causal interactions
of information flow. It models one directional causality among
multiple time series based on a vector autoregression (VAR)
model (Seth, 2005). When the model’s residual error reaches the
minimum, an F-test is used to estimate the statistical significance
of the estimated model. A higher F-score means a stronger
prediction of GC between two time series.We employed aMatlab
toolbox for GCA (Seth, 2010) to calculate the GC between mean
time series of uncensored data within 116 regions standard
AAL atlas. The VAR model order was estimated using Akaike
information criterion (AIC) (Burnham and Anderson, 2004).
Resulting F-score matrices were treated as input features. It
should be noted that the use of GCA applied to neuroimaging
data is controversial (Friston et al., 2013). However, we make
no claims of its ability to determine any causal relationship
between regions; it is merely another feature that may convey
complementary information to improve group discrimination
classification accuracy (Deshpande et al., 2010).

In this study, we used the AAL template, which is an
anatomical atlas based template, to define our ROIs from
which features were extracted from each resting-state feature
type. Another common way to process resting state data is
to use independent components analysis (ICA) to define brain
networks. Some studies extracted ICA components from the
respective groups to conduct machine learning (Van Waarde
et al., 2015) or resting state functional connectivity (Cerliani et al.,
2015) analysis. In an effort to compare the AAL template with
ICA-derived regions, we additionally applied a network-based
ROI template approach where networks were generated from
publicly available group ICA maps (Smith et al., 2009). Details
are described in Supplementary Materials.

Feature Selection Using Grid-Search
In contrast to studies that selected discriminative features lower
than a statistical threshold (Fan et al., 2007; Deshpande et al.,
2010; Dai et al., 2012; Feis et al., 2013; Hart et al., 2014), we
determined the optimal percentage of reserved features using a
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grid-search method for the three frameworks described below.
Specifically, for each feature type, with the aid of an inner 10-
fold CV, features were first sorted based on their T-scores using a
two-sample t-test (Pereira et al., 2009; Chu et al., 2012; Mwangi
et al., 2014). An RBF-SVM was then used to search for an
optimized feature size within percentage values(1, 5, 10, 15, 20,
25, 30, 35, 40, 45, and 50%) of the sorted features. Thus, in
the inner fold, the optimized feature size varied for different
feature types and for different folds, which means that the
function of performance along with the size of reserved features
changed in each inner fold for each feature type. The LIBSVM
toolbox (Chang and Lin, 2011) was used for all classification
procedures. Two hyperparameters including the regularization
constant C and Gaussian kernel parameter γ in the RBF-SVM
were optimized using a nested 10-fold CV among the values of
2N (N from −4 to 6 for C and from −10 to 3 for γ). In addition
to the optimized feature size, we also recorded its corresponding
accuracy in the inner 10-fold CV for later use.

Three Optimized Frameworks
To address the combinatorial options of the multiple feature
types, we implemented three optimized frameworks: feature
combination, kernel combination, and classifier combination.

Feature Combination Framework
The feature combination framework illustrated in Figure 1

performed a multi-feature type combination before classifier
training. In this framework, selected features from each type
were concatenated into a row vector and input to an RBF-
SVM classifier. Hyperparameters C and γ in the RBF-SVM were
optimized using a nested 10-fold CV among the values of 2N

(N from−4 to 6 for C and from−10 to 3 for γ ).

Kernel Combination Framework
As mentioned in the Introduction, features are more likely to
be linearly separable when they are projected into a higher
dimensional space through a kernel-induced implicit mapping
function. A well-known property of kernels is that they can be
combined via linear operations to yield a new valid kernel. Let

x
(m)
i denote a feature vector in the m-th feature type of the i-th
sample whose class label is yi ∈ {−1, 1}. Multi-kernel SVM aims
to solve the following primal problem:

min
w(m),b,εi

1

2

M
∑

m=1

βm||w
(m)||2 + C

n
∑

i=1

εi

s.t. yi

(

∑M

(m=1)
βm

(

(

w
(m)

)T
K
(m)

(

x
(m)
i

)

+ b

))

≥ 1−

εi, εi ≥ 0,βm ≥ 0, i = 1...n (1)

Here, w(m), K(m), βm, εi, C, and b denote, respectively, the weight
vector of hyperplane, the kernel-induced mapping function, the
combining weight on the kernel, the non-negative slack variable,
the trade-off, and the offset of the hyperplane. A more detailed
description of multi-kernel SVM can be found in (Gonen and
Alpaydin, 2011). In this experiment, selected features from each
type were projected into a higher dimensional space using RBF as
the kernel mapping function.

