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ABSTRACT: Myelodysplastic syndrome (MDS) is difficult to diagnose and
classify because it has the potential to evolve into acute myeloid leukemia
(AML). Raman spectroscopy and orthogonal partial least squares discrimination
analysis (OPLS-DA) are used to systematically analyze peripheral blood serum
samples from 33 patients with MDS, 25 patients with AML, and 29 control
volunteers to gain insight into the heterogeneity of serum metabolism in patients
with MDS and AML. AML patients show unique serum spectral data compared
to MDS patients with considerably greater peak intensities of collagen (859 and
1345 cm−1) and carbohydrate (920 and 1123 cm−1) compared to MDS patients.
Screening and bioinformatics analysis of MDS- and AML-related genes based on
the Gene Expression Omnibus (GEO) database shows that 1459 genes are
differentially expressed, and the main signaling pathways are related to Th17 cell
differentiation, pertussis, and cytokine receptor interaction. Statistical analysis of
serological indexes related to glucose and lipid metabolism shows that patients
with AML have increased serum triglyceride (TG) levels and decreased total protein levels. This study provides a spectral basis for
the relationship between the massive serological data of patients and the typing of MDS and AML and provides important
information for the rapid and early identification of MDS and AML.

■ INTRODUCTION
Hematopoietic stem cells are the source of the malignant
clonal illness known as acute leukemia.1,2 On the basis of cell
morphology, it may be subdivided into acute myeloid leukemia
(AML) and acute lymphocytic leukemia, each of which has its
own subgroups. This kind of leukemia is more prevalent in
adults and results from a malfunction in the bone marrow’s
hematopoietic cell proliferation and differentiation.3−5 AML
can be clinically classified into primary AML and secondary
AML. Secondary AML does not meet the standard of leukemia
at the time of diagnosis but transforms into leukemia as the
disease progresses. Secondary AML is more difficult to treat
than primary AML, and the prognosis is worse. Myelodys-
plastic syndrome (MDS), myeloproliferative neoplasms,
lymphoma, paroxysmal nocturnal hemoglobinuria (PNH),
multiple myeloma, and chronic lymphocytic leukemia may
transform into secondary AML.6−8

MDS is a collection of diverse myeloid clonal illnesses that
manifest as aberrant differentiation and development of
myeloid cells and originate in hematopoietic stem cells.
Hematopoietic failure, low blood cell counts, and an increased
chance of developing AML are all symptoms of this
condition.9,10 Anemia, bleeding, and infection are their classical
symptoms, and their pathogenesis is not clear.11,12 Clinically,

MDS is divided into four distinct subtypes: MDS with single
lineage dysplasia (MDS-SLD), MDS with multilineage
dysplasia (MDS-MLD), MDS with excess blasts (MDS-EB),
and unclassifiable MDS (MDS-U). To further categorize
MDS-EB, we distinguish between MDS-EB1 and MDS-EB2.
AML may develop from bone marrow failure in patients with
MDS.13,14 Traditionally, MDS is diagnosed based on blood
phase and bone marrow phase examination, cytogenetic
examination, immunological phenotype analysis, and gene
analysis. There is no “gold standard” for the diagnosis of MDS,
which is an “exclusive” diagnosis. Its differential diagnosis with
AML necessitates detection on multiple platforms.15,16

Refractory anemia MDS is easily confused with AML,
especially the MDS-EB subtype. Therefore, it is crucial to
investigate a low-cost diagnostic tool that may detect
myelodysplastic syndromes and AML at an early stage in the
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Figure 1. (A) (bottom to top) Mean serum spectra of control subjects, patients with MDS, and patients with AML patients. (B) (bottom to top)
Mean serum spectra of control subjects and patients with MDS-SLD/MLD, MDS-EB1, and MDS-EB2. (C) (bottom to top) Mean serum spectra
of control subjects and patients with primary AML and secondary AML. (D) Permutation, cluster, and receiver operating characteristic (ROC)
curve plots of OPLS discrimination for control vs MDS vs AML (AUC (control) = 1, AUC (MDS) = 1, and AUC (AML) = 1), MDS subtypes vs
primary AML (AUC (MDS-SLD/MLD) = 0.75, AUC (MDS-EB1) = 0.842593, AUC (MDS-EB2) = 0.805556, and AUC (primary AML) = 1),
and MDS subtypes vs secondary AML (AUC (MDS-SLD/MLD) = 1, AUC (MDS-EB1) = 1, AUC (MDS-EB2) = 1, and AUC (secondary AML)
= 1) models. (E) Validation plots of OPLS discrimination for control vs MDS vs AML, MDS subtypes vs primary AML, and MDS subtypes vs
secondary AML models.
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diagnostic process. In clinical practice, the traditional
diagnostic methods of MDS and AML are time-consuming,
expensive, and invasive. Moreover, while the association
between serological indexes related to glucose and lipid
metabolism and the transformation from MDS to AML is
not backed by sufficient evidence, studying this association will
allow the rapid and early identification of MDS and AML. In
this case, developing a rapid identification method of MDS and
AML without antibody labeling based on Raman spectroscopy
will allow detailed analysis of the massive serological
examination data of MDS and AML patients. It will also
improve the diagnostic efficiency of diseases, reduce detection
costs, and promote further development of rapid and accurate
diagnostic methods identifying the transformation of MDS to
AML.
Raman spectroscopy has been used for the rapid, non-

