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Abstract

Background: There is a paucity of data about the susceptibility status of malaria vectors to Public Health insecticides
along the Thailand-Myanmar border. This lack of data is a limitation to guide malaria vector-control in this region. The
aim of this study was to assess the susceptibility status of malaria vectors to deltamethrin, permethrin and DDT and to
validate a simple molecular assay for the detection of knock-down resistance (kdr) mutations in the study area.

Methods: Anopheles mosquitoes were collected in four sentinel villages during August and November 2014 and July
2015 using human landing catch and cow bait collection methods. WHO susceptibility tests were carried out to measure
the mortality and knock-down rates of female mosquitoes to deltamethrin (0.05%), permethrin (0.75%) and DDT (4%).
DNA sequencing of a fragment of the voltage-gated sodium channel gene was carried out to identify knock-down
resistance (kdr) mutations at position 1014 in mosquitoes surviving exposure to insecticides.

Results: A total of 6295 Anopheles belonging to ten different species were bioassayed. Resistance or suspected
resistance to pyrethroids was detected in An. barbirostris (s.l.) (72 and 84% mortality to deltamethrin (n = 504) and
permethrin (n = 493) respectively), An. hyrcanus (s.l.) (33 and 48% mortality to deltamethrin (n = 172) and permethrin (n
= 154), respectively), An. jamesii (87% mortality to deltamethrin, n = 111), An. maculatus (s.l.) (85 and 97% mortality to
deltamethrin (n = 280) and permethrin (n = 264), respectively), An. minimus (s.l.) (92% mortality, n = 370) and An. vagus
(75 and 95% mortality to deltamethrin (n =148) and permethrin (n = 178), respectively). Resistance or suspected
resistance to DDT was detected in An. barbirostris (s.l.) (74% mortality, n = 435), An. hyrcanus (s.l.) (57% mortality, n = 91)
and An. vagus (97% mortality, n = 133). The L1014S kdr mutation at both heterozygous and homozygous state was
detected only in An. peditaeniatus (Hyrcanus Group).

Conclusion: Resistance to pyrethroids is present along the Thailand-Myanmar border, and it represents a threat for
malaria vector control. Further investigations are needed to better understand the molecular basis of insecticide
resistance in malaria vectors in this area.

Keywords: Malaria, Thailand-Myanmar border, Anopheles, Pyrethroids, Insecticide resistance, kdr mutation,
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Background
Vector-borne diseases account for 17% of all infectious
diseases, causing more than 1 million deaths annually
[1]. Malaria causes more than 600,000 deaths every year,
mostly in children under 5 years [2]. Vector-control is
an essential component of malaria control, and it relies
mainly on long-lasting insecticidal nets (LLINs) and

indoor residual spraying (IRS) [3]. In low transmission
settings, especially where residual transmission (i.e.
transmission that is not prevented by LLINs and IRS) is
prominent, LLINs and IRS must be supplemented by
other methods to target early feeding, exophagic and
zoophagic malaria vectors [4].
Pyrethroids are widely used for vector control because

of their strong insecticidal effect and their low toxicity
to mammals [5]. They induce a rapid “knock-down”
(KD), and they have irritant and excito-repellent proper-
ties against susceptible mosquitoes [6]. Sadly, pyrethroid
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resistance in malaria vectors has been identified in at
least 64 countries [5] and is spreading worldwide [7]
because of the intense selection pressure caused by agri-
cultural practices [8] and the large-scale implementation
of malaria vector control interventions [7]. Resistance
has been implicated in the reduced efficacy of vector
control interventions such as IRS and LLIN [9, 10] and
malaria resurgence [11–17]. Routine monitoring of
resistance and detection of temporal changes in both
prevalence and intensity of resistance are needed to
guide malaria vector interventions and resistance
management plan [18].
Compared to Africa, there is a notable lack of data

on insecticide resistance in Southeast Asian malaria
vectors. Previous report of resistance in malaria
vectors from the GMS are summarised in Table 1.
Resistance to several pyrethroids and decreased sus-
ceptibility to DDT were described for An. minimus
(s.s.) in Vietnam, Thailand and Cambodia [19, 20].
Resistance to organophosphate was reported in An.
maculatus and An. sawadwongporni in northern
Thailand [21]. Suspected resistance to pyrethroids
(Vietnam) and DDT (Cambodia) was described in An.
dirus (s.s.) [19] and suspected resistance to DDT and
fenitrothion were reported in laboratory reared An.
cracens from Thailand and Malaysia [22]. High levels
of resistance to DDT and permethrin were reported
in An. vagus in the Greater Mekong Subregion
(GMS) [19, 23].
The mechanisms of insecticide resistance in mosquitoes