Since the main idea of multi-kernel SVM is to first construct
an individual kernel for each feature type and then train a mixed
kernel based on the linear combination of all individual kernels
(Zhang D. et al., 2011), similar to Gonen and Alpaydin (2011);
Zhang D. et al. (2011) and Zhang and Shen (2012), we added
a constraint

∑M
m=1 βm = 1 to the kernel combining weights.

Considering the large number of feature types (11 in total) in our
experiment, and in contrast to prior work utilizing this technique
(Zhang D. et al., 2011; Zhang and Shen, 2012) that applied a
coarse grid-search method to determine the combining weights
for only three modalities, we chose a heuristic approach in which
the recorded accuracy of each feature type from the above feature
selection procedure was used to choose the combining weights in
the following form:

{

βm = Accm−0.5
∑M

i=1(Acci−0.5)
; if Accm > 0.5, and for all Acci > 0.5

βm = 0; if Accm ≤ 0.5
(2)

where Accm denotes the accuracy of m-th feature type via inner
10-fold CV in the feature selection. The other hyperparameters in
the multi-kernel SVM were optimized using the above described
grid-search method. The kernel combination framework is
illustrated in Figure 2.

Classifier Combination Framework
Discriminative information from multiple feature types can
also be combined after classifier training, which is the basis
of our classifier combination framework (see Figure 3). In this
framework, selected features from each type were input to a RBF-
SVM classifier. Hyperparameters were optimized as described
above. Let fm (xi) be an output decision value of the SVM
classifier on m-th feature type for i-th sample, a final classifier
was then combined using a weighted voting approach:

yi = sgn
(

∑M

(m=1)
βmfm (xi)

)

, s.t.,
∑M

m=1
βm = 1 (3)

Here, βm is the classifier combining weight form-th feature type,
and was determined using the same weighting scheme described
above.

Cross-Validation
As illustrated in Figures 1–3, all three frameworks were evaluated
using a balanced outer 10-fold CV procedure. That is, in each
outer trial, 10 smokers and 10 non-smokers were excluded before
feature selection (i.e., they were left out of the whole analysis) for
testing the classifier that was trained using all other subjects. The
classification quality was assessed by the following five quantities:

Sensitivity = TP/(TP + FN) (4)

Specificity = TN/(TN + FP) (5)

Accuracy = (TP + TN)/(TP + FN + TN + FP) (6)

Precision = TP/(TP + FP) (7)

F score = 2TP/(2TP + FP + FN) (8)

Here, TP, FN, TN, and FP denote, respectively, the number of
smokers correctly classified, the number of smokers predicted to
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FIGURE 1 | Optimized framework of feature combination: after feature selection, optimized features were concatenated to serve the classifier training.

Cross-validation parts are in blue font and dashed lines. To distinguish from the other two frameworks, the feature concatenation part is illustrated in red.

be non-smokers, the number of non-smokers correctly classified,
and the number of non-smokers predicted to be smokers.
Specifically, sensitivity, also called the true positive rate, measures
the proportion of smokers that are correctly identified as such;
while specificity, also called the true negative rate, measures the
proportion of non-smokers that are correctly identified as such.
Precision, also called positive predictive value, is the proportion
of smokers that are identified as such; and F score is the
harmonic mean of precision and sensitivity. We did not employ
the receiver operating characteristic (ROC) calculation to assess
our frameworks; since in our classifier combination framework,
a SVM classifier was trained on each feature set, it would be
unreasonable to move the cut-off thresholds in the same range
for each SVM to plot a ROC curve.

Finally, we performed significance analysis on the selected
feature maps: For each resting-state feature type in feature
selection, we recorded the percentage of features that was
reserved in each fold from the three frameworks (30-folds in
total). To determine the threshold of significant ROIs for each
feature type, we first randomly chose ROIs according to the

recorded percentage (i.e., if 5% of the regions were retained
for that fold, we randomly choose 5% of the ROIs to assess
significance). We then calculated the number of times that an
ROI was randomly selected among all 30-folds. This whole
process was repeated 1,000 times to derive an empirical null
distribution. The actual data were thresholded at P < 0.05 based
upon the empirical null.