invasive, and nonlabel identification of hematologic diseases. In
a previous study, a bifunctional nano probe based on dopant-
driven plasma oxide with surface-enhanced Raman scattering
(SERS) was used to distinguish single acute monocyte
leukemia THP-1 cells from peripheral blood monocytes with
high accuracy. This nano probe could be activated by the
biological redox reaction of single cells to produce stimuli for a
complementary colorimetric reaction, thus, the prospect of
obtaining single-cell-level unified identification accuracy is
enhanced, allowing for the precise and cost-effective detection
of cancer cells in complex cell samples.17 Romy et al.
differentiated red blood cells (RBCs) from erythroid precursor
cells by Raman spectroscopy. These precursor cells were
infected by a SARS-CoV-2 variant in vitro. The authors found
that differentiated RBCs have impaired hemoglobin biosyn-
thesis, abnormal iron metabolism, high serum ferritin levels,
and low serum iron and transferrin levels, which explains the
impaired oxygen-binding ability of RBCs in patients with
severe COVID-19.18 The most reliable approach for
identifying PNH, an uncommon condition marked by RBC
hemolysis and venous thrombosis, is flow cytometry. Kaan et
al. devised a technique for analyzing blood samples from
participants with and without PNH that combines optical
tweezers and Raman spectroscopy (Raman tweezers). Training
using support vector machine analysis resulted in an 81.8%
specificity and a 78.3% sensitivity for detecting PNH with great
accuracy.19 Gold nanoparticles were used in a cell-free and
label-free SERS approach developed by Stacy et al. for the
classification of hematopoietic malignancies. When applied to
three groups, their linear and quadratic discriminant analyses
could only discriminate between them with a 69.8 and 71.4%
accuracy, respectively. Their results demonstrate the feasibility
of using nanomaterials in translational medicine and pave the
way for future research into the noninvasive monitoring of
disease development.20 Multidrug resistance highly correlates
with the poor prognosis of chronic myeloid leukemia. In a
previous study, laser tweezers Raman spectroscopy (LTRs)
was used to isolate adriamycin-resistant chronic myeloid
leukemia cells from their parental human chronic myeloid
leukemia cell line (K562). This study shows that label-free
LTRs analysis combined with multivariate statistical analysis
can be applied to rapidly evaluate the chemical resistance
status of K562 cells at the single cell level.21

The examination of serum from individuals with various
forms of MDS and AML has been performed; however, Raman
spectroscopy has not been widely employed. Research on the
serological indexes, such as glucose and lipid metabolism,

related to the transformation of MDS to AML is also nascent.
Therefore, the significance of the present study lies in its ability
to differentiate between MDS subtypes, primary AML, and
secondary AML populations based on a clinical model
established by combining Raman spectroscopy with multi-
variate analysis. In addition, we also looked for biomarkers of
MDS and AML among Raman peaks that play an important
role in disease categorization. The findings of this research
provide a basis for optimizing the use of data from clinical
serological tests for the speedy detection of MDS and AML in
their earliest stages.

■ RESULTS
Raman Spectroscopic Analysis of Serum in Patients

with MDS, Patients with AML, and Control Subjects. To
study the Raman spectra of the sera of patients with MDS and
AML and the control group, 173, 197, and 144 Raman spectra
of the sera of the control group, MDS group, and AML group
were obtained, respectively, including 42 spectra of patients
with MDS-SLD/MLD, 60 spectra of patients with MDS-EB1,
and 95 spectra of patients with MDS-EB2. The AML group
included 114 spectra of patients with primary AML and 30
spectra of those with secondary AML. Figure 1A−C shows the
serum Raman spectra of control, MDS, and AML groups, MDS
subtypes, and AML subtypes in the range of 600−1800 cm−1,
respectively. Refer to Table S1 for the peak position of relevant
serum Raman spectra. Figure 1A shows the Raman spectra of
control, MDS, and AML samples. Pink, yellow, and blue
vertical lines in the figure represent the peaks related to protein
(643, 759, 1003, 1260, 1603, and 1654 cm−1), nucleic acid
(826 and 1579 cm−1), and lipid (1446 cm−1), respectively.
Figure 1B shows the Raman spectra of control, MDS-SLD/
MLD, MDS-EB1, and MDS-EB2 samples, and Figure 1C
shows the Raman spectra of control, primary AML, and
secondary AML samples, all showing similar peak shapes.
According to the above spectral patterns and peak positions, it
is difficult to identify differences in serum components in the
control, MDS, and AML groups. It is necessary to combine the
classification model established by orthogonal partial least
squares discrimination analysis (OPLS-DA) to further screen
peak positions that can effectively identify potential biomarkers
for MDS and AML.

Establishment of OPLS-DA Model Based on Raman
Spectroscopy to Identify MDS and AML. From the Raman
spectra of control, MDS, and AML groups, 18 characteristic
spectra (6 in each category) were randomly selected to form
three groups of data. From the Raman spectra of MDS-SLD/
MLD, MDS-EB1, MDS-EB2, and primary/secondary AML
groups, 24 characteristic spectra (6 in each category) were
randomly selected to form four groups of data. The sample
data were analyzed and contrasted using supervised OPLS-DA.
The results of the permutation study indicated that the OPLS-
DA model was created and was not overfitted since the
intercept of Q2 on the Y axis was negative. The Raman spectra
of control, MDS, and AML serum samples, the Raman spectra
of MDS-SLD/MLD, MDS-EB1/2, and primary AML serum
samples, and the Raman spectra of MDS-SLD/MLD, MDS-
EB1, MDS-EB2, and secondary AML serum samples could all
be distinguished using cluster analysis in the OPLS-DA model
with 100% accuracy. The receiver operating characteristic
(ROC) curve indicated high accuracy of discriminant analysis
(Figure 1D).
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A verification model was utilized to confirm the efficacy of
the identification approach based on the identification models
of control, MDS, and AML developed in accordance with the

differences in the amounts of serum components. A training set
and a prediction set made up the validation model. The
grouping of the spectrum data was identified to validate the

Figure 2. (A) Score plots with 95% Hotelling’s confidence ellipses, loading plots, and V + S plots from OPLS models of control vs MDS vs AML,
control vs MDS, control vs AML, and MDS vs AML. (B) Statistical analysis of potential biomarkers from OPLS models of control vs MDS vs AML,
control vs MDS, control vs AML, and MDS vs AML. (C) Serum biochemical analysis of control, MDS, and AML groups. (D) Volcanic map of
DEGs between MDS and AML groups. The X axis represents the multiple changes (logarithmic scale), while the Y axis shows the P value
(logarithmic scale). Each symbol represents a different gene, and the red/blue of the symbol classifies the up/downregulated genes under different
standards (P value and multiple change threshold). P < 0.05 was considered to indicate significance. (E) Heatmap of DEGs between MDS and
AML groups. (F) Bubble diagram of functional enrichment analysis of DEGs between MDS and AML groups. The larger the bubble, the more
genes enriched in that functional pathway, and the closer the color of the bubble to green, the higher the significance. (G) Biological process, CC,
MF, and KEGG enrichment of DEGs between MDS and AML groups. (H) Functions and regulatory signaling pathways of genes most likely
involved in the discrimination between MDS and AML.
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model, and the training set contained the spectra of 12 patients
from the same group and 12 patients from a different group.
The grouping of the spectrum data for the prediction set was
left unmarked, and it contained the spectra of an additional
eight patients from the same group and eight patients from a
different group. Specifically, nine validation models were used
to assess the diagnostic model’s sensitivity and specificity:
control versus MDS, control versus AML, MDS versus AML,
MDS-SLD/MLD versus primary AML, MDS-EB1 versus main

