
Density Functional Theory

Best-Practice DFT Protocols for Basic Molecular Computational
Chemistry**

Markus Bursch,* Jan-Michael Mewes,* Andreas Hansen,* and Stefan Grimme*

Abstract: Nowadays, many chemical investigations are
supported by routine calculations of molecular struc-
tures, reaction energies, barrier heights, and spectro-
scopic properties. The lion’s share of these quantum-
chemical calculations applies density functional theory
(DFT) evaluated in atomic-orbital basis sets. This work
provides best-practice guidance on the numerous meth-
odological and technical aspects of DFT calculations in
three parts: Firstly, we set the stage and introduce a
step-by-step decision tree to choose a computational
protocol that models the experiment as closely as
possible. Secondly, we present a recommendation matrix
to guide the choice of functional and basis set depending
on the task at hand. A particular focus is on achieving
an optimal balance between accuracy, robustness, and
efficiency through multi-level approaches. Finally, we
discuss selected representative examples to illustrate the
recommended protocols and the effect of methodolog-
ical choices.

1. Introduction

Chemistry and chemical synthesis are indispensable tools for
humankind in addressing the most urgent current and future
challenges, such as efficient energy storage and conversion,
sustainable food supply, and affordable medication and

health care. In all of these examples, a rational design of
molecules and materials, e.g., new catalysts, electrolytes for
batteries, hosts and emitters for organic electronics, and new
drugs, takes a central role. Here, it is crucial to understand
matter at the atomic and electronic-structure level, which is
possible only through chemical synthesis, spectroscopy, and
quantum chemical calculation. The latter of these three,
computational chemistry, and specifically Kohn–Sham den-
sity functional theory (DFT), has firmly consolidated its
position as a third workhorse besides synthesis and spectro-
scopy in recent decades. We argue that the general
importance of computational chemistry and DFT, in partic-
ular, stems from its outstanding effort-to-insight and cost-to-
accuracy ratios compared to related approaches, in other
words, their efficiency (vide infra).

From a more fundamental perspective, DFT is a
formally exact but practically empirical “first-principles”
electronic-structure approach to solve the fermionic many-
electron problem that underlies most of chemistry and large
parts of biology and physics. When applied together with a
mixed quantum-classical treatment for the nuclei using
molecular dynamics (MD) or harmonic approximations for
the potential energy surface (PES), DFT can address many
problems in (bio)chemistry and physics with sufficient
accuracy to derive meaningful insight. The subtle theoretical
and technical details of DFT are well understood and have
recently been discussed in an extensive open discussion type
of review.[1] This open review addresses all more detailed
and theoretical questions about DFT which are raised here
but whose answer is beyond the scope of this practically
oriented work. For a recent discussion of the grand
challenges in theoretical and computational chemistry, see
Refs. [2, 3].

DFT offers an excellent compromise between required
computation time and the quality of the results in compar-
ison to the alternatives, which are less accurate and robust
but much faster semi-empirical quantum mechanics[4–6]

(often termed SQM) on the one hand, and on the other
more accurate and robust but slower wavefunction-theory-
based approaches such as coupled-cluster, (see Figure 1).
Efficient approximations in the coupled-cluster framework
such as DLPNO-CCSD(T)[7,8] can also be a noteworthy
alternative to high-level DFT but are beyond the scope of
this work. Further, human and power resources are spared.
Moreover, and just as important, DFT can be considered a
robust theory in that a breakdown in the form of entirely
wrong results is scarce, even when applied to challenging
molecules or exotic chemistry. This contrasts semi-empirical
quantum mechanics and other, even empirical approaches,
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which require much more careful sanity-checking by
comparison to DFT. These properties grant DFT the role of
a black-box method that non-experts can apply to many
chemical problems. Such applications typically involve test-
ing the plausibility of structures and reaction mechanisms
suggested by synthetic chemists or visualizing the frontier
orbitals and HOMO and LUMO energies to interpret
electrochemical experiments in materials science.

Nevertheless, the choice of a reasonable, efficient yet
accurate quantum chemistry treatment for a wide range of
chemical problems is still a challenging task, even for
experienced computational chemists. This is also due to a
vast number of available method combinations that have
been developed and presented in recent years. Already for
the fundamental choice of the density functional/atomic
orbital basis set combination, hundreds or even thousands of
combinations are possible in typical programs, many of
which are in common use. While this is uncritical for a small
molecule where one can use a “sledgehammer to crack a
nut” (that is, use expensive double-hybrid density func-
tionals and large atomic orbital basis sets), the treatment of
systems with 50–100 atoms or many relevant low-energy
conformers demands critical compromises in methodological
choices in order to keep the computational cost manageable.

Unfortunately, in some QM programs, the default
methods are outdated, which may tempt inexperienced users
to apply no longer recommended methods to circumvent
these complications. A prominent example is the popular
B3LYP[9,10]/6-31G* functional/atomic orbital basis set combi-

nation that is still frequently used even though it is known to
perform poorly even for simple cases.[11–13] The knowledge
that B3LYP/6-31G* suffers from severe inherent errors,
namely missing London dispersion effects (“over-repulsive-
ness”) and strong basis set superposition error (BSSE),
seems to “diffuse” slowly from the theoretical to the
computational chemist community.

Accordingly, educative tutorials that address these
weaknesses and show alternatives such as the work by
Peverati and Morgante[14] or Mobley[15] are appreciated,
providing valuable general guidance in the field of computa-
tional chemistry. In the last 10–20 years, the availability of
better functionals,[16,17] standardized dispersion
corrections,[18] and empirical corrections for BSSE[19,20] made
B3LYP/6-31G* computations obsolete. Today, much more
accurate, robust, and sometimes even computationally
cheaper alternatives exist, e.g., in the form of composite
methods like B3LYP-3c,[21] r2SCAN-3c,[22] B3LYP-D3-
DCP,[23] or B97M-V/def2-SVPD/DFT-C[20] to name just a
few. Such methods use new developments to eliminate the
systematic errors of B3LYP/6-31G* without increasing the
computational cost. Figure 1 illustrates the relative computa-
tional demands of the discussed approaches, while the
examples in Sections 4.2 and 4.3 provide a clear demonstra-
tion of the shortcomings of B3LYP/6-31G*, and how they
can be mitigated. The main goal of this work is to introduce
these new methods and developments to interested non-
experts and chemists with some background in theory.
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To this end, best practice recommendations are provided
for the most common workflows encountered in typical
applications, i.e., structure and ensemble determination,
computation of reaction energies, barriers, free energies,
and solvation effects are illustrated with a few typical
examples or case studies. We will also briefly discuss the
“embedding” of properly conducted DFT calculations into
multi-level workflows to determine solvated and thermally
averaged conformer, protomer, or tautomer ensembles.
However, due to quantum chemistry’s broad range and
complexity, some interesting but less common topics like
theoretical spectroscopy, excited states, periodic systems, or
heavy element chemistry are not considered here or touched
only very briefly. Another important area not covered here
is the analysis and understanding of atomic and fragment
interactions by, e.g., energy decomposition analysis,[24,25] or
wavefunction composition, e.g., by orbital interactions in the
natural bonding orbital (NBO)[26] framework.

The conclusions herein are based on more than 25 years
of experience in the field of DFT and functional develop-
ment, thermochemical benchmarking, as well as hundreds of
collaborative chemical applications in mechanistic or spec-
troscopic studies. Our recommendations are mostly based
on hard evidence: They rely on large-scale comparisons of
approximate DFT results for a wide range of chemical

properties with those from experiments or highly accurate
and robust coupled-cluster theory, the so-called gold
standard in computational chemistry (benchmarking). How-
ever, some conclusions concerning the performance of a
model, basis set, or particular density functional are numeri-
cally and statistically challenging to quantify. Hence, our
recommendations have a personal-experience-based flavor.
In this context, we put more emphasis on the robustness of a
method than its “peak performance” reflected, for example,
in the ranking in standard thermochemical benchmark sets
such as the GMTKN55.[27] This is because in our experience
in predictive applications, robustness and reliability, that is,
avoiding large and unexpected errors, is more important
than getting the numbers right to the last kcalmol� 1.

It should be clear, however, that density functional
theory methods in their typically applied forms are not free
of approximations and therefore, even choosing a robust
functional does not guarantee perfect results for any
arbitrary system.[28–30]

Finally, we want to point out that in computational
chemistry, the wording “thermochemistry” also includes the
calculation of reaction barrier heights, although they might
be considered separately under the common term chemical
kinetics.

2. General Considerations

2.1. Decision-Making in Computational Chemistry

Defining a suitable set of theoretical methods is the key to
accurately describing a chemical system. This includes not
only the selection of a quantum chemistry model for the
basic electronic structure but also the choice of an appro-
priate model system to describe the physico-chemical total-
ity of the problem. Generally, these choices comprise a
complex set of fundamental decisions. An exemplary
flowchart that illustrates this decision-making and is appli-
cable to a large part of typical quantum chemical applica-
tions is shown in Figure 2.

2.2. Electronic Structure

The possibly most fundamental aspect that decides if
common DFT is applicable is whether the system under
consideration is well-represented by a single-determinant
wavefunction and thus has single-reference character, or
whether multiple determinants are required and the system
has multi-reference character. Luckily, the most common
examples fall into the first category. These systems possess a
single-reference electronic structure and are thus readily
describable by the common DFT methods discussed in this
work. This holds true in particular for diamagnetic closed-
shell (organic) molecules, the vast majority of which possess
single-reference character. The few exceptions, such as
biradicals, often have low-lying triplet states, which can be
checked with an unrestricted broken-symmetry[34,35] DFT
calculation.