are multiple and include behavioural and physiological
changes leading to insecticide avoidance, reduced penetra-
tion, sequestration, target site modification (knock-down
resistance or kdr mutation for pyrethroids and DDT) and
increased biodegradation [13, 24, 25]. With the exception
of An. sinensis [26–30], resistance mechanisms remain
largely unknown in Southeast Asian malaria vectors. In
this region, metabolic resistance is thought to play a major

role compared to target site mutations [27, 31]. Only a
few studies have been conducted to understand the
pathways involved in metabolic resistance, and they were
limited to a laboratory adapted deltamethrin-resistant
strain of An. minimus (s.s.) from Thailand [32–34].
Kdr mutations were reported in several anopheline
species [23, 35] but were not detected in the major
malaria vectors in the GMS [31].
The aim of the present study is to investigate the

susceptibility status of malaria vectors to Public Health
insecticides (deltamethrin, permethrin and DDT) along
the Thailand-Myanmar border (TMB), and to assess the
presence of kdr mutations [35]. Resistance data are
deemed important to design more effective vector control
interventions in the area.

Methods
Study sites and mosquito collection
Mosquito collections were carried out in four Karen
villages located on the Myanmar side of the TMB,
namely Htoo Pyin Nyar (TPN, 17°14'N, 98°29'E), Tar
Au Ta (TOT, 16°36'N, 98°57'E), Ka Nu Hta (KNH, 17°
18'N, 98°24'E) and Htee Kaw Taw (HKT, 16°85'N, 98°
47'E) (Fig. 1). Three entomological surveys were con-
ducted in August and November 2014 and July 2015
using human landing catch (HLC) and cow-bait
collection (CBC) methods. Mosquitoes were collected
individually using 5 ml plastic tubes and shipped daily
to the Shoklo Malaria Research Unit (Mae Sot,
Thailand). Anopheles were individually transferred to
a clean and transparent plastic tube while still alive
and identified by morphology [36]. The mosquitoes
belonging to different species were separated into
different cups and reared for 1–4 days until enough
specimens were collected to run the bioassay.
Mosquitoes collected by HLC and CBC were pooled
together to increase the sample size.

Table 1 Insecticide resistance in malaria vectors from the Greater Mekong Subregion

Species Insecticide Site Date Reference

An. minimus (s.s.) DDT Thailand, Vietnam,
Cambodia

1999, 2003, 2008 [19, 20, 52]

Pyrethroidsa Vietnam 2008 [19]

An. maculatus (s.s.) and An.
sawadwongporni

DDT Thailand 1999 [52]

Methylparathion Thailand 2005 [21]

An. dirus (s.s.) DDT Cambodia 2008 [19]

Pyrethroidsb Vietnam 2008 [19]

An. cracens DDT, fenitrothion Thailand and Malaysia 1984 [22]

An. vagus DDT, pyrethroidsc Thailand, Vietnam,
Cambodia

2008 [19]

a alpha-cypermethrin, lambda-cyhalothrin and permethrin
b alpha-cypermethrin and lambda-cyhalothrin
c alpha-cypermethrin, deltamethrin, lambda-cyhalothrin and permethrin
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Susceptibility tests
Susceptibility tests were performed following the
WHO guidelines for insecticide resistance monitoring
in malaria vectors [37]. All materials used in this
study were provided by the Vector Control Research
Unit (VCRU), Universiti Sains Malaysia. Wild caught
female Anopheles were exposed for 60 min to papers
impregnated with deltamethrin (0.05%), permethrin
(0.75%) or DDT (4%). The susceptibility status of two
Anopheles laboratory strains [An. minmus (s.s.) from
Kasetsart University, Bangkok, Thailand and An.
scanloni, Shoklo Malaria Research Unit, Mae Sot,
Thailand] were also determined (50 mosquitoes for
each insecticide and the control). The number of
knocked-down (KD) mosquitoes was recorded every
5 min for 60 min. The females were then transferred
into holding tubes, provided with a sugar solution
(10%), and kept at 26 °C with a relative humidity of
80%. Mortality was recorded after a 24 h observation
period. Mosquitoes exposed for 1 h to paper impreg-
nated with the carrier (silicone oil mixed with acet-
one) were used as controls. Tests were replicated
when a sufficient number of specimens were
collected. Results were interpreted as per WHO
guidelines: confirmed resistance (mortality below
90%), suspected resistance (mortality between 90 and
98%) and susceptible (mortality over 98%) [37].