AML, MDS-EB2 versus primary AML, and MDS-SLD/MLD
versus secondary AML. Classification scores for each spectrum
in the training and prediction sets were calculated using the
Raman spectral data and the SIMCA-P software. The program
awarded classification scores to the two groups in the training
set based on how the spectral data were grouped and then
assigned classification scores to the two groups in the
prediction set based on how closely their spectral data
matched the spectral data in the training set. The classification

Figure 3. (A) Volcanic map of DEGs between control and MDS groups. (B) Heatmap of DEGs between control and MDS groups. (C) Bubble
diagram of functional enrichment analysis of DEGs between control and MDS groups. (D) BP, CC, MF, and KEGG enrichment of DEGs between
control and MDS groups. (E) Functions and regulatory signaling pathways of genes most likely involved in the discrimination between control and
MDS. (F) Volcanic map of DEGs between control and AML groups. (G) Heatmap of DEGs between control and AML groups. (H) Bubble
diagram of functional enrichment analysis of DEGs. (I) BP, CC, MF, and KEGG enrichment of DEGs between control and AML groups. (J)
Functions and regulatory signaling pathways of genes most likely involved in the discrimination between control and AML.
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was considered correct if the first group in the training set and
prediction set earned a positive score and the second group
earned a negative score. The categorization was thought to be
incorrect in all other respects. The diagnostic model’s
sensitivity and specificity are shown via a point diagram that
concurrently shows samples from the training set and the
prediction set according to the classification scores of the two
sets (Figure 1E). Sensitivity and specificity of the classification
and identification model were achieved by using a cut-off value
of zero for the predicted value (Tables S4 and S5). Serum
sample data from the control group, MDS/AML group, MDS
subtypes, main AML, and secondary AML were all
characterized using the OPLS-DA model. The nine validation
models have a sensitivity range of 75−100% and a specificity
range of 92−100%. The OPLS-DA model was then evaluated
based on its potential usefulness in the application.

Screening and Validation of Potential Biomarkers.
OPLS-DA score plot, loading plot, and V + S plot for the four
models (control vs MDS vs AML, control vs MDS, control vs
AML, and MDS vs AML) are shown in Figure 2A. The
samples may be efficiently divided into three piles in the score
plot. We were able to clearly differentiate between the control,
the MDS, and the AML groups since all three clustered in
opposite halves of the X axis. This finding demonstrates that
OPLS-DA can effectively differentiate between serum spectral
data from healthy controls, patients with MDS, and patients
with AML, providing the foundation for assessing the material
properties of the three groups. The Raman peaks that are
useful for distinguishing between controls, MDS, and AML
were first screened using the loading plot. Peak values
associated with protein, nucleic acid, lipids, collagen, and
carbohydrates are shown in red, yellow, blue, green, and
purple, respectively, in the image. Specifically, there was a
correlation between the two depictions of the relationship of
sample component content with the component depicted by
the peak position on the positive semi axis of the loading plot
ordinate also being relatively higher in the population along the
positive semi axis of the score plot abscissa. There was a
comparable correlative link between the negative halves of the
loading plot ordinate and the scoring plot abscissa. Identifying
the three groups of samples required the characteristic peaks of
protein (897, 1003, 1260, and 1660 cm−1), nucleic acid (726
cm−1), cholesterol/carotenoid (957 cm−1), collagen (859 and
1345 cm−1), and carbohydrate (920 and 1123 cm−1) with the
AML group having higher collagen and carbohydrate levels
than the control and MDS groups, and lower cholesterol levels.
The value added by peak location to the classification model is
represented in the V + S graphic by a combination of the VIP
and correlation coefficient. Future biomarkers were filtered
using the figure. A further study looked at the peak locations
that best differentiated the control, MDS, and AML groups to
see whether they may serve as biomarkers. The V + S plot
organized the Raman peaks from highest to lowest VIP value.
Potential markers were identified by screening peaks with VIP
> 1.0 and biological importance.
Based on the control vs MDS vs AML model, control, MDS,

and AML samples were combined in pairs for OPLS-DA, and
OPLS-DA score plot, loading plot, and V + S plot of control vs
MDS, control vs AML, and MDS vs AML models were
established (Figure 2A). In each of the three score plots, half of
the samples fell on the positive X axis, while the other half fell
on the negative Y axis. The scatter plot clearly displayed sample
grouping, demonstrating OPLS-superior DA’s ability to extract

differential information from spectra. The three models were
able to distinguish between the two sets of samples, and the
developed identification approach could detect variations in
the metabolic components of serum samples. The loading plot
of the three models showed that the peak intensities of protein
(897, 1003, 1260, and 1660 cm−1), nucleic acid (726 cm−1),
and cholesterol/carotenoid (957 cm−1) in the control group
were higher than those in the MDS group. The peak intensities
of protein (897, 1003, and 1660 cm−1), nucleic acid (726
cm−1), collagen (859 cm−1), and cholesterol/carotenoid (957
cm−1) in the control group were higher than those in the AML
group, while the peak intensities of collagen (859 and 1345
cm−1) and carbohydrate (920 and 1123 cm−1) were lower than
those in the AML group. The peak intensities of protein (897,
1003, and 1260 cm−1), nucleic acid (726 cm−1), collagen (859
cm−1), and carbohydrate (920 and 1123 cm−1) in the AML
group were higher than those in the MDS group, while the
peak intensity of cholesterol/carotenoid (957 cm−1) was lower
than that in the MDS group. To identify possible biomarkers in
the control, MDS, and AML models, the V + S plot of the
three models might produce a list of Raman peak locations in
the order of VIP values from high to low (Figure 3A). Peaks
having biological importance and VIP > 1.0 were explored for
as possible indicators. Important Raman peak positions
affecting the sample classification were discovered in the four
models of control vs MDS vs AML, control vs MDS, control vs
AML, and MDS vs AML. Relevant parameters, such as VIP
(VIP > 1.0), correlation coefficient, load, and distance, from
the center in the V + S diagram were also cautiously being
considered. Raman peak locations without a discernible change
were discarded during the following biomarker verification
step, which removed them from the biomarker range.
The statistical analysis of the peak locations for the Raman