Figure 1. Accuracy in typical thermochemical applications vs. computa-
tion time (logarithmic scale) for common quantum chemistry methods.
Wavefunction-based coupled-cluster (CC) methods like CCSD(T)
(possibly in combination with local approximations) provide bench-
mark-quality results of better than 1 kcalmol� 1 for common chemical
energy changes of almost any well-behaved single-reference system (for
details see text). Lower rungs of the DFT hierarchy of methods from
small basis set composite approaches[31–33] (e.g., r2SCAN-3c[22]), to
(m)GGA or hybrid functionals provide systematically improved results
when coupled with large atomic orbital basis sets. The most
sophisticated double-hybrid functionals often yield results close to a
coupled-cluster reference level. See Section 2.5 for a more detailed
discussion of the density functional classes. SQM=semi-empirical
quantum mechanical method. CBS=complete basis set limit.
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Systems where multi-reference character should be
expected are radicals, low band-gap systems (see below),
transition states of open-shell dissociation processes, and
transition metal complexes. Specifically, 3d metals with
partially filled d-shells are prone to multi-reference situa-
tions since their ligand field is stronger than that of 4d and
5d metals. In all of these, multiple near-degenerate elec-
tronic configurations (with different orbital occupations) can
be present, leading to complicated electronic structure.
Accordingly, for these cases, it should be checked in
advance whether a so-called multi-reference case is present.
While this test is generally rather complicated, there are
simple hints that allow an initial yet often sufficient assess-
ment of possible multi-reference character. For example, a
very small gap between the highest occupied and lowest
unoccupied molecular orbitals, the so-called HOMO–
LUMO gap, of <0.5–1 eV in a test GGA calculation (see
below) and exceptionally slow self-consistent field conver-

gence are first indications of unusual electronic complexity.
If this first crude hint emerges, more sophisticated measures
should be considered. Most available approaches are wave-
function-theory-based[36–40] and thus limited in their applic-
ability to small molecules. The alternative fractional-occupa-
tion-number-weighted density (FOD)[41–43] represents an
easily applicable DFT-based estimate. Here, a moderate
artificial increase in the electronic temperature can be used
to populate and visualize low-lying, possibly problematic
electronic states. With any indication of a significant multi-
reference character, application of standard DFT methods is
not recommended and experts for sophisticated multi-
reference theory should be consulted. For a discussion of
multi-reference vs. related multi-determinantal cases ap-
pearing in low-spin open-shell systems see Ref. [44].

Figure 2. Conceptual flowchart of decision-making in elementary steps in typical molecular computational chemistry calculations.
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Recommendations:
* Check for multi-reference character through simple

indicators (HOMO–LUMO gap, fractional-occupation-
number-weighted density).

* Be more careful with open-shell systems (low-spin in
particular).

* Do not apply single-reference methods like DFT to multi-
reference systems.

2.3. Solvation

The next fundamental question is that of the present state of
aggregation or in which form of a substance mixture the
molecule to be examined is present. The neighboring
molecules in a solid or for a solute in solution can have
drastic effects on the structure and properties of the entire
system. Accordingly, for condensed-phase chemistry, a
suitable solvent model should be applied in any case. The
most common approach in a DFT context is to use
continuum solvation models that include interaction of the
molecule with the solvent implicitly via an effective potential
in the Hamiltonian. This means that no actual solvent
molecules are present in the calculation. Prominent repre-
sentatives of this class include the conductor-like polarizable
continuum model (CPCM),[45] the solvation model based on
the molecular electron density (SMD),[46] the conductor-like
screening model (COSMO),[47] the conductor-like screening
model for real solvents (COSMO-RS),[48] and the direct
conductor-like screening model for real solvents (DCOS-
MO-RS).[49] The mentioned methods differ in various
aspects. CPCM and COSMO are purely electrostatic mod-
els, lacking contributions from cavity creation that cost
energy in the solvent, and attractive van der Waals
interactions with the solvent, which lead to substantial errors
if the solvent-accessible surface area is changing signifi-
cantly. SMD, COSMO-RS, and DCOSMO-RS include such
contributions and are thus recommended (cf. Section 4.2).
Nevertheless, it should be noted that COSMO-RS cannot be
used in geometry optimizations or frequency calculations
and has to be replaced by DCOSMO-RS for this purpose.
Further noteworthy implicit solvation methods that can also
be used with semi-empirical quantum mechanical and force-
field methods are the generalized-Born model with solvent-
accessible surface area (GBSA)[50,51] and the analytical
linearized Poisson–Boltzmann model (ALPB).[52,53] Never-
theless, for specific cases, the inclusion of explicit solvent
molecules may be necessary and implicit solvation models
become insufficient.[54–62] In micro-solvation approaches,
actual solvent molecules are placed at important, most
strongly bound positions of a system.[63] Explicit solvent
molecules should be included when they are strongly bound
and/or are strongly involved in the chemical/physical process
under consideration. This may be tested at a lower level of
theory by exemplary geometry optimization and energy
evaluation for a representative model system. However,
explicit solvation also has its caveats as it can be very
difficult to converge properties with the number of explicit
solvent molecules. Moreover, the potential-energy surface

of explicitly solvated systems is often flat and peppered with
local minima of different solvent structures, making optimi-
zations lengthy and tedious. Therefore, explicit solvation
should be used with care. Neglecting solvation effects,
specifically for polar or charged molecules, can result in
large deviations in thermochemical calculations, and even
fundamentally wrong electronic structures, e.g., for zwitter-
ions.

Recommendations:
* Choose a model/state of aggregation close to the experi-

ment.
* Apply implicit solvation models for a molecule in

solution; best use physically complete models, such as
COSMO-RS or SMD.

* Be careful with charged systems for which continuum
models may be inaccurate (the higher the charge density,
the more inaccurate).

* Consider explicit solvation if necessary.

2.4. Molecular Flexibility

Another important aspect is the structural flexibility of the
system. For highly flexible structures, a molecular property,
such as energy, nuclear magnetic resonance spectra, or
optical rotation values may not be sufficiently described by a
single structure. At finite temperatures, various conformers
are populated and the overall property must be described as
thermal average over the unique property values of each
conformer. Accordingly, it is recommended to evaluate the
flexibility and the accessibility of relevant conformers for
any given system through an initial conformer search. This
step should only be skipped in the most obvious cases (e.g.,
chlorobenzene, anthracene etc.) because in our experience,
even rigid-looking molecules can have surprisingly many
low-lying conformers.

The flexibility of a molecule may be roughly categorized
by the number of conformers in an energy window of
3 kcalmol� 1 with respect to the lowest energy conformer,
which corresponds to five times the thermal energy at room
temperature (5RT). Systems with only a few conformers
(�1–3) in this window may be considered relatively rigid,
those with dozens as intermediate cases, and with hundreds
as very flexible. In any case, finding the overall lowest
conformer (global minimum) in the given chemical environ-
ment is important,[64] and by no means a trivial task. For
example, a conformer found in the solid, e.g., determined by
X-ray crystallography, may not be the most favorable one in
solution or in the gas phase.[65] This is another reason why an
initial conformational search (with a solvent model) is
strongly recommended even if X-ray structures are avail-
able. However, even for only medium-sized molecules (30–
50 atoms), a sophisticated conformational search is not
trivial: due to the vast size of the configuration space, the
computational cost of the search is often prohibitive also at
a pure DFT/(m)GGA level. Hence, multi-level approaches
(see Section 3) involving efficient semi-empirical quantum
mechanical or force-field (FF) methods are necessary. The
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CREST[66]/CENSO[67] approach represents a valuable, easily
applicable tool for semi-automated conformation sampling
and subsequent energy ranking of conformer-rotamer
ensembles (CREs). Further, the flexibility index given by
the CREST program can be used as additional indicator for
the molecular flexibility. Besides CREST, alternative, less
general conformer generation procedures such as
Molassembler,[68] ConfGen,[69] MS-DOCK,[70] Frog2,[71]

OMEGA,[72] RDkit,[73] and others[74,75] are described in the
literature.

Recommendations:
* Check for the role of structural flexibility/conformations

by searching the conformational space.
* Apply automated conformation search algorithms, e.g.,
CREST.

* Try to find and verify the lowest energy conformer.
* Consider Boltzmann-averaged property calculations.

2.5. Choice of Functional

A critical issue in DFT is the choice of the exchange-
correlation energy functional, often simply called functional.
It aims to absorb the extremely complicated many-particle
correlation and fermionic (exchange) effects into a seem-
ingly simple but formally exact and theoretically existing
mean-field electronic energy and potential. During the last
decades, hundreds of different functionals have been con-
structed which vary in their conception, target application,
and overall quality.[16,76] Accordingly, there are general-
purpose as well as task-specific functionals, highly para-
meterized and fundamental first-principle-based ones. A
detailed discussion of those aspects is beyond the scope of
this work as we focus on the suitability for applications in
thermochemical calculations. Perdew’s “Jacob’s ladder”
represents the most prominent attempt to categorize density
functionals based on their physical ingredients (Figure 3).[77]

Here, functionals are ranked according to their degree of
approximation as measured by the included electron density
descriptors for the exchange-correlation term (occupied
orbitals via the density, first derivative of the density, second
derivative, occupied orbitals via Fock exchange, virtual
orbitals via MP2, …) and thus the expected accuracy. The
most relevant categories ordered by increasing accuracy
include the generalized-gradient-approximations- (GGA),
meta-GGA- (mGGA), hybrid-, and double-hybrid func-
tionals.