kdr mutation detection
DNA was extracted from a leg of each specimen as
previously described [38]. Amplification of a 300 bp
segment of the voltage-gated sodium channel (VGSC)
gene flanking the 1014 position was performed using
the primer pair Ag-F kdr (5'-GAC CAT GAT CTG
CCA AGA TGG AAT-3') and An-kdr-R2 (5'-GAG
GAT GAA CCG AAA TTG GAC-3') described by
Syaffrudin et al. [35]. The PCR mix was composed of
1 unit of Tfi DNA polymerase (Invitrogen™, Carlsbad,
United States), 200 μM of dNTP mix (Invitrogen)
which corresponded to 200 μM of each dNTP,
1.5 mM of MgCl2 (Invitrogen), and 400 μM of each
primer. The PCR was conducted in a total reaction
volume of 50 μl (3 μl of DNA template and 47 μl of
PCR mix). The thermocycling protocol consisted in a
first cycle of 5 min at 94 °C then 30 s at 45 °C, followed by
29 cycles of 30 s at 94 °C, 30 s at 50 °C and 1 min at 72 °C.
The PCR product was sequenced by Macrogen™ (Seoul,
South-Korea) using both primers. Each sequence was
checked and cleaned manually using the Bioedit software
version 7.1.9 (http://www.mbio.ncsu.edu//BioEdit/bioe-
dit.html). A consensus sequence was generated for each
specimen using the CAPS3 sequence assembly program
[39] and then aligned using the Clustal Omega multiple
sequence alignment program [40–42] (GenBank accession
numbers KY677707–KY677716).

Fig. 1 Map of the study sites. Three entomological surveys were conducted in four villages situated on the Myanmar side of the Thai-Myanmar
border (HKT, Htee Kaw Taw; KNH, Ka Nu Hta; TPN, Htoo Pyin Nyar; and TOT, Tar Au Ta). Mosquitoes were collected using indoor and outdoor
Human Landing Catch (HLC) in five sites and using Cow Bait Collection (CBC) in one site. Mosquitoes were shipped daily at the Shoklo Malaria
Research Unit (SMRU, Mae Sot, Thailand) for identification, rearing and bioassays
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Molecular identification of Anopheles by ITS2 sequencing
Amplification of the ITS2 was performed using the
primer pair ITS2A (5'-TGT GAA CTG CAG GAC ACA
T-3') and ITS2B (5'-ATG CTT AAA TTY AGG GGG T-
3') described by Beebe et al. [43]. The PCR mix was
composed of 1 unit of Goldstar DNA polymerase (Euro-
gentec™, Seraing, Belgium) and 400 μM of each primer.
The PCR was conducted in a total reaction volume of
25 μl (4 μl of DNA template and 21 μl of PCR mix). The
thermocycling protocol consisted in an initial activation
step of 1 min at 94 °C, followed by 40 amplifcation cy-
cles of 20 s at 94 °C, 20 s at 51 °C and 30 s at 72 °C, and
a final elongation step of 30 s at 72 °C. The PCR product
was sequenced by Macrogen™ (Seoul, South-Korea)
using the ITS2A primer. Anopheles species was
determined using the blastn algorithm of the online
BLAST™ software [44] (accession numbers KY677698–
KY677706).

Data analysis
Adult mortality rate was corrected by the formula of
Abbott [45] in the case of mortality > 5% in the con-
trol. Tests with > 20% mortality in the control were
excluded from the analysis. Knock-down time 50
(KDT50) was determined by the log-probit method
described by Finney [46] using R software [47]. The R
code used to determine the knock-down time 50
(KDT50) and its confidence interval were adapted
from Johnson et al. 2013 [48].