characteristics with VIP > 1.0 for control vs MDS, control vs
MDS vs AML, control vs AML, and MDS vs AML is shown in
Figure 2B. Figure 2C shows the six types of peripheral blood
biochemical indexes of total protein (TP), glucose, triglyceride
(TG), total cholesterol (TC), high-density lipoprotein (HDL),
and low-density lipoprotein (LDL) in control, MDS, and AML
groups. The peak intensities of representative proteins (897,
1003, 1206, and 1660 cm−1), nucleic acid (726 cm−1), collagen
(1345 cm−1), and cholesterol/carotenoid (957 cm−1) in the
control group were significantly higher than those in the MDS
group. The peak intensities of cholesterol/carotenoid (957
cm−1) and nucleic acid (726 cm−1) in the control group were
significantly higher than those in the AML group, while the
peak intensities of collagen (1345 cm−1) and carbohydrate
(920 and 1123 cm−1) were significantly lower than those in the
AML group. The peak intensities of collagen (859 and 1345
cm−1) and carbohydrate (920 and 1123 cm−1) in the MDS
group were significantly lower than those in the AML group.
The aforementioned findings supported the serological
findings for TP, hyperglycemia, and TC, which showed
substantial variations across groups (Figure 2C).
Bioinformatics was utilized to search the differentially

expressed genes between MDS and AML, control and MDS,
and control and AML. Based on Raman spectroscopy and
multiparameter analysis, the differentially expressed genes’
(DEGs) biological roles and regulatory pathways were
investigated. DEGs were screened from the GSE15061 chip
data based on certain screening conditions. There were 456,
26, and 418 upregulated and 1003, 107, and 981 down-
regulated DEGs in the comparisons of MDS and AML, control
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and MDS, and control and AML, respectively (Tables S6−
S11). The red or blue spots on the volcano figure (Figures 3D
and 4A,F) reflect strongly elevated or downregulated genes,
respectively. The respective heat maps are shown in Figures 2E
and 3B,G. Functional analysis of MDS and AML showed that

these DEGs were associated with Th17 cell differentiation,
pertussis, and cytokine receptor interaction pathways.
DAVID was used for gene ontology (GO) and pathway

enrichment analysis of common DEGs. The DEGs of MDS
and AML were significantly enriched in three Kyoto

Figure 4. (A) Score plots with 95% Hotelling’s confidence ellipses, loading plots, and V + S plots from OPLS models of MDS subtypes vs primary
AML, MDS-SLD/MLD vs primary AML, MDS-EB1 vs primary AML, and MDS-EB2 vs primary AML. (B) Statistical analysis of potential
biomarkers from OPLS models of MDS subtypes vs primary AML, MDS-SLD/MLD vs primary AML, MDS-EB1 vs primary AML, and MDS-EB2
vs primary AML. (C) Serum biochemical analysis of MDS-SLD/MLD, MDS-EB1, MDS-EB2, and primary AML. (D) Score plots with 95%
Hotelling’s confidence ellipses, loading plots, and V + S plots from OPLS models of MDS subtypes vs secondary AML, MDS-SLD/MLD vs
secondary AML, MDS-EB1 vs secondary AML, and MDS-EB2 vs secondary AML. (E) Statistical analysis of potential biomarkers from OPLS
models of MDS subtypes vs secondary AML, MDS-SLD/MLD vs secondary AML, MDS-EB1 vs secondary AML, and MDS-EB2 vs secondary
AML. (F) Serum biochemical analysis of MDS-SLD/MLD, MDS-EB1, MDS-EB2, and secondary AML.
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Encyclopedia of Genes and Genomes (KEGG) pathways
(Th17 cell differentiation, pertussis, and cytokine receptor
interaction), one GO-BP (mitotic spindle organization), three
GO-CC (kinetochore, condensed chromosome kinetochore,
and kinesin complex), and two GO-MF (microtubule binding
and microtubule motor activity). The top five GO functions
were obtained after arranging the P values from small to large
(Figure 2F,G and Table S12).
DEGs in the control and MDS groups were significantly

enriched in five KEGG pathways (hematopoietic cell lineage, T
cell receiver signaling pathway, Th1 and Th2 cell differ-
entiation, PD-L1 expression, and PD-1 checkpoint pathway in
cancer), four GO-BP (T cell receiver signaling pathway, T cell
activation, cell surface receiver signaling pathway, and positive
thymic T cell selection), two GO-CC (alpha−beta T cell
receptor complexα-βT and T cell receptor complex), and five
GO-MF (transmembrane signaling receiver activity, T cell
receiver binding, nonmembrane spanning protein tyrosine
kinase activity, protein tyrosine kinase activity, and trans-
membrane receiver protein tyrosine kinase activity). The top
five GO functions were screened after arranging the P values
from small to large (Figure 3C,D and Table S13).
DEGs of the control and AML groups were significantly

enriched in two KEGG pathways (T cell receiver signaling
pathway and Th17 cell differentiation), no GO-BP, three GO-
CC (kinetochore, chromosome, and central region), and one
GO-MF (microtubule binding). The top five GO functions
were screened after arranging the P values from small to large
(Figure 3H,I and Table S14).
When the results of the three groups of differential gene

analysis were combined, the GO-BP was related to mitotic
spindle and T cell receptor signal transduction, CC was
kinetochore and chromosome, and MF mainly involved
microtubule. In KEGG analysis, regulatory signals mainly
involve the T cell signaling pathway, especially the Th17 cell
differentiation pathway.
Based on the signal pathway analysis of DEG, the protein−

protein interaction (PPI) network was used to identify key
candidate genes. The PPI network of MDS and AML had 1323
nodes and 27,566 interaction pairs. If the topological score of a
node was high, it was regarded as a key node of the network
and the degree values of the top 10 genes were determined
(Figure S6A and Table S15). The hub genes were confirmed
by using the cytoHubba plugin as CDK1, CCNB1, IL1B,
CCNA2, ITGAM, AURKB, TOP2A, KIF11, TLR4, and
MAD2L1. The data showed that there might be a strong
interaction between them. When the results of the top five GO
functions were combined, among the top 10 genes, KIF11,
AURKB, CCNB1, and MAD2L1 were involved in mitotic
spindle organization; AURKB and MAD2L1 mainly related to
kinetochore; and MAD2L1 mainly related to condensed
chromosome kinetochore, and KIF11 mainly related to kinesin
complex. KIF11 plays a major role in the MFs of microtubule
binding and microtubule motor activity. IL1B is involved in
Th17 cell differentiation and cytokine receptor interaction
signal pathway. ITGAM, IL1B, and TLR4 are involved in the
pertussis signaling pathway (Figure 2H).
The PPI network of control and MDS had 83 nodes and 702

interaction pairs. If the topological score of a node was high, it
was regarded as a key node of the network and the degree
values of the top 10 genes were determined (Figure S6B, Table
S16). The hub genes were confirmed by using the cytoHubba
plugin as CD8a, CD19, IL7R, CD79A, CD2, CCR7, LCK,