Even though these categories are based on fundamental
theoretical aspects, such that there is a general trend to
improved accuracy with increasing rung, the performance
variation between functionals of the same rung can be large.
Accordingly, comprehensive benchmark studies that assess
the performance of any functional with respect to the
desired target property are indispensable. Nevertheless, the
Jacob’s ladder categorization allows a crude estimation of
some systematic functional errors. Moreover, it can be used
to categorize functionals by their numerical efficiency. In
this regard, the perhaps most important distinction is made

based on the inclusion of Fock exchange, also termed non-
local or exact exchange. The functionals of up to rung 3 do
not include Fock exchange and are called local or semi-local
functionals, whereas hybrid and double-hybrid functionals
on rungs 4 and 5 include Fock exchange. Since the
calculation of Fock exchange is a computational bottleneck,
semi-local functionals are generally more efficient than
(double-)hybrid functionals (see below).

Two of the most critical and thus prominent errors in
actual DFT approximations are the so-called self-interaction
error (SIE) and missing long-range correlation effects that
give rise to London dispersion. Although the lacking
description of long-range correlation is a fundamental short-
coming of DFT, it can nowadays easily be fixed by including
one of several available proven dispersion corrections (we
recommend D4, D3, or VV10).[18] We argue that nowadays,
this is indispensable in any DFT treatment, and do not see
any chemical context in which the dispersion correction
should be left out (except when studying the influence of
dispersion). See Section 3.7 for a discussion and example 4.2
and some illustrative numbers. In this context, it should be
pointed out that while dispersion effects exert a crucial
influence on calculated energies, the effect on the electron
density appears to be negligible.[3, 78,79] For example, it has
been shown that excitation energies calculated with time-
dependent DFT (TD-DFT) are hardly influenced by the
self-consistent VV10 dispersion functional.[80]

The SIE[81–83] results from an artificial residual interac-
tion of an electron with itself by the imperfect cancellation
of the approximate exchange-correlation functional and the
self-Coulomb interaction, and is more difficult to repair. In

Figure 3. Functional categorization according to Perdew’s “Jacob’s
ladder”. 1=electron density, τ=kinetic energy density, ϕ=molecular
orbital, Fock exc.=Fock exchange.
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contrast, Hartree–Fock theory is SIE-free, because of a
mathematical relation between the integrals describing the
Coulomb and (exact) exchange interaction: The two exactly
cancel each other when an electron formally interacts with
itself. In practice, SIE in DFT typically results in an over-
delocalization of the electron density and artificial energy
stabilization for delocalized electronic situations (with bond-
stretched H2

+ as a prime example). The SIE is present in all
semi-local (m)GGA (meaning meta-GGA and GGA) func-
tionals (rungs 1–3, e.g., PBE[84] or r2SCAN). Hybrid func-
tionals attempt to reduce the SIE by replacing a fraction of
approximate DFT exchange with Fock exchange (e.g.,
B3LYP[9,10] with 20% and PBE0[85] with 25%). However,
although this reduces SIE, it does not eliminate it. In turn,
even functionals employing fractions of Fock exchange are
still prone to SIE. Nevertheless, simply employing 100% of
Fock exchange also leads to a very poor performance. In
general, Fock exchange admixtures of 5–25% are typically
considered small, 25–40% moderate, and >40% high. One
way around this dilemma is provided by range-separated
hybrid functionals (RSHs), which make the admixture
dependent on the inter-electronic distance.[86,87] From a
theoretical perspective, SIE can be viewed as a special form
of the more general delocalization error of semi-local
functionals resulting from the incorrect description of
regions in a molecule with (effectively) fractional
charges.[83,88,89] Regarding the understanding of these prob-
lems, some progress has been achieved recently by distin-
guishing density-driven errors caused by the erroneous
(m)GGA exchange-correlation potential and inherent, usu-
ally smaller errors of the energy functional.[90]

Double-hybrid functionals[91–93] represent the highest
rung and additionally introduce a wavefunction-theory-
based correction to the correlation energy. This is most
commonly achieved by perturbation theory methods,[94] such
as second-order Møller–Plesset theory (MP2)[95] or its DFT
variant.[94] Their typically very large amounts of Fock
exchange (>50%) make them particularly resilient towards
SIE, and negative influences of large Fock exchange
admixtures are balanced by the explicit, virtual-orbital-
dependent correlation treatment. Nevertheless, these meth-
ods have an increased computational cost and further
introduce some restrictions in their general applicability. For
example, the vulnerability of the MP2 part for small gap
systems may also be problematic in MP2-based double-
hybrid functionals and hence, treating such systems in this
way requires some caution.

Opposing the higher accuracy of fourth-rung hybrid and
fifth-rung double-hybrid functionals is their increased com-
putational cost and less favorable scaling, which become
important specifically for large systems. (m)GGA treat-
ments formally scale with the system size (N) as N3 if the
resolution of the identity (RI) approximation, also known as
density-fitting,[96] is applied. For local (m)GGA functionals,
RI can improve the computational speed by a factor of 5–30,
depending on system and basis set. Hybrids already scale
with N4 and MP2-based double-hybrids with N5. Accord-
ingly, higher-rung functionals can become unfeasible for
large systems (>200–300 atoms) on common hardware. This

is mostly because hybrid calculations do not profit from RI
as much since it cannot be applied efficiently to Fock
exchange, which thus dominates the calculation time.
However, there are semi-numerical integration techniques
such as chain-of-spheres-exchange (COSX)[97] that also
speed up hybrid calculations for basis sets of TZ quality or
larger (factor of 3–10) when combined with RI. Thus, we
strongly recommend using both RI and COSX if available
(e.g., in ORCA as RIJCOSX and TURBOMOLE as
SENEX[98]). The RI technique also speeds up the MP2
calculation part in double-hybrid calculations, which then
become only slightly more costly than hybrids and hence
this safe approximation is strongly recommended.

In addition to the consultation of comprehensive bench-
mark studies, consistency checks of the chosen functional
may be recommended by comparing the results of a few
functionals for a representative model system. These func-
tionals should be chosen from a functional class that is
conceptually suitable for the investigated problem, e.g.,
range-separated hybrid and double-hybrid functionals for
barrier heights. This should be considered especially if the
system under study differs greatly from those in correspond-
ing benchmark studies.
A note on Minnesota functionals—Beginning in 2005 a

series of functionals was developed by the Truhlar group in
Minnesota, which are typically termed MXX-Y where XX
stands for the year and Y informs about the purpose (e.g.,
HF for 100% Fock exchange, “2X” for twice the Fock
exchange, “L” for local).[16,99–104] These functionals are widely
used and perform very well on large main-group benchmark
sets like the GMTKN55, where M06-2X and M05-2X are
actually some of the best-performing global hybrids, and
M06-L is one of the best mGGAs. These methods represent
a significant step forward in functional development com-
pared to B3LYP, and solve some complicated electron
correlation problems in DFT, such as alkane branching.[105]

However, for several reasons, they should be used with care:
First of all, they are often very sensitive to the size of the
integration grid and the basis set,[14,106] which may lead to
discontinuities in potential-energy surfaces and, in turn,
problems with geometry optimizations.[14,107] Secondly, their
performance strongly depends on the chemical system. Their
very good performance for typical main-group chemistry
relies on an extensive parameterization, which may lead to
problems for less common systems reflected in the “mind-
less” benchmark[27] and for transition-metal chemistry.[43,108]

Note that the performance for different classes of problems
also strongly depends on the amount of Fock exchange,
which varies between the different Minnesota functionals.
This aspect is discussed in Ref. [16]. Thirdly, these func-
tionals can be problematic for noncovalent interactions.
Although they are designed to include dispersion effects at
an electronic level and work quite well for weakly bound
systems at their equilibrium distances (see example 4.2),
they cannot recover the correct asymptotic behavior of
London dispersion in the long intermolecular distance
regime, e.g., for large molecules, solids, and liquids. To
mitigate this, a dispersion correction needs to be added in
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certain situations to Minnesota functionals, which, however,
can also result in over-binding in others.[109]

Recommendations:
* Choose a functional with caution based on the chemical

system under investigation and the task at hand and not
based on popularity.

* Always include a dispersion correction.
* Check for reliable cost–benefit combinations and consider

(m)GGAs. Hybrid functionals are more accurate but also
much more expensive than ((m)GGAs).

* Check the consistency between different functional
classes (e.g., compare a hybrid and a (m)GGA).

* In critical cases, test hybrids including different amounts
of Fock exchange.

* Consider proven multi-level approaches and composite
methods for larger systems (see Section 3).

2.6. Choice of Basis Set

Another important aspect regarding the computational
speed/accuracy compromise is the applied atomic-orbital
basis set. From a fundamental point of view, this is merely a
technical aspect because DFT calculations can at least in
principle be numerically converged to the complete basis set
(CBS) limit where this influence is eliminated. In practice,
however, this is rarely done and finite basis sets are applied,
introducing some errors. However, basis set related errors in
DFT are typically much smaller than for correlated wave-
function-theory-based methods. This weaker basis-set de-
pendence compared to wavefunction theory is an important
strong point of DFT. Nevertheless, even the best functional
will yield bad results if evaluated in a small and insufficient
basis set.

The most important characteristic of basis sets is their
completeness, often referred to as basis set size. It reflects
the number of functions to represent a given electron. An
important error for too small basis sets is the so-called basis
set incompleteness error (BSIE),[110] which results from an
insufficient function space in the linear-combination-of-
atomic-orbitals expansion. In short, BSIE arises when the
employed basis set is not flexible enough to describe the fine
details of the electron density. In most cases, the description
of the valence electrons is most crucial and thus basis sets
are usually categorized according to the so-called cardinal
number that indicates the number of independent basis
functions per occupied valence orbital. The corresponding
size is usually referred to as double- (DZ), triple- (TZ),
quadruple- (QZ),…, zeta, where the term zeta refers to the
number of independent atomic functions per occupied (in
the atomic ground state) valence orbital.