Results
Bioassays
In total, 5896 Anopheles (belonging to 9 groups of
species) were collected in the villages and used to
assess the insecticidal activity of deltamethrin 0.05%
(n = 1,805), permethrin 0.75% (n = 1483) and DDT 4%
(n = 1202) (Tables 2, 3 and 4). A total of 1406 speci-
mens were used for the control (Tables 2, 3 and 4).
Overall, the mean mortality in the control batch was
8.4% (119/1406), 3 of 46 tests were excluded from the
analysis because the control mortality was > 20% (91/
5896 specimens).
Mortality and knock-down (KD) rates are reported in

Fig. 2 whereas the kinetic of KD (evolution of the KD
rate over a 60 min observation period) is shown in Fig. 3
(data were analysed at the species complex or group
when accurate identification at species level could not
be done). Laboratory strain of An. minimus (s.s.) was
susceptible to all insecticides whereas laboratory strain
of An. scanloni was resistant to DDT (mortality of 84%,
42/50). The KDT50 of these strains were 10, 13 and
38 min for An. minimus (s.s.) and 20, 26 and 63 min for
An. scanloni with deltamethrin, permethrin and DDT,
respectively. Suspected resistance to deltamethrin was
detected in wild caught An. minimus (s.l.) (92% mortal-
ity, 339/370). Resistance to deltamethrin and suspected
resistance to permethrin were detected in An. maculatus
(s.l.) (85 and 97% mortality, 239/280 and 257/264, re-
spectively). Anopheles barbirostris (s.l.) and An. hyrcanus

Table 2 Summary results of the bioassays with deltamethrin 0.05%

Taxa Na % Mortalityb % KDc KDT50d Statuse

An. scanloni
(laboratory strain)

50 100 (na) 100 (na) 19.6 (18.4–20.7) S

An. minimus (s.s.)
(laboratory strain)

50 100 (na) 100 (na) 10.4 (9.4–11.4) S

An. annularis (s.l.) 40 100 (na) 100 (na) 14.4 (13.1–15.6) S

An. barbirostris (s.l.) 504 72 (68–76) 85 (82–88) 30.5 (28.7–32.4) R

An. hyrcanus (s.l.) 172 33 (26–40) 27 (20–33) 131.3 (83–378.1) R

An. jamesii (s.l.) 111 87 (81–94) 97 (94–100) 14 (11.7–16.2) R

An. kochi 43 98 (93–100) 100 (na) 14.6 (13–16) S

An. maculatus (s.l.) 280 85 (81–89) 89 (85–93) 18.8 (15.8–21.6) R

An. minimus (s.l.) 370 92 (89–94) 99 (98–100) 15.4 (14.3–16.5) SR

An. tessellatus 83 98 (94–100) 99 (96–100) 17.7 (16.6–18.8) S

An. vagus 148 75 (68–82) 95 (91–98) 21.3 (19–23.4) R
a N: number of mosquito phenotyped
b % Mortality: mortality rate (expressed in %) after 1 h of exposure to insecticide, recorded following a 24 h observation period; the values between parentheses
indicate the 95% confidence interval of the mean mortality rate
c % KD: rate of mosquitoes “knocked down” (KD, expressed in %) recorded after 1 h of exposure to insecticide; the values between parentheses indicate the 95%
confidence interval of the mean KD rate
d TKD50: time (expressed in minutes) necessary to “knock down” 50% of the mosquitoes; the values between parentheses indicate the 95% confidence interval of
the TDKD50
e Status: resistance status as defined by WHO [37]. Briefly, a mortality in the range 98–100% indicates susceptibility; a mortality between 90 and 97% indicates
suspected resistance; a mortality < 90% indicates confirmed resistance as long as 100 specimens have been phenotyped
Abbreviations: na, not applicable; R, resistant; S, suceptible; SR, suspected resistance
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(s.l.) were resistant to all insecticides (mortality rates
< 90%). Anopheles vagus was resistant to deltamethrin
(75% mortality, 111/148) and suspected resistance to
permethrin and DDT was also reported for this species
(95 and 97% mortality, 169/178 and 123/133, respect-
ively). Resistance to deltamethrin was detected in An.
jamesii (s.l.) (87%, 97/111) whereas An. annularis (s.l.),

An. tessellatus and An. kochi were susceptible to this
pyrethroid insecticide. The susceptibility status of these
latter species to permethrin and DDT could not be de-
termined due to a very low sample size. Overall, the
KDT50 varied from 10 to 131 min, from 13 to 116 min
and 23 to 84 min for deltamethrin, permethrin and
DDT, respectively (Tables 2, 3 and 4).