PAX5, CD247, and CD3D. The data showed that there might
be a strong interaction between them. When the functional
results of the top five GO genes were combined, among the
top 10 genes, CD8A, CD247, and CD3D were involved in T
cell receiver signaling pathway; CD2, CD8A, CD247, IL7R, and
CD3D were involved in cell surface receiver signaling pathway;
CD3D was involved in positive thymic T cell selection; CD3D,
CD2, CD79A, CD8A, CD19, CCR7, and IL7R mainly related to
the external side of the plasma membrane; CD247 and CD3D
mainly related to the alpha−beta T cell receiver complex;
CD79A, CD247, and CD3D mainly related to the MF of
transmembrane signaling receiver activity; LCK is mainly
involved in the MF of T cell receiver binding; LCK mainly
relates to the MF of nonmembrane spanning protein tyrosine
kinase activity, protein tyrosine kinase activity, and trans-
membrane receiver protein tyrosine kinase activity; CD79A,
LCK, CD8A, CD19, IL7R, and CD3D are involved in the
primary immunodeficiency signaling pathway; CD2, CD8A,
CD19, IL7R, and CD3D are involved in the hematopoietic cell
lineage signaling pathway; LCK, CD8A, CD247, and CD3D are
involved in the regulation of T cell receiver signaling pathway;
LCK, CD247, and CD3D are involved in the regulation of Th1
and Th2 cell differentiation signaling pathway; and LCK,
CD247, and CD3D are involved in the regulation of PD-L1
expression and PD-1 checkpoint pathway in cancer (Figure
3E).
The PPI network of control and AML had 1251 nodes and

21,942 interaction pairs. If the topological score of a node was
high, it was regarded as a key node of the network and the
degree values of the top 10 genes were determined (Figure
S6C and Table S17). The hub genes were confirmed by using
the cytoHubba plugin as ITGAM, CD8A, CDK1, JUN, CCNB1,
CCNA2, CD44, MMP9, KIF11, and AURKB. The data showed
that there might be a strong interaction between them. When
the results of the top five GO functions were combined, among
the top 10 genes, AURKB was mainly related to kinetochore,
chromosome, and central region; KIF11 was mainly involved
in the molecular function of microtubule binding, and JUN was
involved in T cell receiver signaling pathway and Th17 cell
differentiation signaling pathway (Figure 3J).
Based on the screening of potential biomarkers of MDS and

AML, the MDS subtypes model was used to analyze
differences in the levels of components in the serum samples
and screen potential classification markers of MDS subtypes
and primary AML. Figure 4A shows the OPLS-DA score plot,
loading plot, and V + S plot of MDS subtypes vs primary AML,
MDS-SLD/MLD vs primary AML, MDS-EB1 vs primary
AML, and MDS-EB2 vs primary AML. In the score plot, the
MDS subtypes and primary AML samples were clearly
grouped. The MDS subtypes group was located in the positive
half of the X axis, and the primary AML group was located in
the negative half of the X axis, showing that the MDS subtypes
group was distinguished from the primary AML group. This
result shows that OPLS-DA can well distinguish the serum
spectral data of patients with MDS-SLD/MLD, MDS-EB1,
MDS-EB2, and primary AML, which provides conditions for
analyzing the material characteristics of the four groups. The
loading plot was used to preliminarily screen the Raman peaks
that contribute to the MDS subtypes vs the primary AML
identification model. The red, yellow, blue, green, and purple
peak numbers in the figure relate to protein, nucleic acid, lipid,
collagen, and carbohydrate, respectively. The characteristic
peaks of protein (853, 1003, 1206, and 1616 cm−1), lipid
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(1437, 1443, and 1446 cm−1), nucleic acid (781, 786, and
1485 cm−1), and carbohydrate (920 cm−1) played important
roles in the identification of five groups of samples; the main
AML group had greater quantities of nucleic acid and
carbohydrates than the MDS subtypes group. Potential
biomarkers were further screened using the V + S plot, and
the significance of peak locations was then analyzed to
determine the peak positions that can effectively identify
potential biomarkers for MDS subtypes and primary AML
(Figure 4A).
Based on the MDS subtypes vs primary AML model,

samples of the primary AML and three groups of MDS
subtypes were combined for OPLS-DA and the OPLS-DA
score plot, loading plot, and V + S plot of MDS-SLD/MLD vs
primary AML, MDS-EB1 vs primary AML, and MDS-EB2 vs
primary AML were established (Figure 4A). The two groups of
samples in the three score plots were located on the positive
and negative half of the X axis, respectively. Sample clustering
in the scatter plot was obvious, indicating that the three models
could well identify the two groups of samples in the model. As
seen in the loading plot, the peak intensities of nucleic acid
(781, 786, and 1485 cm−1) and carbohydrate (920 cm−1) in
the primary AML group were generally higher than those in
the MDS subtypes group and the peak intensities of lipid
(1437, 1443, and 1446 cm−1) were higher than those in the
MDS-SLD/MLD group and lower than those in the MDS-EB1
and MDS-EB2 groups. The V + S plot provides the main basis
for determining the potential classification markers in MDS
subtypes and primary AML models (Figure 4A). Peaks with
biological importance were chosen as the peak range of
putative biomarkers from the list of peaks with VIP > 1.0
produced from the V + S plot. In MDS subtypes vs primary
AML, MDS-SLD/MLD vs primary AML, MDS-EB1 vs
primary AML, and MDS-EB2 vs primary AML models, the
same method was used to screen and verify biomarkers.
Figure 4B shows the statistical analysis of characteristic