Another basis-set-related error arises if the basis set is
too small: Spatially close atoms and fragments start to
“borrow” basis functions from each other, resulting in an
artificial energy lowering for more compact structures,
which is known as the basis set superposition error
(BSSE).[111] BSSE is the practically most relevant error and
commonly only associated with weak interactions and non-

covalently-bound intermolecular complexes, for which it can
become relatively large (same magnitude as the interaction
energy). However, it is important to recognize that BSSE is
always present and also affects, e.g., conformational energies
and even molecular structures if too small basis sets are
used. Accordingly, knowing which computations are specifi-
cally sensitive to basis set size and where it is worth investing
in the increased computational demand resulting from a
larger basis set to significantly improve the result is
fundamental. This aspect is the topic of Section 3 and
Figure 5. For BSSE-prone systems with clearly separated
fragments with no interfragment covalent bonds, the so-
called counterpoise correction can be applied to correct for
BSSE.[112] An efficient alternative to this computationally
demanding correction is provided by approximate, empirical
correction schemes that are based on the molecular
structure, such as the geometric counterpoise correction
(gCP), or employ specially adapted effective core
potentials.[113] In contrast to the full counterpoise correc-
tions, these are always applicable and computationally
cheap, and thus can also be employed to correct for the
intramolecular BSSE. Such approximate counterpoise cor-
rections can repair the most drastic effects of BSSE, e.g., in
geometry optimizations with small basis sets. Their applica-
tion is similarly straightforward as that of dispersion
corrections. Thus, we recommend the gCP approach of
Kruse and Grimme[19] for geometry optimizations with small
basis sets that supports HF and DFT as well as many basis
sets. The related DFT-C approach of Witte and Head-
Gordon is further recommended for accurate noncovalent
interaction energy calculations (adapted specifically for
DFT/def2-SVPD calculations, see example 4.2).[20] Other
notable concepts are the proximity function of Faver and
Merz for large biomolecules,[114] as well as the ACP-n
approach of Jensen.[115] Even though such corrections can
partially account for errors introduced by small basis sets,
minimal basis sets should be avoided in general as the errors
become uncontrollable.

The most commonly used Gaussian-type contracted
basis sets belong to the Pople (e.g., 6-31G),[116] Dunning (cc-
pVXZ),[117] Jensen (pc(seg)-X),[118,119] and Ahlrichs (def2-
XVP)[120,121] families. As a technical side note, we want to
mention that Pople-type basis sets such as 6-31G* or 6-
311G** as well as the Dunning-type sets cc-pVXZ (X=D,
T, …) are not recommended here for standard DFT treat-
ments, mainly because the basis sets by Ahlrichs and co-
workers are more efficient and consistently available for a
larger part of the periodic table.[122]

All basis sets may be extended by additional polarization
functions that have a higher angular momentum or diffuse
functions with small exponents to introduce more flexibility
if necessary, e.g., for anions, dipole moments, or electric
polarizabilities. Examples of the recommended Ahlrichs TZ
basis set def2-TZVP are the def2-TZVPP basis set with
added polarization functions and def2-TZVPD[123] or ma-
TZVP[124] (in some contexts also denoted as ma-def2-TZVP)
with added diffuse basis functions. In the following, basis
sets with added (diffuse or polarization) functions will be
referred to as large basis sets (e.g., def2-TZVPPD is a large
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TZ basis), while cut-down variants of the def2 basis sets will
be denoted small (e.g., mTZVPP derived from def-TZVP
for the r2SCAN-3c composite method is a small TZ basis).
To test if the results of a calculation are converged with
respect to the basis set size, it should be investigated how
they change when the cardinal number is increased (def2-
TZVP to def2-QZVP), and when polarization functions are
added or removed (def2-TZVP to def2-TZVPP).

If heavy elements are involved, def2-XVP basis sets use
the matching Stuttgart–Cologne effective core potentials
(def2-ECPs for Z>36)[125] to replace the inner core
electrons. This not only reduces the computation time but
also increases the accuracy due to the implicit inclusion of
(scalar) relativistic effects, which mainly affect the core
electrons. The application of robust small-core effective-
core potentials is typically sufficient for most thermochem-
ical property calculations. Nevertheless, for certain proper-
ties of very heavy nuclei and properties involving core
electrons, such as NMR shieldings, explicitly relativistic all-
electron calculations with special Hamiltonians, such as
X2C,[126, 127] ZORA,[128] or DKH[129] may be necessary. For
some approaches such as X2C, specially adapted versions of
the Ahlrichs basis sets are available.[130] Further details on
explicitly relativistic methods are beyond the scope of this
work.

Recommendations:
* Be aware of BSIE and BSSE.
* Try to approach a reasonable basis set size (�TZ) for

energy-related properties.
* Consider adding polarization functions for flexibility

(def2-XVPP).
* Consider adding diffuse functions for anions, dipole

moments, and polarizabilities (ma-XVP, def2-XVPD).
* Check for basis set convergence (increase/decrease cardi-

nal number by one).
* If heavy atoms are present (Z>36), apply effective core

potentials.

2.7. Comparing Apples with Apples

Finally, a remaining critical point is the consideration of
finite temperature effects. In the Born–Oppenheimer ap-
proximation, most computational models per construction
yield results valid for the absolute zero temperature (T=

0 K, � 273.15 °C), nuclear equilibrium scenario. Therefore, a
systematic deviation compared to experimental data at finite
temperatures is expected as standard equilibrium structure
treatments, such as geometry optimizations, do not include
nuclear zero-point vibrations (ZPV), vibrational (thermal)
bond elongation, or entropy effects. In other words, a
perfect agreement between experimental structures ob-
tained at finite temperature and those calculated at T=0 K
is not necessarily desirable since—sometimes
substantial[131–133]—finite-temperature effects can cause a
significant bias. However, for common covalent bonds
between typical atoms, these effects are too small to have a
significant influence.

Concerning calculated DFT energies, it is essential to
recognize that the bare electronic energies (E) and differ-
ences thereof cannot be directly compared to measured
(reaction) enthalpies (H) or free energies (G). This is
because even measurements at very low temperature
(assume 0 K) in the gas phase are affected by zero-point
vibrations (ZPV), which are thus an inseparable part of the
internal energy U0 of any molecule. If bonds are formed or
broken during a reaction, this will significantly change the
ZPV energy by several kcalmol� 1, which is thus very
important. Moreover, since most measurements are con-
ducted at finite temperature (assume ambient conditions=

298 K), also thermostatistical corrections have to be in-
cluded in the internal energy U298, which again have a
vibrational, translational, and rotational origin (3kT for the
translational and rotational part in an asymmetric molecule,
typically smaller than the ZPV energy). Moving from U298 to
the enthalpy H298, the pressure-dependent volume-work pV
has to be added under the usual assumption of ideal-gas-like
behavior (done by most programs, but not entirely correct
in the more common situation of a reaction in solution, see
the discussion below).[134] Finally, the most common and
relevant quantities are (Gibbs) free energies G298, which
include temperature-dependent entropic corrections (TS)
for vibrational, rotational, and translational contributions
(G=H� TS). For reactions in which the number of free
particles changes, these entropic contributions can amount
to tens of kcalmol� 1 at ambient conditions (see examples in
Section 4) and are thus also very important.[134]

For a reaction in solution as opposed to (an idealized)
gas phase, these contributions have to be evaluated in the
presence of a solvent model, and the free energy of solvation
has to be included as detailed in Section 2.3. Moreover, the
solvation process refers to a change of standard state (from
the usually assumed gas phase at 1 atm to 1 molL� 1 in
solution). Hence, a concentration-induced free-energy shift
of RT lnVM=1.89 kcalmol� 1 (VM: molar volume of an ideal
gas, T=298 K) has to be added (in addition to the pV term
in H298 discussed above) for each species when common
solvent models (COSMO-RS, SMD, ALPB/GBSA) are
used with default settings. This generally affects all non-
unimolecular reactions modelled in solution. Other refer-
ence state definitions for gas or condensed phases are
possible, and in these cases a detailed consideration of the
applied solvation model is required.[134]

Recommendations:
* Try to model the experiment as closely as possible.
* Apply zero-point vibrational energy and thermostatistical

corrections to enthalpy or free energy if necessary.
* For large systems with many small vibrational frequencies
<50–100 cm� 1, consider the robust mRRHO[135–137] model
for the entropy part of the free energy.