Table 3 Summary results of the bioassays with permethrin 0.75%

Taxa Na % Mortalityb % KDc KDT50d Statuse

An. scanloni (laboratory strain) 50 100 (na) 98 (94–100) 25.6 (24.2–27) S

An. minimus (s.s.) (laboratory strain) 50 100 (na) 100 (na) 13.5 (11.5–15.3) S

An. annularis (s.l.) 0 na na na na

An. barbirostris (s.l.) 493 84 (81–88) 90 (88–93) 26.6 (25.8–27.5) R

An. hyrcanus (s.l.) 154 48 (40–56) 32 (24–39) 116.2 (83–212.1) R

An. jamesii (s.l.) 54 98 (95–100) 100 (na) 11.3 (10.3–12.2) S

An. kochi 0 na na na na

An. maculatus (s.l.) 264 97 (95–99) 97 (95–99) 16.7 (15.6–17.8) SR

An. minimus (s.l.) 340 98 (96–99) 99 (98–100) 15 (14.4–15.6) S

An. tessellatus 0 na na na na

An. vagus 178 95 (92–98) 100 (na) 15.3 (14.3–16.3) SR
a N: number of mosquito
b % Mortality: mortality rate (expressed in %) after 1 h of exposure to insecticide, recorded following a 24 h observation period; the values between parentheses
indicate the 95% confidence interval of the mean mortality rate
c % KD: rate of mosquitoes “knocked down” (KD, expressed in %) recorded after 1 h of exposure to insecticide; the values between parentheses indicate the 95%
confidence interval of the mean KD rate
d TKD50: time (expressed in minutes) necessary to “knock down” 50% of the mosquitoes; the values between parentheses indicate the 95% confidence interval of
the TDKD50
e Status: resistance status as defined by WHO [37]. Briefly, a mortality in the range 98–100% indicates susceptibility; a mortality between 90 and 97% indicates
suspected resistance; a mortality < 90% indicates confirmed resistance as long as 100 specimens have been phenotyped
Abbreviations: na, not applicable; R, resistant; S, suceptible; SR, suspected resistance

Table 4 Summary results of the bioassays with DDT 4%

Taxa Na % Mortalityb % KDc KDT50d Statuse

An. scanloni (laboratory strain) 50 84 (74–94) 42 (28–56) 63.2 (59.8–69.7) S

An. minimus (s.s.) (laboratory strain) 50 100 (na) 98 (94–100) 38.3 (36.9–39.7) R

An. annularis (s.l.) 0 na na na na

An. barbirostris (s.l.) 435 74 (70–78) 49 (45–54) 61 (59.1–63.2) R

An. hyrcanus (s.l.) 91 57 (47–67) 30 (20–39) 84.2 (70.9–112.1) R

An. jamesii (s.l.) 59 98 (95–100) 88 (80–96) 33.3 (31.3–35.2) S

An. kochi 0 na na na na

An. maculatus (s.l.) 239 99 (97–100) 9 (94–99) 25.5 (23.4–27.4) S

An. minimus (s.l.) 245 100 (na) 100 (na) 23.4 (21.8–24.9) S

An. tessellatus 0 na na na na

An. vagus 133 97 (94–100) 91 (86–96) 35.3 (34–36.6) SR
a N: number of mosquito phenotyped
b % Mortality: mortality rate (expressed in %) after 1 h of exposure to insecticide, recorded following a 24 h observation period; the values between parentheses
indicate the 95% confidence interval of the mean mortality rate
c % KD: rate of mosquitoes “knocked down” (KD, expressed in %) recorded after 1 h of exposure to insecticide; the values between parentheses indicate the 95%
confidence interval of the mean KD rate
d TKD50: time (expressed in minutes) necessary to “knock down” 50% of the mosquitoes; the values between parentheses indicate the 95% confidence interval of
the TDKD50
e Status: resistance status as defined by WHO [37]. Briefly, a mortality in the range 98–100% indicates susceptibility; a mortality between 90 and 97% indicates
suspected resistance; a mortality < 90% indicates confirmed resistance as long as 100 specimens have been phenotyped
Abbreviations: na, not applicable; R, resistant; S, suceptible; SR, suspected resistance
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Kdr detection
A PCR assay for kdr detection developed by Syaffrudin
et al. [35] was first validated on ten species complexes
collected along the TMB using two specimens per spe-
cies (Fig. 4). The presence of kdr mutations was assessed
in specimens surviving exposure to insecticide (post
bioassays) to increase the chance to detect SNPs. The
presence of kdr mutation was not investigated in An.
annularis (s.l.), An. kochi and An. tessellatus considering
the high mortality rates observed in bioassays (Table 5).
The sequence alignment of the PCR product is
presented in Fig. 4a. The non-synonymous L1014S mu-
tation was found in An. hyrcanus (s.l.) (Fig. 4a, b) at both
heterozygous (19%, 6/31) or homozygous state (10%, 3/
31) (Table 5). No kdr mutations were detected in other
anopheline species (Table 5).