Raman peaks with VIP > 1.0 of MDS subtypes vs primary
AML, MDS-SLD/MLD vs primary AML, MDS-EB1 vs
primary AML, and MDS-EB2 vs primary AML models. Figure
4C shows six types of peripheral blood biochemical indexes of
TP, glucose, TG, TC, HDL, and LDL in the four groups of
MDS-SLD/MLD, MDS-EB1, MDS-EB2, and primary AML.
Statistical analysis showed that the peak intensity of
representative protein (853, 1003, 1206, and 1616 cm−1) in
the MDS-SLD/MLD group was significantly higher than that
in the MDS-EB1, MDS-EB2, and primary AML groups, while
the peak intensity of representative lipid (1437, 1443, and
1446 cm−1) was significantly lower than that in the MDS-EB1,
MDS-EB2, and primary AML groups. These results were
consistent with those obtained for the serological indexes, such
as TG, TC, HDL, and LDL, with significant differences
between groups (Figure 4C). The peak intensities of
representative nucleic acid (781, 786, and 1485 cm−1) and
carbohydrate (920 cm−1) in the MDS-EB1 and MDS-EB2
groups were significantly lower than those in the primary AML
group.
Based on the results of screening for potential classification

markers of MDS subtypes and primary AML, the MDS
subtypes model was used to screen the potential classification
markers of MDS subtypes and secondary AML. Figure 4D
shows the OPLS-DA score plot, loading plot, and V + S plot.
The four groups of samples in the score plot were clearly
grouped and distributed in the four quadrants of the graph,

reflecting that the MDS subtypes and secondary AML groups
have been distinguished. This result shows that OPLS-DA can
well distinguish the serum spectral data of patients with MDS-
SLD/MLD, MDS-EB1, MDS-EB2, and secondary AML, which
provides conditions for analyzing the material characteristics of
the four groups. Raman peaks contributing to the MDS
subtypes versus the secondary AML detection model were first
screened using the loading plot. Protein, nucleic acid, lipid,
collagen, and carbohydrates are represented by the red, yellow,
blue, green, and purple peak numbers, respectively, in the
image. The lipid content of the secondary AML group was
larger than that of the MDS subtypes group, and the protein
characteristic peaks (1003 and 1616 cm−1) and lipid peaks
(1437 and 1443 cm−1) played major roles in the identification
of the four groups of samples. Further screening of prospective
biomarkers was performed using the V + S plot, and the
importance of typical peak positions was verified in future
analysis to discover the peak positions that may effectively
identify potential biomarkers for the control group and MDS
subtypes (Figure 4D).
Based on the MDS subtypes vs secondary AML model,

secondary AML and three groups of MDS subtypes samples
were combined for OPLS-DA and OPLS-DA score plot,
loading plot, and V + S plot (Figure 4D) of MDS-SLD/MLD
vs secondary AML, MDS-EB1 vs secondary AML, and MDS-
EB2 vs secondary AML models were established. The two
groups of samples in the three score plots were located on the
positive and negative half of the X axis, respectively, and the
sample clustering was obvious in the scatter plot. Therefore, it
may be considered that the two models had good
discrimination ability for the two groups of samples in the
model. It is seen from the loading plot that the intensity of the
peak position (1003 cm−1) representing protein in the
secondary AML group was higher than that in the MDS-EB1
and MDS-EB2 groups but lower than that in the MDS-SLD/
MLD group. The V + S plot provides the main basis for
determining the potential classification markers in the MDS
subtypes and secondary AML models (Figure 4D). According
to the V + S plot, a list of peaks with VIP > 1.0 was derived and
peaks with biological significance were selected as the peak
range of potential biomarkers according to the literature. In
MDS subtypes vs secondary AML, MDS-SLD/MLD vs
secondary AML, MDS-EB1 vs secondary AML, and MDS-
EB2 vs secondary AML models, the same method was used to
screen and verify biomarkers.
Figure 4E shows the statistical analysis of VIP > 1.0

characteristic Raman peak positions of MDS subtypes vs
secondary AML, MDS-SLD/MLD vs secondary AML, MDS-
EB1 vs secondary AML, and MDS-EB2 vs secondary AML.
Figure 4F shows the six types of peripheral blood biochemical
indexes of TP, glucose, TG, TC, HDL, and LDL in the MDS-
SLD/MLD, MDS-EB1, MDS-EB2, and secondary AML
groups. Statistical analysis showed that the peak intensity of
representative protein (1003 and 1616 cm−1) in the MDS-
SLD/MLD group was significantly higher than that in the
MDS-EB1, MDS-EB2, and secondary AML groups, while the
peak intensity of representative lipid (1437 and 1443 cm−1)
was significantly lower than that in the MDS-EB1, MDS-EB2,
and secondary AML groups. These results were consistent with
results for the serological indexes, such as TG, TC, HDL, and
LDL, with significant differences between groups (Figure 4F).
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■ DISCUSSION
In this study, OPLS-DA could well distinguish control subjects,
patients with MDS, and patients with AML based on serum
spectral data. The results of this exploratory study confirm the
feasibility of interpreting the heterogeneity of serum
metabolism in patients with MDS and AML based on serum
Raman spectroscopy and multivariate analysis, suggesting the
utility of serum Raman spectroscopy in the detection of MDS,
AML, and biomarker mining. The peaks representing protein
(853, 1003, 1206, and 1616 cm−1), lipid (1437, 1443, and
1446 cm−1), collagen (859 and 1345 cm−1), and carbohydrate
(920 and 1123 cm−1) can be used as potential biomarkers to
identify MDS and AML. A decrease in peripheral blood cells in
patients with MDS due to bone marrow failure may cause
hypoproteinemia secondary to anemia, putting these patients
at risk of developing hypoproteinemia. Due to the proliferation
of malignant cells, the demand for protein and amino acids in
patients with AML is higher than that in patients in the MDS
group, and therefore the risk of hypoproteinemia in patients
with AML is higher.
High TG levels indicate impaired cellular energy metabo-

lism. Since damaged cells cannot efficiently burn sugar, the
body must maintain high levels of TG in the blood.22−24 The
peripheral serum TG level of patients with AML was higher
than that in patients with MDS and control subjects,
suggesting the risk of hyperlipidemia in patients with AML.
Compared with the MDS-SLD/MLD group, the peak intensity
representing lipid (1437, 1443, and 1446 cm−1) in primary
AML and secondary AML groups was significantly higher,
consistent with the results of serum biochemical analysis. This
may indicate an abnormality in cellular energy metabolism in
patients with AML, which is consistent with our previous
findings. According to our previous report on the analysis of
AML subtypes, the analysis of bone marrow supernatant of
patients with AML suggested that the presence of leukemia
cells in the bone marrow microenvironment resulted in lower
serum levels of TC, HDL, and LDL in patients with AML than
in control subjects, indicating that AML patients had lipid
metabolism disorder.25