As many quantum chemical applications typically involve a
manifold of methods based on various physical concepts,
further reading on general computational chemistry as well as
specific aspects is recommended.[5,33,93,110,138–141]
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2.8. Quantum Chemistry Program Packages

In the last decades, various more or less specialized program
packages have been developed. All of them provide the
same basic DFT functionality and relevant differences
concern their ease of use, their efficiency, and their
availability (free or commercial). Further, many sophisti-
cated program packages can make use of the LibXC[142] or
XCfun[143] functional databases, drastically increasing the
number of available density functionals. Nevertheless, in
some cases, native functional implementations provide a
larger technical functionality in some codes. In the follow-
ing, a selection of common program packages with versatile
functionality in molecular applications is given, and individ-
ual strengths and specialties are highlighted briefly. These
programs proved to be reliable for a wide range of quantum
chemistry applications in our group. Other noteworthy
quantum chemistry program packages that are not explicitly
discussed here as we lack explicit experience with them
include NWChem, CP2K,[144], DALTON,[145] MOLCAS,[146]

PySCF[,147] DIRAC,[148] Gaussian,[149] and many more.[150]

TURBOMOLE[151]

* Very fast and robust
* Technically advanced and state-of-the-art algorithms
* Advanced molecular symmetry handling
* Fast hybrid functional implementation by semi-numerical

Fock-exchange approximation (SENEX)

ORCA[152–154]

* Efficient implementation of DFT and wavefunction
theory

* Fast hybrid functional implementation by semi-numerical
Fock-exchange approximation (RIJCOSX)

* Large toolkit for molecular spectroscopy
* Easy and intuitive input structure
* Free of charge for academic use

Q-Chem[155]

* Large number of natively implemented density func-
tionals

* Large variety of specialized DFT treatments (time-
dependent DFT, constrained DFT) and analysis tools
(energy decomposition analysis, EDA)

* Special DFT methods for NCI (SAPT, DFT-C)

Psi4[156]

* Modular code with great interfacing/scripting capabilities
* Special DFT methods for NCI (SAPT)
* Free of charge for academic use
* Open source code

Molpro[157]

* Advanced DFT (RPA, ACFDT) and embedding (WFT-
in-DFT) techniques

* Special DFT methods for noncovalent interactions
(SAPT)

AMS[158]

* Use of Slater-type orbital (STO) basis sets up to QZ
quality

* Good relativistic treatments
* Huge quantum chemical toolbox
* Great graphical user interface (GUI)

Specifically for large systems or very demanding computa-
tional tasks, DFT methods can be complemented by semi-
empirical quantum mechanical methods. Even though some
of these are implemented in the abovementioned quantum
chemistry packages, several features are only available in
the corresponding original codes. The most frequently used
semi-empirical quantum mechanics programs are xtb,[159]

DFTB+ ,[160] and MOPAC.[161] For example, the recent
single-point hessian (SPH)[162] approach can be utilized with
semi-empirical methods by using the native implementation
in the program. Further, the xtb program can be used as a
driver for other codes (using the xtb functionality with parts
of other codes to employ, e.g., DFT in the SPH approach)
such as ORCA. A detailed documentation can be found in
Ref. [163].

3. The Right Tool for the Task

A central task in computational chemistry is to balance
computational demands against methodological accuracy
and robustness. To this end, it is important to be aware of
the strengths and weaknesses of specific methods, to
consider the system size, and to be aware of the targeted
properties, such as structures, reaction energies, or con-
formational energies. Practically relevant systematic errors
in this respect are the aforementioned self-interaction error
(SIE), basis-set superposition (BSSE) and incompleteness
errors (BSIE), as well as the lacking description of London
dispersion by most functionals. The relevance of these
aspects depends not only on the system under investigation
but even more so on the task at hand. Thus, it is instructive
to discuss methodological choices in the framework of the
most typical steps of a computational investigation, which
determines the targeted property. The aim of this section is
thus to guide the choice of the methodological tool set, and
to provide the means to adapt it to the task at hand. Simply
put: We want to explain how one can cut corners where it
does not hurt through clever methodological choices and the
use of multi-level approaches.

An illustrative example for multi-level approaches is the
use of efficient semi-local (GGA or mGGA, i.e., no Fock
exchange) functionals or composite methods for structure
optimizations and vibrational frequency calculations, which
are then combined with single-point energy calculations at a
higher (hybrid or double-hybrid) level in a larger basis set
(e.g., QZ). The underlying idea is that although energies
calculated with (m)GGA functionals are susceptible to SIE
(amongst other shortcomings), they still provide reasonable
structures at a small fraction of the computational cost of
the more advanced non-local (hybrid and double-hybrid)
functionals. This mostly holds true even for SIE-prone
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systems, such that single-point calculations with hybrid
functionals on (m)GGA structures often provide energies
and properties as accurate as a fully optimized hybrid
approach. One example for this is the anthracene-cyclo-
propenyl cation potential-energy surface from our recent
article introducing r2SCAN-3c[22] shown in Figure 4.

Although the mGGA-based composite method overesti-
mates the interaction energy due to SIE, the equilibrium
intermolecular distance is in very good agreement with the
high-level coupled-cluster reference.

In more general terms, multi-level approaches exploit a
very stable form of error cancellation: While low-level (e.g.,
PBE-D4/DZ) structures are certainly not as accurate as
high-level (e.g., B2PLYP-D4/TZ) ones when comparing to
reference data (e.g., bond length and angles), the deviations
between high and low levels are typically highly systematic
(for a detailed analysis see Ref. [165]). As a result, also the
electronic energy differences between structures obtained at
different levels are very systematic and therefore reliably
cancel out between educts and products. Since such error
cancellations can involve large energy differences of tens of
kcalmol� 1 (comparing the high-level energy of the low-level-
optimized structure, here B2PLYP-D4/TZ//PBE-D4/DZ, to
the fully optimized high-level structure, here B2PLYP-D4/
TZ), it is of utmost importance to keep all details of the
optimization (like functional, basis set, convergence criteria,
used programs, and associated technical settings) consistent
over all involved molecules. Moreover, it is important that
the low-level method still provides a somewhat reasonable
description of the system under investigation. If the

structures are fundamentally wrong, e.g., because of a
complete lack of dispersion effects (e.g., with plain B3LYP),
the usage of a much too small (minimal) basis set, or a
functional that yields the wrong spin/charge state of the
fragments, even the most stable error cancellation will break
eventually. Finally, we want to point out that the described
(passive) error cancellation is not to be confused with
(active) error compensation, the latter of which refers to the
application of correction schemes for known sources of
systematic errors, like using D4 to account for the lacking
description of dispersion or the gCP correction to mitigate
BSSE.

Recognizing that structure optimizations are generally
much less sensitive to the level of theory than energy and
many other property calculations, multi-level approaches
enable large computational savings without any significant
loss of accuracy. Generalizing from this example, we have
summarized the most suitable functional/basis-set combina-
tions for typical steps of a computational study in Figure 5.
To guide the choices visually, we have marked the recom-
mended level of theory with the best balance between
computational effort and robustness in blue, accurate and
robust but not necessarily efficient choices in green, and
methods that should be avoided in red. Less clear-cut cases
(in between red and green) are marked in yellow. These
methods can be a good choice but are not as robust as green
ones. Hence, results obtained at this level should be checked
for systematic errors as indicated in the field, and often
better alternatives (blue fields) are recommended instead.
In all cases, the most severe systematic errors and drawbacks
we expect based on our experience are shown as text. In the
following, we will discuss this table column (task)-wise to
motivate and explain our choices, and provide additional
details. To streamline this discussion, we fully separate the
theoretical tasks in the computational context. This means
that, e.g., the discussion of methods for conformational
energies only refers to calculation of electronic energies and
excludes vibrational and entropic contributions, which we
discuss separately.

3.1. Molecular Structure

Structure optimizations are the first step of most quantum-
chemical investigations, either starting from an experimental
reference or a low-level guess that may employ semi-
empirical quantum mechanics or force-field methods. At
this point, the most typical user errors concern the starting
structure(s) and mistakes in the input resulting in wrong
charge, spin, or protonation states, which drastically alter
the results, whereas wrong choices of the theoretical model
are less common and often less severe. Hence, we recom-
mend carefully checking the input before setting the
computational machinery in motion. Self-consistent field
convergence issues are often a strong hint towards problems
with the input.

As already discussed above, structures are much less
sensitive to the functional and basis set than energies and
properties.[168,169] Therefore, we argue that a TZ basis set

Figure 4. Potential energy surface along the cyclopropenyl-anthracene
center-of-mass distance RCMA for the mGGA r2SCAN-D4, its hybrid
variant with 25% Fock exchange r2SCAN0-D4,[164] and the W1-F12
reference. W1-F12 denotes a highly accurate wavefunction theory-based
reference level. All DFT data calculated with the def2-QZVPP basis set.
Re=equilibrium distance. Colored arrows indicate the charge transfer
from anthracene to the cyclopropenyl cation for the respective
theoretical level.
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(def2-TZVP) is sufficient, and going higher to QZ level is
generally a waste of computational resources. Even well-
balanced DZ basis sets (def2-SVP) can provide useful

results when combined with the empirical geometric coun-
terpoise (gCP)[19] and dispersion corrections to mitigate the
sometimes significant structural impact of BSSE. In fact,

Figure 5. Decision matrix to guide the choice for a method combination (functional class/basis set) for common computational tasks. All
considerations imply the use of a dispersion correction. Red, yellow, and green indicate the accuracy and reliability of a method for the given task,
while blue marks our recommendation based on a good cost/accuracy ratio. Text in the fields points out the most relevant, systematic errors we
expect at this level (SIE, BSSE, BSIE) or if a theory level is unnecessarily demanding (excessive). Excessive method combinations probably do not
yield any significant increase in accuracy justifying the much-increased computational cost in the respective application. Selected recommended
methods are given with the respective method class. DZ=double-zeta; TZ= triple-zeta; QZ=quadruple-zeta basis set. BSIE=basis set
incompleteness error; BSSE=basis set superposition error; no-D=missing London dispersion; SIE=self-interaction error; Fock exchange=non-
local exchange (also termed exact exchange) from wavefunction theory. Regarding the limitations of the 6-311G** basis set see Refs. [166] and
[167].
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combining small but well-balanced basis sets with the gCP
and the D3 or D4 dispersion corrections is the basis of the
PBEh-3c[32] (DZ, def2-mSVP) and r2SCAN-3c (TZ,
mTZVPP) composite methods, which are tailor-made for
the task of structure optimization and thus strongly recom-
mended. In our opinion, it is rarely required to go beyond
this level for structure optimizations in standard thermo-
chemical studies.