Discussion
In this study, we assessed the susceptibility status of sev-
eral anopheline taxa to three public health insecticides
(deltamethrin, permethrin and DDT) along the TMB. To
our knowledge, this is the first study reporting the suscep-
tibility status of Anopheles mosquitoes to pesticides used
for malaria control in this area. These data are important

in the context of malaria elimination to select the most
appropriate insecticides for vector control.
Bioassays were performed following the WHO guide-

lines for insecticide resistance monitoring in malaria
vectors [37]. However, the WHO recommends the use
of unfed 2–5 days old female Anopheles to assess the
susceptibility of wild malaria vectors populations to
insecticides. This implies to collect a sufficient number
of larvae, which was not possible in the present study
considering the difficulty of accessing to the collection
sites. Since only adults were collected to run the bioas-
says, the mortality might be underestimated [49, 50].
Another limitation of the study was the identification of
malaria vectors at the species level. Indeed most of
Anopheles collected in the villages belong to complexes
of sibling species i.e. groups of several species that are
not distinguishable using conventional morphology cri-
terions [51]. Previous data in the same study villages
showed that An. minimus (s.s.) represents > 99% of the
Minimus complex whereas An. maculatus (s.s.) and An.
sawadwongporni were predominant within Maculatus
group (unpublished data). Moreover, it was not always
possible to reach the sample size recommended by the
WHO for each test (80 mosquitoes for each insecticide

Fig. 2 Mortality and knock-down (KD) rate determined following the WHO susceptibility test procedure for insecticide monitoring in malaria
vectors. Alive female Anopheles were exposed during 1 h to insecticides (deltamethrin 0.05%, permethrin 0.75% and DDT 4%). KD rate was
recorded at the end of the exposition period; the mortality rate was recorded after a 24 exposition period. Abbreviation: NA, not available
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and at least 20 mosquitoes for the control). Thus the in-
terpretation of the results must take into account the
sample size and the corresponding error bars.
In this study, suspected resistance to deltamethrin was

detected in An. minimus (s.s.). Resistance to DDT was
previously reported in Cambodia, Vietnam and Thailand
[19, 20, 52] whereas resistance to pyrethroids (permethrin,
alpha-cypermethrin and lambda-cyhalothrin) was only de-
tected in Vietnam [19]. Few data have been collected so
far on the susceptibility of An. maculatus (s.s.) and An.
sawadwongporni to insecticides. In Thailand, resistance to
DDT was documented by the Offices of Vector-Borne
Diseases Control [52]. Overgaard et al. [21] later reported
resistance of both sibling species to methyl-parathion in
the Northern part of the country. No resistance to organo-
phosphates, pyrethroids and DDT was detected however
in neighbouring Malaysia [53, 54].
Anopheles barbirostris (s.l.) (confirmed secondary

vector) and An. hyrcanus (s.l.) (suspected vector) were
resistant to all insecticides. Pyrethroid resistance in An.
barbirostris has only been described before in studies
conducted in Indonesia [35, 55] and Sri Lanka [56].
Confirmed resistance to deltamethrin and suspected re-
sistance to permethrin and DDT in An. vagus (suspected
vector) are in agreement with a previous report showing
a high level of resistance within the Hyrcanus group and

in An. vagus [19, 23]. Unfortunately, it was not possible
to generate data on the susceptibility of primary vectors
belonging to the Dirus complex because of the low
number of specimens collected.
Overall resistance to pyrethroids was reported in six

out of the ten species complexes tested along TMB
which suggests a strong selection pressure in the studied
area. In northern Thailand, Overgaard et al. [21] previ-
ously demonstrated that resistance is likely to arise from
the intense use of pesticides for agriculture (especially
for organophosphates compounds, a class of insecticides
that has never been used for vector control purposes).
This must be taken into account by policy makers as
additional use of insecticide (especially pyrethroids) for
vector-control may lead to a rapid selection of a resistant
phenotype as observed previously in Africa [8, 57].
Further efforts should be made to document the suscep-
tibility status of malaria vectors to other classes of insec-
ticides (such as carbamates, organophosphates and
insect growth regulators) that could be used as an
alternative to pyrethroids in the frame of resistance
management strategies [58–60].
In this study, we briefly investigated the molecular

mechanisms involved in pyrethroid and DDT resistance
by using a PCR assay adapted from Syafruddin et al. [35].
The kdr mutation is known to induce a cross-resistance to