RESULTS

Classification Performance
Classification results of the three tested frameworks are shown in
Table 3. Using nicotine dependence as a model system and using
all feature types, the three approaches overall yielded very similar
results; the classifier combination and the feature combination
frameworks reached an accuracy of 75.5%, while the kernel
combination achieved a 73.0% accuracy. As a comparison, the
discriminative ability of each feature type was tested individually
(see Table 4), where the RBF-SVM classifiers were performed
separately on each type using the same feature selection and

Frontiers in Human Neuroscience | www.frontiersin.org 6 July 2017 | Volume 11 | Article 362

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Ding et al. Combining Multiple RS-fMRI Features during Classification

FIGURE 2 | Optimized framework of kernel combination: kernel matrices were calculated separately on each optimized feature set, and were then linearly combined

as a final kernel. Cross-validation parts are in blue font and dashed lines. To distinguish it from the other two frameworks, the kernel combination part is illustrated

in red.

hyperparameter optimizing framework. As a single feature type,
TC achieved the highest accuracy of 70.5%, but most of the other
feature types individually only performed at slightly above chance
with the exception of GC. Notably, all proposed combination
frameworks improved the classification accuracy over any single
feature type. Since GC showed the lowest performance (accuracy
= 49.0%) among the single feature types, we implemented
the three combination frameworks following GC elimination.
Somewhat paradoxically, the accuracy of all three frameworks
slightly decreased (see Table 3) when excluding this feature type
that performed worse than chance on its own, indicating that
even the worst feature contributed some information to the
combination frameworks.

Compared to the AAL template, all frameworks performed
worse when using the ICA-based template (see Supplementary
Materials for details). Given the superior classifier accuracy and
brain coverage given by the AAL template, we report only those
results in this manuscript.

A box plot of βm, used in the kernel combination and classifier
combination frameworks, from Equation (2) shows that the

feature type TC consistently had the highest weight, while other
feature types performed similarly (see Figure 4). Also illustrated
is that the GC was consistently the worst feature and was
frequently weighted zero.

Maps of Significant ROIs
The threshold to reach significance for a given ROI (P <

0.05) was determined to be 9-folds for the ALFF, 15-folds for
the FCS, 15-folds for the ReHo, 17-folds for the VMHC, 14-
folds for the DMN, 10-folds for the ECN, 12-folds for the
LN, 16-folds for the SN, 15-folds for the StrN, 17-folds for
the TC, and 22-folds for the GC. Significant feature maps
are shown in Figure 5. ROIs in the prefrontal cortex (PFC),
subcortical regions (e.g., the thalamus, caudate, putamen),
occipital lobe, and cerebellum were significant in the maps
of many of the feature types. Among these, the thalamus
was significant in both local (e.g., ALFF, ReHo, VMHC)
and network measures (e.g., DMN, LN). Additionally, the
TC between the subcortical regions and the frontal cortex
as well as the cerebellum significantly differentiated smokers
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FIGURE 3 | Optimized framework of classifier combination: classifiers were trained separately on each optimized feature set, and a final classifier was then combined

using weighted voting. Cross-validation parts are in blue font and dashed lines. To distinguish this combination from other the two frameworks, the classifier

combination part is shown in red.

TABLE 3 | Classification results of the three tested frameworks.

Sensitivity (%) Specificity (%) Accuracy (%) Precision (%) F score (%)

Feature combination All features 76.0 75.0 75.5 75.2 75.6

Without GC 73.0 71.0 72.0 71.6 72.3

Kernel combination All features 77.0 69.0 73.0 71.3 74.0

Without GC 74.0 68.0 71.0 69.8 71.8

Classifier combination All features 79.0 72.0 75.5 73.8 76.3

Without GC 74.0 75.0 74.5 74.7 74.4

from non-smokers, suggesting abnormal functional connectivity
between these regions in smokers.

DISCUSSION

In recent years, machine learning techniques have become
widely applied to neuroimaging data to predict neurological and
psychiatric disorders (Orrù et al., 2012; Wolfers et al., 2015;
Arbabshirani et al., 2016), with the long-term goal to create

complex brain-based biomarkers of disease status that could
enormously benefit the treatment community. The scientific
motivation of this study was to examine various techniques to
combine multiple resting-state feature types so as to utilize their
complementary information to maximize classification accuracy,
thus this is first and foremost a methods paper. We proposed
three frameworks addressing SVM classification usingmulti-type
features: feature combination, kernel combination, and classifier
combination.We chose nicotine addiction as an exemplar disease
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TABLE 4 | Discriminative ability of individual feature types.