Concerning the functional, (m)GGAs are typically
sufficient (e.g., r2SCAN-D4,[170,171] TPSS[172]-D4, or even
PBE-D4) as already discussed at the beginning of this
section. They provide the additional advantage of fully
exploiting the resolution-of-the-identity (RI)
approximation,[96] also called density-fitting, which makes
(m)GGA calculations much more affordable than using
hybrids. As a result, (m)GGA functionals can be employed
with larger basis sets, often at the same or even lower cost
than hybrids with small basis sets like B3LYP/6-31G*. In
turn, we argue that hybrid functionals should only be used
for structural optimizations if there is a good reason, such as
strong SIE, application to transition state searches, weakly
bound electrons in anions, or the presence of heavy main-
group elements. To investigate whether hybrid functionals
have a significant influence, we suggest beginning by
comparing results obtained with the r2SCAN-3c and PBEh-
3c composite methods. A very robust but also significantly
more expensive choice is PBE0-D4/TZ, which can already
be regarded as a benchmark level for structural optimiza-
tions. B3LYP-D4/TZ achieves a similar level of accuracy but
is—in our experience—not quite as robust as PBE0-D4/TZ,
in particular for transition-metal-containing systems. Also
range-separated hybrids and double-hybrid functionals have
been shown to provide very accurate structures.[173] How-
ever, the application of double-hybrids is typically excessive
and not necessary for standard applications due to beneficial
error-cancellation effects for structures. Even for very large
systems, structural optimizations should not go below the
polarized DZ basis set level. The functional should be at
least of (m)GGA quality (PBE or TPSS) and always include
a dispersion correction (D3/D4,[141, 174,175] VV10[176]). Note
that the prominent BLYP[177,178] functional is not recom-
mended because the GGA-typical systematic overestimation
of covalent bond lengths is more pronounced than with the
recommended GGAs.

3.2. Vibrational Frequencies

The calculation of vibrational frequencies is indispensable to
obtain zero-point vibration energies, thermostatistical cor-
rections to enthalpy and free energy. It is also central for the
prediction of IR/Raman spectra, which is, however, not in
the focus here. Since the underlying calculation of second
energy derivatives quickly becomes very demanding for
larger systems, it is desirable to conduct such calculations at
the lowest level that still provides reasonable results. There-
fore, we recommend using efficient composite methods or,
alternatively, (m)GGA functionals with a DZ basis set in
combination with the gCP correction. Similar to structures,

error cancellation is very stable and, since the thermo-
statistical correction to a reaction energy is typically much
smaller than the electronic part from DFT, the impact of a
lower level is naturally limited. In many cases, it is even
sufficient to obtain thermostatistical corrections at a semi-
empirical quantum mechanics level, e.g., with GFN2-
xTB,[5,179] as shown in example 4.2. We note that the
applicability of low-level semi-empirical methods should be
carefully checked if exotic bonds, transition metals, or heavy
main-group elements are present.[131]

The only complication that arises concerning the use of
lower-level methods for frequencies is that the structure for
which the vibrational frequencies are calculated has to be an
energy minimum at this very level (fully optimized, vanish-
ing atomic forces). Otherwise, the presence of many
artificial imaginary frequencies severely limits the accuracy
of the calculated thermostatistical corrections. For this
reason, the same theory level has to be used for structure
optimization and vibrational frequency calculations, or a
second set of optimized structures obtained at this lower
level has to be used. This limitation can be overcome with
the recently proposed single-point Hessian (SPH) approach,
which makes it possible to obtain frequencies and reason-
able thermostatistical corrections for any non-equilibrium
structure through the application of a specific biasing
potential.[162] While originally developed for the semi-
empirical GFNn-xTB method, the SPH approach can also
be used for DFT if the xtb program is used as a driver for a
quantum-chemistry program like ORCA (see xtb
documentation).[163]

Note that it is quite typical for large systems to have a
few low-energy imaginary frequencies <50–100 cm� 1, which
are often technically related to a too small DFT integration
grid. This is per se not a problem if properly dealt with, that
is, the frequencies should be inverted (multiplied by � i) and
treated as normal real frequencies, like in the xtb program
using the mRRHO approach.[159,180] A prominent alternative
consists of simply removing all low-lying imaginary modes
(referred to as Truhlar’s approach in the literature).
However, since this can inconsistently change the number of
degrees of freedom, it may lead to significant errors in the
thermostatistical entropy corrections. In contrast, if a
frequency calculation for fully optimized structures results in
more than a few low-energy modes and/or higher imaginary
modes (>100 cm� 1), this indicates that the given structure is
not a minimum and requires further refinement, e.g., by
manual distortion and re-optimization.

If individual vibrational frequencies and IR/Raman
intensities are desired instead of just thermostatistical
corrections, it may be useful to move to a hybrid level of
theory and employ larger basis sets, as this improves the
quality of the calculated spectral intensities. One functional
with a proven track record for the computation of IR spectra
is B3LYP, or its dispersion-corrected low-cost variant
B3LYP-3c, see Refs. [9,21]. For a comprehensive analysis of
the performance of various functionals, basis sets, and the
influence of Fock exchange on vibrational frequencies, we
refer to the work of Radom and co-workers.[181]
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3.3. General Remarks on Energy Calculations

For the following four categories, conformers, reaction
energies, barriers, and noncovalent interactions, the calcu-
lated electronic energies become the central quantity, which
requires larger basis sets for converged results than
structures or frequencies. Therefore, DZ basis sets (like 6-
31G** or def2-SVP) are no longer sufficient, and we
strongly advise against using them, except if they are part of
purpose-made composite schemes. However, even in combi-
nation with full counterpoise corrections or gCP (as in
composite schemes), the residual BSSE and BSIE of DZ
basis sets can be substantial. Thus, we generally recommend
at least TZ basis sets, which often yield results reasonably
close to the basis set limit. Nevertheless, convergence should
be checked for representative examples against QZ level (or
larger TZ basis sets, e.g. def2-TZVP against def2-TZVPPD).
In any case, before reducing the basis set size to the bare
minimum, we suggest moving from hybrids to more efficient
(m)GGA functionals or composite methods, which are
purpose-made to perform well with smaller basis sets.

For double-hybrid functionals, the limitations of TZ
basis are more severe since the MP2 component of the
calculation typically has a stronger basis-set dependence
than the (m)GGA or hybrid DFT part. Here, complete-
basis-set-extrapolation (CBS) from TZ to QZ should be
considered,[182,183] but the details are beyond the scope of this
work. Lastly, we suggest deciding on one approach for all
energy-related properties to retain a certain degree of
consistency and comparability, meaning that reaction ener-
gies, barrier heights, and association energies of reactants in
one reaction or reaction network should be obtained
consistently with one method combination, e.g., ωB97M-V/
QZ[184] single-point energies on r2SCAN-3c structures
(ωB97M-V/QZ//r2SCAN-3c). Therefore, a compromise
needs to be made considering all the requirements stated in
the following section.

3.4. Conformers

Conformational energies refer to the electronic energy
differences between various conformers of a given molecule,
that is, differences between local minima for a fixed covalent
bond topology. Due to the typically similar structures and
fixed topology, conformational energies profit particularly
from error cancellation effects. At the same time, however,
conformational energies need to be accurate to within about
0.1–0.2 kcalmol� 1 to predict Boltzmann populations at room
temperature reasonably well. This is particularly important
since properties can vary strongly and even qualitatively
between populated conformers (see example 4.3.).

Thus, conformational energies should at least be ob-
tained with high numerical precision settings (integration
grids) and TZ basis sets, and for this reason, the PBEh-3c
composite method (based on a DZ basis) is not recom-
mended for the task. Conformational energies are partic-
ularly sensitive to mid- and long-range electron-correlation
effects, such that the dispersion correction takes an

important role. In particular, for metal–organic systems,
density- or charge-dependent corrections like VV10 or D4
should be preferred over the charge-independent D3
scheme.

According to the conformational subsets of the
GMTKN55 benchmark, r2SCAN-D4 and the r2SCAN-3c
and B97-3c composite methods are particularly well-suited
for predicting conformational energies with high accuracy. If
the systems are small and higher-level calculations are
affordable, hybrid functionals can be employed. Here, we
recommend the ωB97X-V and ωB97M-V approaches of
Mardirossian and Head-Gordon or the respective D4 or D3
analogues.[185,186] Also the common B3LYP functional with a
dispersion correction and suitable basis set (e.g., B3LYP-
D4/TZ or QZ) can provide accurate conformational ener-
gies, yet it should be noted that this method has been
outperformed in a recent benchmark by the r2SCAN-3c
composite method at a small fraction of the computational
cost (see also example 4.3.).