Fig. 3 Kinetics of the knock-down (KD) rate during insecticide exposure. KD rate was recorded every five minutes during the exposition period to
insecticide. Dash-line indicates a 50% KD rate
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both DDT and pyrethroids, and to be associated with an
increase in the KDT50 values [6, 27]. Therefore we
suspected this mechanism to be involved in the resistance
of An. hyrcanus (s.l.) to the insecticides tested. We
reported the occurrence of the L1014S kdr mutation in
An. hyrcanus (s.l.) at a low frequency in the specimens
surviving insecticide exposure. Specimens carrying a kdr

mutation were further identified as An. peditaeniatus
using molecular methods (data not shown) (Accession
numbers: KY677698–KY677706). This finding confirms
the previous report of the L1014S mutation in An.
peditaeniatus populations from Southern Vietnam and
Cambodia [23]. However, the occurrence of kdr mutations
in other positions cannot be ruled out. For example,

Fig. 4 Molecular detection of the 1014 knock-down resistance (kdr) mutation on the voltage-gated sodium channel (VGSG) gene. a DNA sequence
alignment of the fragment of VGSC gene encompassing nucleotides corresponding to the codon 1014 in various Anopheles species collected on the
TMB. Bold character indicates the coding part of the DNA sequence (exon 20); codon 1014 is figured in red. b Consensus amino-acid sequence of the
exon 20 determined for each anopheline taxa. The non-synonymous TCG polymorphism detected in An. hyrcanus (s.l.) is responsible for the L1014S
kdr mutation; both heterozygous and homozygous mutations were detected. Other polymorphisms are either synonymous or located on non-coding
part of the DNA sequence (GenBank Accession numbers KY677707–KY677716)
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another kdr mutation (N1575Y) occurring within the do-
main VIII of the VGSG gene was found in An. gambiae
from West Africa occurring in a V1014F haplotypic back-
ground [61]. Several authors have stressed previously that
the absence of kdr mutations in most of the Anopheles
species tested suggests that metabolic resistance is prob-
ably the main route of insecticide resistance in malaria
vectors in Southeast Asia (i.e. An. minimus (s.l.), An.
maculatus (s.l.) and An. dirus (s.l.)) [27, 31]. The metabolic
basis of insecticide resistance in malaria vectors in the
GMS remains largely unknown. The only metabolic
mechanism described so far is the over-expression of two
P450 isoforms (CYP6P7 and CYP6AA3) suspected to
metabolise several pyrethroids [62] in a laboratory colony
of deltamethrin-resistant An. minimus (s.s.) from Thailand
[34, 63]. Further efforts should be made to decipher the
molecular basis of insecticide resistance in Southeast
Asian malaria vectors.

Conclusion
Pyrethroid resistance seems to be widespread in Anopheles
populations from the Thailand-Myanmar border. Docu-
menting the susceptibility to other classes of insecticides
is important in the framework of malaria control and
elimination. Molecular basis of the resistance remains
largely unknown in most of the Southeast Asian malaria
vectors. Additional efforts should be made to identify
molecular markers allowing the routine monitoring of
insecticide resistance in this area.
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Table 5 kdr mutation at position 1014 in the voltage-gated
sodium channel (VGSG) gene

Taxa Na 1014 Lb L1014Sc

Homozygous Heterozygous

An. annularis (s.l.) 2 2 0 0

An. barbirostris (s.l.) 42 42 0 0

An. hyrcanus (s.l.) 31 22 (71%) 3 (10%) 6 (19%)

An. jamesii (s.l.) 55 55 0 0

An. kochi 2 2 0 0

An. maculatus (s.l.) 49 49 0 0

An. minimus (s.l.) 44 44 0 0

An. tessellatus 2 2 0 0

An. vagus 50 50 0 0
a N, number of specimens genotyped
b Number of specimens (%) carrying the wild-type genotype
(homozygous 1014 L)
c Number of specimens (%) carrying the homozygous or heterozygous
1014 L mutation
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