Sensitivity (%) Specificity (%) Accuracy (%) Precision (%) F score (%)

Local measures ALFF 60.0 53.0 56.5 56.1 58.0

ReHo 59.0 61.0 60.0 60.2 59.6

FCS 46.0 67.0 56.5 58.2 51.4

VMHC 46.0 66.0 56.0 57.5 51.1

Network measures DMN 62.0 64.0 63.0 63.3 62.6

ECN 58.0 42.0 50.0 50.0 53.7

LN 66.0 41.0 53.5 52.8 58.7

SN 54.0 57.0 55.5 55.7 54.8

StrN 61.0 54.0 57.5 57.0 58.9

TC 76.0 65.0 70.5 68.5 72.0

GC 48.0 50.0 49.0 49.0 48.5

FIGURE 4 | A box plot of βm in Equation (2) for (A) all feature types, and (B) all remaining feature types after excluding GC.

model system and tested the frameworks on 11 resting-state
features consisting of both local and network measures to predict
smoking status. All frameworks were validated using a 10-fold
CV procedure, and all demonstrated an improvement over the
classification performance using any one of the 11 single feature
types.

We designed a grid search approach involving two-sample
t-tests to sort the features for selection. Feature selection
approaches are classified into “filter,” “wrapper,” and “embedded”
methods (Pereira et al., 2009; Mwangi et al., 2014). The
approach of the two-sample t-test that we chose falls under
the “filter” category. Although some studies argue that t-test
filtering is not stable and robust enough since it is only
performed once using the training data (Venkataraman et al.,
2010), it has been demonstrated that combining t-test filtering
and atlas based ROI leads to significantly better accuracy than
no feature selection when sample sizes are small (Chu et al.,
2012). Another well-known available feature selection method
is recursive feature elimination (RFE), which is a “wrapper”
method. We chose, however, not to use it as it would be
prohibitively computationally time consuming for our nested CV

design with the number of features included herein because in
RFE, features are sorted and the least discriminative feature is
eliminated. This procedure is repeated iteratively until all features
are tested.

Previously, (Pettersson-Yeo et al., 2014) also chose SVM
as an elementary classifier on raw feature sets calculated
from multiple modalities of imaging data to do multi-
feature combination. In contrast to their method that
combined raw feature maps to train classifiers without any
feature selection, we designed an optimized feature selection
procedure using a grid-search method on AAL atlas based
ROI features ranked by two-sample t-tests. Advantages of
using the AAL atlas are that it’s anatomically based and the
most commonly used ROI template; however, a potential
limitation is that there is no direct physiological relationship
between AAL regions and neurobiological processing
units or nicotine addiction, making data interpretation
neurobiologically difficult. In our hands, using smoking
as a model neuropsychiatric disease (Leshner, 1997; Hasin
et al., 2013), we observed improved classification using
ROI based features over the raw voxel wise features (Ding
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FIGURE 5 | Significant feature maps for each of the applied resting state features: amplitude of low frequency fluctuations (ALFF), functional connectivity strength

(FCS), regional homogeneity (ReHo), voxel-mirrored homotopic connectivity (VMHC), default-mode network (DMN), executive-control network (ECN), limbic network

(LN), salience network (SN), striatum network (StrN), temporal correlation (TC), and Granger causality (GC). The color bar denotes the number of times that an ROI

was selected in 10-fold cross-validation in the three combination frameworks (p < 0.05).

et al., 2015), as the spatial averaging improves signal-to-
noise. Using ROIs also benefited the classifier training in the
combination frameworks, as it reduced feature dimension and
improved the grid-search speed for eliminating less informative
features.

Another major difference from Pettersson-Yeo et al. (2014)
lies in the combination frameworks employed. Multi-kernel
learning algorithms can be divided into one-step methods
or two-step methods in terms of their training methodology
(Gonen and Alpaydin, 2011). One-step methods using fixed
rules and heuristics generally do not have much computational
complexity to determine the kernel combination weight, whereas
two-step methods update the combination weights by solving
an optimization problem whose convergence may be slow or
even hard to get for a large number of kernels. Thus, in the
kernel combination framework, rather than using either an un-
weighted simple sum of kernels approach or a complex two-
step learning algorithm (Pettersson-Yeo et al., 2014), we chose
a heuristic approach using the accuracy of each feature type

in the feature selection procedure as kernel combining weights,
a simplification necessary with a large number of kernels. In
the classifier combination framework, considering that the SVM
classifiers trained using different feature types had different
performances, we used a weighted voting approach instead
of a simple prediction averaging or majority voting method
(Pettersson-Yeo et al., 2014).