Double hybrid functionals can be used for small systems
if maximum robustness and accuracy are desired. The most
accurate functionals in the GMTKN55 benchmark are
ωB97M(2)[187] of Mardirossian and Head-Gordon and
revDSD-PBEP86-D4[188] of Martin and co-workers. A partic-
ularly robust and widely available double hybrid we also
want to recommend is PWPB95-D4.[189] On a side note, we
want to mention that semi-empirical quantum mechanics
and force-field-based methods yield much less reliable
conformational energies than DFT and hence can only be
applied in the initial steps of multi-level workflows and by
using a very conservative (large) energy selection window,
and are best combined with DFT-based energy re-ranking
(see workflow given in Figure 7).[67]

3.5. Reaction Energies

Reaction energies refer to the difference in the total
electronic energies between reactants, products, and possible
intermediates that constitute minima on the potential energy
surface. Due to the larger differences in molecular geo-
metries and electronic structures, reaction energies benefit
less from error cancellation than conformational energy
differences. However, the practically acceptable error for
reaction energies is typically also larger than that for
conformational energies. An accuracy of about 1–
2 kcalmol� 1, which is difficult to obtain experimentally, is
often considered sufficient. While all of this strongly
depends on the investigated reaction, several general
findings remain valid for the vast majority of examples:
Regarding the basis set, reaction energies require large TZ
(e.g. def2-TZVPPD) or QZ basis sets for converged results
(see examples). The basis set dependence should be care-
fully investigated by comparing single-point energies ob-
tained with the next-smaller basis set (e.g., def2-QZVP to
def2-TZVP). Even if computational resources are at the
limit, the basis set size should not be reduced below TZ
quality.
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Instead of reducing the basis set size, one should always
consider switching to semi-local (m)GGA functionals if SIE
is not a major concern. Surprisingly, one of the most
efficient approaches for accurate reaction energies is the
mGGA-based r2SCAN-3c composite method, which outper-
forms the recommended B3LYP-D4/QZ and PW6B95/QZ
hybrid methods on the reaction energy subset of the
GMTKN55 benchmark (see Figure 4 in Ref. [22]).

In general, however, the accuracy and, in particular, the
robustness of predicted reaction energies of nonmetallic
systems profits from an admixture of Fock exchange. The
optimum value for reaction energies with global hybrids is at
25% Fock exchange. In contrast, barrier heights often profit
from even higher amounts of 50% depending on the
reaction type (see details in Section 3.6.). Therefore, if both
reaction energies and barrier heights are to be calculated,
preferably with the same functional as discussed above, a
compromise must be made with global hybrid functionals. In
this regard, we recommend Truhlar’s PW6B95 (28% Fock
exchange)[190] hybrid with D3 or D4 dispersion correction,
which provides accurate and robust thermochemistry, and
has been our default hybrid functional for mechanistic
studies for many years.

An approach to solve the conflict between high/low
Fock exchange for barriers/reaction energies is provided by
range-separated functionals such as ωB97X-V and ωB97M-
V. The variable admixture of Fock exchange in these
functionals makes it possible to get the best of both worlds:
good reaction energies and barrier heights. Accordingly, the
best-performing hybrid functionals on the GMTKN55
benchmark set are the two above-mentioned range-sepa-
rated functionals, which are the only hybrids with a
WTMAD2 below 4 kcalmol� 1. Double hybrid functionals
are even more accurate and robust choices but also the most
computationally demanding because they require larger
basis sets.

Lastly, to complete this discussion of the optimal amount
of Fock exchange, we mention that this value also depends
on the type of the studied reaction. While the arguments
and values presented above apply to main-group chemistry,
transition-metal compounds typically require lower amounts
(roughly about half of the values given above). Accordingly,
functionals with very large amounts of Fock exchange and
range-separated hybrids should be applied with care. An
example is the prominent M06-2X (54%) functional and the
PBEh-3c composite method, which showed larger errors in
recent transition-metal reaction benchmarks.[43,108]

3.6. Barrier Heights

Barrier heights refer to the electronic energy difference
between the transition state and the corresponding reactants
and products. Many transition state structures typically
involve at least one stretched bond and, in turn, near-
degenerate orbitals with weakly bound electrons, which
gives rise to particularly challenging electronic structures.
As a result, transition states are typically prone to SIE,
which often leads to a systematic underestimation of their

electronic energy and, in turn, barrier heights by (m)GGA
functionals. This error strongly depends on the one-electron
character of the breaking bond(s) in the transition state. The
largest errors are encountered for hydrogen-transfer or
dissociation reactions. The errors are smaller e.g., for heavy-
atom pericyclic reactions, and are almost absent for cova-
lent-bond-conserving inversion or conformational processes.
Hence, cheap (m)GGA functionals may be used in special
cases such as conformational or inversion barriers after
careful testing but, in general, barrier height calculations are
the only category in which we advise against using semi-local
(m)GGA functionals. Since the calculation of barrier heights
is perhaps the most challenging task, we provide an
extended discussion of the aspects mentioned above in the
example shown in Section 4.4.

In general, to mitigate the errors related to SIE, range-
separated hybrids are strongly recommended for barrier
heights. Specifically, ωB97M-V (also ωB97X-V) performs
very well on the barrier height subsets of the GMTKN55
and other benchmark sets. If global hybrids need to be
employed for some reason, those with an increased Fock
exchange (>30%) should be preferred, and their results
should be compared against those of range-separated
hybrids. Global hybrid functionals that have been specifi-
cally designed for the prediction of barrier heights, like the
BMK[191] or MPWB1K[192] functionals, typically use 40–50%
Fock exchange (BMK 42%, MPWB1K 44%). Note that
such large amounts of Fock exchange typically deteriorate
the performance of reaction energies. Also, double hybrid
functionals are well suited for this task since they typically
use a much larger fraction of Fock exchange (>50%) than
global hybrids and nevertheless provide very accurate
reaction energies. Due to their challenging electronic
structure, basis set convergence may also be slower for
transition states/barrier heights than for other properties,
and QZ basis sets should be considered. The London
dispersion energy contribution to typical chemical reaction
energies or barriers computed with standard functionals can
be large (or even decisive, see Ref. [193]), especially for
molecules with >20–30 atoms, and hence, its explicit
consideration is very strongly recommended.

In addition to the final energy calculation for reaction
barriers, already the initial search for transition states
represents an important task. Even though technical and
often program-specific aspects of transition state search are
beyond the scope of this article, most of the given
considerations also hold for, e.g., potential-energy surface
scans and other transition state searches. Since (semi-
)transition state searches are often computationally demand-
ing due to the large number of energy and gradient
evaluations, the use of lower-level methods cannot be
avoided. For this purpose, hybrid-based composite methods
with DZ basis sets (e.g., PBEh-3c) or even semi-empirical
methods[194–199] may be used (the latter with care) to find a
guess for transition states, which can then be refined at the
recommended level of theory. For further detailed advice,
we refer to the manuals of the respective quantum chemistry
programs (e.g., the ORCA manual has a large section
dealing with transition-state searches).
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3.7. Noncovalent Interactions

Noncovalent interactions refer to the difference in electronic
energies between a noncovalently interacting complex and
its isolated molecular fragments. Since, by definition, no
covalent bonds are changed upon association of the frag-
ments, noncovalent interaction (NCI) energies strongly
profit from error cancellation, even more so than conforma-
tional energies. However, at the same time, NCI energies
are often relatively small on an atom pair-wise basis.
Therefore the required accuracy and numerical precision are
often higher than for reaction energies. Moreover, NCI
energies may be of a similar magnitude to BSSE and SIE,
whose influence should therefore be carefully investigated.
Since London dispersion is usually a dominant contribution
to the binding in NCI complexes, the dispersion correction
is particularly important. While VV10 can have a slight edge
over D4 in exotic and charged systems due to its dependence
on the density, the inherently better C6 coefficients[18,175,176]

as well as the inclusion of three-body-terms in D4 (and D3-
ATM in PBEh-3c),[200,201] make D3-ATM and D4 more
accurate in highly polarizable, small-gap systems (e.g.,
buckyballs or graphene sheets, the L7 and S30L
benchmarks[202,203]).

We recommend the “3c” composite methods for efficient
calculations of noncovalent interaction energies since these
methods were designed for this purpose. r2SCAN-3c is the
best choice for most systems. PBEh-3c can be superior for
systems prone to SIE, which are typically highly polar.
However, the small basis of PBEh-3c can be problematic in
such cases due to BSSE and BSIE. Another composite
approach has been developed by Head-Gordon and co-
workers that combines the accurate B97M-V mGGA func-
tional with the def2-SVPD basis set and a tailor-made gCP-
derived correction termed DFT-C.[20] This approach pro-
vided NCI energies with an accuracy comparable to B97M-
V/QZ results in their tests. We demonstrate this approach in
the NCI example in Section 4.2.

Finally, we want to mention that due to the good error
cancellation for noncovalent interaction energies, even semi-
empirical quantum mechanical methods like GFN2-xTB or
PM6-D3H4[204,205] can provide reasonable results for inter-
actions including complex geometries at a fraction of the
computation cost of a DFT calculation. Combining these
very “low-cost” structures and frequencies with single-point
calculations at a composite-DFT level is perhaps the best
way to estimate noncovalent interaction energies for very
large systems with hundreds or thousands of atoms.

On the high end of the methodological spectrum,
ωB97M-V and ωB97X-V provide exceedingly accurate non-
covalent interaction energies if combined with a TZ or QZ
basis. Also, double hybrid functionals are very accurate and
robust for noncovalent interaction energies, but also more
basis set dependent and computationally demanding. Non-
covalent interactions in or with very small gap systems
(metals) are generally not well understood and require
special treatment.[206]

4. Examples

The examples presented in this section are selected based on
two considerations: Firstly, they should generally reflect our
basic arguments from the previous discussions concerning
the performance and suitability of functionals, basis sets,
and multi-level workflows for certain tasks. Secondly, the
examples furthermore show that a single example can never
be as representative and instructive as a large and well-
designed benchmark. Thus, it might be that, in some cases, a
certain low-level method/functional performs surprisingly
well, while a high-level approach shows a surprisingly large
deviation of a few kcalmol� 1. Such outliers showing
unsystematic behavior should be expected in any real-world
application due to the approximate nature of DFT and
efficient computational methods in general. We want to
reiterate here our statement from the introduction: The aim
of a best-practice protocol for DFT cannot be to get all the
numbers right to the last kcalmol� 1. Instead, the aim is to
avoid large and systematic errors by choosing robust and
greatly reliable methods and protocols adapted to the
physical reality of the studied systems.