Statistical analysis revealed that the 957 cm−1 peak intensity
in the AML and MDS groups was lower than that in the
control group with the difference being significant between the
AML and the control groups. The 957 cm−1 peak represents
both lipid and β-carotenoids. We speculate that the antioxidant
level in patients with AML and MDS is low, which is not
conducive to free radical scavenging, while the high carotenoid
level in healthy individuals inhibits tumors, such as AML and
MDS.26−28 In the remission phase of leukemia, the plasma
carotenoid level increases, which may also act as a self-
protection mechanism.29

Based on the screening of MDS- and AML-related genes in
the Gene Expression Omnibus (GEO) database, we retrieved
ITGAM, IL1B, and TLR4 genes as key differential genes,
which are involved in the pertussis signaling pathway. Pertussis
is a type of disease that can trigger a lymphoid leukemia
reaction. Pertussis toxin can inhibit T cell movement and
displacement by inhibiting the activation of G protein or
“guanylate binding protein.” It is a special protein related to
transmembrane signal transduction in the cell membrane. The
peak intensity of MDS-EB1 in primary AML and MDS
subtypes was significantly different at 1485 cm−1. The peak at
1485 cm−1 is related to guanine metabolism. Patients with

MDS-EB1 have insufficient T cell function and carry a high
risk of transforming into AML. Abnormal nucleic acid
metabolism in the MDS-EB1 metabolic microenvironment
may be related to the transformation potential of MDS to
AML, but further study is necessary in this regard.
Using bioinformatics analysis, we also found that DEGs

between MDS and AML related to the pathway of Th17 cell
differentiation. Th17 is a T cell subset that shows
heterogeneity and plasticity in different immune environments,
closely related to the occurrence of autoimmune diseases and
tumors. The metabolic microenvironment critically influences
the differentiation and function of Th17.30 The serine/
threonine kinase Akt signaling pathway is necessary for the
peripheral induction of Th17.31,32 Serine and threonine are
hydroxyaliphatic side chain amino acids. The difference in the
peak position of lipids (1437, 1443, and 1446 cm−1) in the
blood microenvironment of MDS and AML may be related to
the transformation from MDS to AML.33,34

AML affects the differentiation and proliferation of
hematopoietic cells due to clonal abnormalities, while MDS
affects only the differentiation of hematopoietic cells due to
clonal abnormalities. Therefore, in theory, MDS can be
regarded as “pre-leukemia.” In the OPLS-DA model, the
MDS and AML groups could be well identified and cluster
analysis yielded good results. The results of Raman spectrum
analysis of serum samples agreed well with those of serum
biochemical analysis results, but due to the influence of sample
size, serum TP, glucose, TC, and LDL levels did not differ
significantly, indicating that the Raman spectrum detection of
serum was more sensitive and could capture subtle differences
in the component levels that cannot otherwise be captured by
conventional serological detection.
The differential diagnosis between MDS and AML is

challenging because massive serological data related to glucose
and lipid metabolism and corresponding clinical diagnostic
indicators are lacking. The present study highlights the need
for further mining serological detection data. Statistical analysis
of larger samples will help to identify new methods for the
rapid and early identification of different types of MDS and
AML. Raman spectroscopy, which is both quick and cost-
effective, will lay a solid foundation for the development of big
data-aided diagnosis and application software in the future.
In conclusion, the close combination of serum Raman

spectroscopy and OPLS-DA can scientifically detect differ-
ences in the structure, components, and content of
biomacromolecules in the serum of patients with different
types of MDS and AML. Compared with bone marrow
puncture, Raman spectroscopy analysis of serum samples is less
traumatic and easily accepted by patients, which is conducive
to follow-up research. The identification of different types of
MDS and AML has far-reaching scientific research and clinical
significance.

■ LIMITATIONS OF THE STUDY
However, the patient’s medical histories, drug histories, and
smoking and drinking habits were not thoroughly explored in
this research, which might have influenced the outcomes.
Larger sample size and the use of consistent techniques of data
collection are therefore required to enhance the reliability of
samples. And although the control group, MDS subgroup, and
AML subgroup all had about the same percentage of male and
female participants, the age distribution was however different.
The control group had individuals in the age range of 12−69
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years, the MDS-SLD/MLD group had patients who were 19−
65 years old, the MDS-EB1 group had patients who were 34−
77 years old, the MDS-EB2 group had patients of age 37−73
years, the primary AML group had patients of age 5−64 years,
and the secondary AML group had patients who were 34−74
years old. The difference in age distribution among the six
groups was statistically significant (Tables S2 and S3).
However, the metabonomic analysis and statistical methods
used to analyze the indicators basically met the needs for
comparing the differences between samples in the study, have
prompt value for clinical practice guidelines, and also provide a
reference for further follow-up research.

■ CONCLUSIONS
To our knowledge, this work is the first application of serum
Raman spectroscopy to interpret the heterogeneity of serum
metabolism in patients with MDS and AML. Preliminary
analysis of Raman spectra showed specific biomolecular
differences between MDS and AML, which may be caused
by changes in the patients’ body metabolism. Peak collagen
(859 and 1345 cm−1) and carbohydrate (920 and 1123 cm−1)
intensities were substantially lower in the MDS group as
compared to the AML group. Screening and bioinformatics
analysis of MDS- and AML-related genes based on the GEO
database revealed 1459 DEGs, and GO function was mainly
related to mitotic spindle organization. The main cell
components were kinetochore, condensed chromosome
kinetochore, and kinesin complex, and the main molecular
function was related to microtubule binding and microtubule
motor activity. KEGG analysis of the DEGs between MDS and
AML revealed the main signaling pathways as Th17 cell
differentiation, pertussis, and cytokine receptor interaction.
The 10 hub genes screened in the PPI network were CDK1,
CCNB1, IL1B, CCNA2, ITGAM, AURKB, TOP2A, KIF11,
TLR4, and MAD2L1.
Furthermore, the peak intensity of representative proteins