A previous work by our group applied a SVM-based
classification procedure to rsFC data from 21 smokers and
21 non-smokers. That work mainly focused on testing
different characteristics of nicotine dependence related
network connectivity to predict smoking status. The classifier
achieved an accuracy of 78.6% using within-network functional
connectivity measures via LOOCV (Pariyadath et al., 2014). In
contrast, the present work focused on methods for combining
multiple resting-state feature types using different classification
frameworks. Moreover, it was generated from a larger dataset
of 100 smokers and 100 non-smokers, which would have been
expected to result in a more reliable classification result. Besides
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the difference in sample size, the difference in classification
accuracy may also have been caused by different cross-validation
procedures (i.e., LOOCV vs. 10-fold cross-validation). In
particular, LOOCV, necessary in that study due to the modest
sample size, is known to yield anticonservative (i.e., over-fitting)
results (Kohavi, 1995). As such, we believe that the current work
represents a better estimate of what is possible with rsFC in a
smoking model system.

Subcortical brain areas and cerebellum, prominent in our
feature maps, are thought to be involved in functional
networks supporting higher-order executive function and top-
down control, including in various addiction studies (Hester
and Garavan, 2004; Dosenbach et al., 2008; Goldstein and
Volkow, 2011). For example, the thalamus, shown as one
of the most discriminative regions in many of our feature
maps, has previously been shown related to nicotine addiction
neurobiology (Rubboli et al., 1994; Stein et al., 1998; Franklin
et al., 2007; Hahn et al., 2009; Beaver et al., 2011). Additionally,
a key alpha5 nicotinic receptor gene variant is associated with
a dorsal anterior cingulate-ventral striatum/extended amygdala
circuit that distinguishes smokers from non-smokers and
predicts addiction severity in smokers (Hong et al., 2010).
Moreover, nicotine improves sustained attention by increasing
activation in the thalamus, caudate, and occipital lobe (Lawrence
et al., 2002). Additional discriminative regions identified in the
present study are located in the prefrontal cortex (PFC), which
are known to play a key role in addictive behaviors through
regulation of limbic regions and its involvement in higher-order
executive functions (Goldstein and Volkow, 2011; Zhang X. et al.,
2011).

All of the proposed combination frameworks improved
classification accuracy over using a single feature type, and
are easily applied to cases of resting-state data classification
problems. It is worth noting that other imaging data phenotypes
(e.g., gray matter density) or even non-imaging measures
(e.g., genetics, behavioral, or personality phenotypes) can
be added into these frameworks as feature types. In our
hands, the feature combination and the classifier combination
framework performed slightly better than the kernel combination
when using the AAL template; and the classifier combination
framework performed better than the other two frameworks
when using ICA generated ROIs, although critically, none of
these differences would survive a statistical test. Nevertheless, the
present results may usefully guide future studies and encourage
the use of whichever method investigators are most familiar with
or the simplest approach (i.e., feature combination). However,
since we only applied these frameworks to a nicotine addiction
case as an exemplar, it is not known if a given framework would
clearly outperform the other two frameworks when applied
to other classification cases, using other templates for feature
extraction or indeed other types of classifier input data (e.g.,
anatomical measures). Nonetheless, our study is an important
contribution to the literature as it informs others facing similar
choices.

One limitation of this study is that, like many other
methodological studies (for example, Demirci et al., 2008; Yang
et al., 2010; Castro et al., 2011; Dai et al., 2012; Jie et al., 2015;

Kim et al., 2016), our feature combination methods were only
validated using one disease exemplar. Notably, our experimental
results on nicotine addiction fell into a moderate accuracy
range (subject to neither ceiling nor floor effects), which is
consistent with the extant literature using machine learning
techniques to predict neuropsychiatric disorders (Orrù et al.,
2012; Wolfers et al., 2015; Arbabshirani et al., 2016). Given these
results, we believe that the proposed method would have good
generalizability to other disease exemplars. Another important
limitation of this study is that of a limited data size, as larger
data sets are known to improve classifier accuracy. Future studies
should address these issues.

CONCLUSION

In this study, we proposed three optimized frameworks: feature
combination, kernel combination, and classifier combination,
which we examined separately, to combine multiple types
of resting-state features calculated from categories of local
measures and network measures into classification. These
frameworks were successfully applied to a nicotine dependence
case, demonstrating their efficacy in improving classification
performance over using a single feature type. Our proposed
frameworks have good generalizability and can be applied to
other neuropsychiatric diseases with extended feature types from
other data phenotypes.
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