(853, 1003, 1206, and 1616 cm−1) in the MDS-SLD/MLD
group was significantly higher than that in the MDS-EB1,
MDS-EB2, and primary AML groups, while the peak intensity
of representative lipid (1437, 1443, and 1446 cm−1) was
significantly lower than that in the MDS-EB1, MDS-EB2, and
primary AML groups. The peak intensities of representative
nucleic acid (781, 786, and 1485 cm−1) and carbohydrate (920
cm−1) in the MDS-EB1 and MDS-EB2 groups were
significantly lower than those in the primary AML group.
The peak intensity of representative protein (1003 and 1616
cm−1) in the MDS-SLD/MLD group was significantly higher
than that in the MDS-EB1, MDS-EB2, and secondary AML
group, while the peak intensity of representative lipid (1437
and 1443 cm−1) was significantly lower than that in the MDS-
EB1, MDS-EB2, and secondary AML group. In particular,
combined with the statistical analysis of serological indexes
related to glucose and lipid metabolism, the peaks at 920 and
1123 cm−1 closely related to glucose can be used as potential
biomarkers for the identification of MDS; peaks at 853, 1003,
1206, and 1616 cm−1 closely related to TP, TG, TC, HDL, and
LDL, and 1437, respectively, can be used to identify AML; and
peaks at 1443 and 1446 cm−1 can be used as potential
biomarkers for the early diagnosis of MDS-SLD/MLD. The
results of this exploratory study indicate the potential of
applying Raman spectrum serum analysis as a clinical tool for
the noninvasive detection and screening of potential
biomarkers to identify MDS and AML. The potential

correlation between the massive serological examination
information of patients with MDS and AML and the
classification and prognosis of the disease was determined.
However, the sample size of this study was small; therefore, the
results may not be accurate. Considering that patients and
samples with different types of MDS and AML are rare and the
results are interpretable, we will conduct a more detailed
prospective study in the next step to test the feasibility of
identifying biomarkers related to MDS and AML.

■ MATERIALS AND METHODS
Sample Collection. The research included 87 participants,

including 44 men and 43 females, with age ranging from 5 to
77 years, all of whom were recruited in 2021 from the Hospital
of Blood Diseases, Chinese Academy of Medical Sciences
(Institute of Hematology, Chinese Academy of Medical
Sciences). There were 33 patients in the MDS group, including
seven patients with MDS-SLD/MLD, 10 patients with MDS-
EB1, and 16 patients with MDS-EB2. There were 25 patients
with AML, including 20 patients with primary AML and five
patients with secondary AML. The control group comprised
29 healthy individuals.
All patients in the experimental group underwent examina-

tion by blood phase, bone marrow phase, cytogenetics,
immunological phenotype analysis, and gene analysis, and
the results were confirmed by experienced hematology experts.
The primary diagnosis of these cases is hematopoietic diseases,
namely MDS or AML. The Chinese Academy of Medical
Sciences’ Hospital for Blood Diseases Ethics Committee gave
its approval to this work (KT2020016-EC-2). All participating
healthy individuals and patients provided written informed
consent. Serum samples were obtained from patients with
MDS, patients with AML, and individuals from the control
group. All subjects underwent routine serum biochemical
testing at the clinical testing center of the Hospital of Blood
Diseases, Chinese Academy of Medical Sciences (Institute of
Hematology, Chinese Academy of Medical Sciences).

General Biochemical Data. Serum samples obtained from
the subjects who fasted for 10 h were used for the analysis of
TP, TC, glucose, TG, LDL, and HDL in the peripheral blood
using an automatic biochemical analyzer.

Raman Spectroscopic Analysis of Peripheral Blood
Serum. On a quartz slide, we deposited 5.0 μL of serum for
analysis using a confocal Raman spectrometer HORIBA Xplora
Raman microscope equipped with a 785 nm laser, 40 MW of
output power, a 40× objective lens, and an XYZ three-
dimensional specimen platform. Imaging was performed using
a 40× (0.75 numerical aperture) Nikon lens, approximately 2
× 2 μm spot size range to receive laser beam irradiation, the
output power of 10 MW, the single integration time of 250 s,
measurement range of 600−1800 cm−1, and resolution of 1
cm−1. From 5 to 10, various spots were measured for each
group. To have a baseline, we measured the Raman spectra of
the quartz slide. Labspec6 was used to perform tasks, including
smoothing, background subtraction, and baseline correction on
the collected data. Spectra were all calibrated relative to the
Raman signal at 1450 cm−1.

Diagnostic Model Establishment Based on Raman
Spectral Data Analysis. Patients with MDS, AML patients,
and healthy controls all had their blood Raman spectra
analyzed using supervised OPLS-DA performed in SIMCA
14.1. The OPLS model’s efficacy was measured by the
goodness of fit metrics R2 and Q2. Under the null hypothesis,
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we randomly changed the Y matrix 200 times and resampled
the data to see how well the model held up. Raman peaks of
statistical significance were identified as potential biomarkers
using a classification model that included cluster analysis and V
+ S analysis. On the basis of the V + S plot’s correlation
coefficient, loadings, and distance from the center, the peak site
of a potential biomarker was selected as a VIP > 1.0. The
collected candidates for biomarkers were subjected to a
significance test, and those that had a P value lower than
0.05 were deemed to have high clinical utility. Processing of
pertinent data was done in Origin. Statistics were analyzed
using IBM SPSS Statistics 20, and graphics were created with
GraphPad Prism 5. Figure 5 depicts the conceptual framework
for this study, which includes the collection of serum samples,
the detection of Raman spectra, multivariate analysis, and the
construction of the identification model.

Bioinformatics Analysis. From the GEO database, we
obtained and downloaded gene chip GSE15061. DEGs were
compared and identified between control and MDS, control
and AML, and MDS and AML using the R program and the
Bioconductor software package. P 0.01 and |logFC| > 0.6 were
used to filter the DEGs. Following this, the screened DEGs
were subjected to GO function annotation and KEGG signal
pathway enrichment analysis using DAVID6.8. Cytoscape was
used to mine the main genes that play an important part in the
biological processes connected to alterations in the control,
MDS, and AML groups using the PPI network analysis
provided using the STRING online analysis tool.

Statistical Analysis. To analyze the data, we utilized SPSS
26.0. We compared the frequencies using the chi-square test
(also called Fisher’s exact test). The mean ± standard
deviation is used to represent data with a normal distribution,
whereas the median is used to describe data without a normal
distribution (25th−75th percentile). The comparison of data
groups with normal distributions was performed using one-way
ANOVA. The pairwise comparison of homogenous variance
groups was performed using the least significant difference
approach. The pairwise comparison of heterogeneous variance
groups was conducted using Tamhane’s T2 approach. The
nonparametric Kruskal−Wallis test technique was used to
compare groups of data with nonconforming normal
distributions. A statistically significant difference was defined
as P < 0.05.
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