4.1. Formation and Isomerization of [2.2]Paracyclophane

The dimerization of 3,6-dimethylidenecyclohexa-1,4-diene
to [2.2]paracyclophane and its subsequent isomerization to
[2.2]metacyclophane shown in Figure 6 represents a funda-
mental chemical transformation in organic chemistry. For
both reactions, experimentally determined standard heats of
formation can be used to derive the reaction enthalpies
(ΔHexptl.).

[207–209] Nevertheless, due to high uncertainties for
the 3,6-dimethylidenecyclohexa-1,4-diene monomer, the re-
action enthalpy of the dimerization amounts to � 41.9�
10.6 kcalmol� 1. This error estimate is much smaller for the
isomerization for which a reaction enthalpy of � 17.9�
2.9 kcalmol� 1 is derived (the numbers in Figure 6 have been
rounded to significant digits). To obtain more precise
reference values, electronic energies were calculated with
the high-level W1-F12[210] coupled cluster method and
combined with PBE0-D4/def2-TZVP zero-point vibrational
energy and enthalpy corrections. The W1-F12 values have a
much smaller estimated error window than the experiment
and are thus used as the reference in the following.
Geometries calculated on the same DFT level were used
throughout (Figure 6). The calculated reference reaction
enthalpies amount to � 48.7 and � 19.0 kcalmol� 1, and thus
lie within the large error bars of the experimental values.
Specifically, the dimerization reaction represents a challeng-
ing task for computational methods as two new strained
single bonds are formed and the product includes pro-
nounced intramolecular London dispersion as well as
exchange-correlation interactions between the close aro-
matic rings.

Accordingly, a large deviation is obtained at the
dispersion-uncorrected B3LYP/QZ level, which strongly
underestimates the reaction enthalpy (ΔHB3LYP/QZ =

� 25.2 kcalmol� 1). Including the D4 dispersion correction
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results in a much-improved value of ΔHB3LYP-D4/QZ=

� 43.4 kcalmol� 1. Nevertheless, the deviation from the W1-
F12 reference value still amounts to 5.1 kcalmol� 1.

An even better agreement with the reference value is
obtained by employing the PWPB95-D4/def2-QZVP dou-
ble-hybrid. The respective reaction enthalpy is calculated to
ΔHPWPB95-D4/QZ= � 48.5 kcalmol� 1 in near-perfect agreement
with the high-level W1-F12 reference.

The strain-reducing isomerization is less prone to
intrinsic functional errors, mainly due to beneficial error
cancellation resulting from the chemical similarity of
[2.2]paracyclophane and [2.2]metacyclophane. Accordingly,
all tested DFT methods are in reasonable agreement and
again, the PWPB95-D4/QZ result is in perfect agreement
with the high-level W1-F12 reference value. In both cases,
the energy to enthalpy corrections are small compared to
the relative electronic energies, only contributing by 4.2 and
0.5 kcalmol� 1, respectively.

4.2. Noncovalent Interactions

Noncovalent interactions (NCIs) play an important role in
chemistry, particularly in bio- and supramolecular
systems.[211,212] The theoretical description of supramolecular
complexes, and particularly the prediction of binding free
energies (ΔG), is therefore of considerable importance..
Since chemically relevant systems are often quite large and
also flexible, this task is challenging for computational
chemistry. To compare calculated values and experimental
data such as binding free energies measured in solution, the
thermostatistical corrections must also include the entropy
terms. This is specifically the case for bimolecular reactions.
The common approach to calculating binding free energies
for the formation of a NCI complex at a given temperature
is shown in Equation (1),[180]

DG ¼ DEþ DdGsolv þ DGmRRHO (1)

where ΔE refers to the difference of the total electronic gas-
phase energies, ΔδGsolv to the difference in solvation free
energies, and ΔGmRRHO corresponds to the difference in the
thermostatistical contributions. Depending on the details of

the complex in question (e.g., charged vs. neutral, H-bonds
vs. π–π stacking, solvent), these individual contributions may
vary significantly in size and can be of different sign.
Regardless, all three contributions to ΔG must be described
fairly precisely, as these are typically large and only partially
cancel each other to give the typically rather small exper-
imental ΔG values (� 1 to � 15 kcalmol� 1).[203]

We have recently proposed a workflow[64] to compute
the contributions to Equation (1), which is summarized in
Figure 7 and showcased here. The example complex is a +4

charged macrocyclic host (termed CBPQT4+) with bromo-
benzene as guest, whose ΔG was experimentally determined
to be � 5 kcalmol� 1 in aqueous solution.[213] The first
challenge is to model the molecular structure in solution at
finite temperature as realistically as possible. This is
accomplished by a conformer search using the automatic

Figure 6. Formation of [2.2]paracyclophane[207] from 3,6-dimethylidenecyclohexa-1,4-diene[208] and subsequent isomerization to [2.2]metacyclo-
phane.[209] All DFT reaction enthalpies employ PBE0-D4/def2-TZVP geometries, zero-point vibrational energy, and enthalpy corrections at
T=298.15 K. All values in kcalmol� 1. W1-F12 denotes a highly accurate wavefunction-theory-based reference level. QZ=def2-QZVP.

Figure 7. Suggested computational workflow to calculate the binding
free energy (ΔG) of bromobenzene to CBPQT(4+) in water. For details
on the CREST/CENSO workflow see Refs. [66, 67], and [64].
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CREST and CENSO approaches. In Ref. [53], we demon-
strated that the efficient semi-empirical extended tight-
binding method GFN2-xTB with a specially adapted implicit
solvation model (ALPB) is well-suited to conduct the initial
search efficiently. The main goal of the conformer search is
to find the energetically most favorable conformer, as this is
typically sufficient in the case of rather rigid molecules like
here. In contrast, if the host or guest structures are
significantly more flexible, it is advisable to consider other
low-lying conformers as well (note that already for this
relatively rigid system, we find twelve conformers in an
energy window of 2.5 kcalmol� 1). Contributions from other
conformers can become important if there are large changes
to the accessible configuration space upon complex forma-
tion, e.g., if a previously freely rotating alkyl chain is
conformationally locked in the complex. Since a further
discussion of this aspect is beyond the scope of this work, we
refer interested readers to Refs. [67] and [214].

For the final geometry optimization (and conveniently
also the final energy calculation, see below) of the most
stable conformer, we recommend the composite DFT
method r2SCAN-3c with DCOSMO-RS as implicit solvation
model. Alternatively, SMD, CPCM, and COSMO with
descending preference from first to last can be used. Note

that COSMO-RS cannot be used in geometry optimizations.
For the example discussed here, all four mentioned implicit
solvation models are suitable for the geometry optimization
as evident from Figure 8. Moreover, we note that also our
previous group-default for geometries, a TPSS-D3/def2-
TZVP optimization in the gas phase, gives accurate results
for this example and also in general. This is because results
are often not very sensitive to the employed structures, as
already discussed in Section 3.1.

The thermostatistical corrections ΔGmRRHO typically
provide a significant positive, repulsive contribution to the
free binding energy (blue bars in Figure 8). We calculate
them in the modified rigid-rotor harmonic oscillator
(mRRHO) approximation,[180] which includes a special treat-
ment for low-frequency modes, zero-point vibrational en-
ergy (ZPVE), and heat/volume work corrections, but
neglects the conformational entropy. This can be a good
approximation if the involved molecules are mostly rigid as
discussed above. Our default is to compute vibrational
frequencies with fast semi-empirical methods such as GFN2-
xTB, which is typically in good agreement with DFT
reference values (deviation �1–2 kcalmol� 1).[215] This re-
quires a suitable implicit solvation model like ALPB as well
as the single-point Hessian (SPH) ansatz,[162] which uses a

Figure 8. Breakdown of the contributions to the overall calculated ΔGcalc. with the final result represented by a black line, and experimental reference
given as gray dashed line with the shaded areas marking the estimated error range of �1.0 kcalmol� 1 and a more conservative error estimate of
�2.5 kcalmol� 1. Methods that do not reach the �1.0 kcalmol� 1 window but are within �2.5 kcalmol� 1 of the experimental reference value are
marked by yellow ticks. The leftmost bar represents the default approach (ΔE(r2SCAN-3c)+ΔδGsolv(COSMO-RS)+ΔGmRRHO(GFN2-xTB[ALPB]-
SPH) at r2SCAN-3c[DCOSMO-RS] geometry), while the other bars illustrate the effect of selected method variations as indicated at the top
(solvation, frequencies, electronic energy). Contributions that are not affected by these variations are depicted in brighter colors. B97M-V*=B97M-
V/def2-SVPD/DFT-C. B3LYP-NL utilizes VV10 with refitted parameters.[78] OHESS=GFN2-xTB[ALPB] frequencies with a re-optimized structure
instead of SPH with the DFT structure.
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biasing potential approach to create an artificial minimum at
the DFT structure. The comparison of the default GFN2-
xTB[ALPB]-SPH ΔGmRRHO contributions with correspond-
ing DFT values obtained in the gas phase at the TPSS-D3/
TZ level shown in Figure 8 confirms that the semi-empirical
approach yields practically identical results but in a few
minutes vs. several hours of computation time for the DFT
calculation. The alternative to SPH calculations, that is, a
full re-optimization of the geometry with GFN2-xTB (xtb-
keyword: -OHESS), yields slightly larger deviations from
the gas-phase DFT reference (see Figure 8), but the SPH
calculations benefit also from error cancellation due to the
use of an implicit solvation model. Hence, we generally
recommend calculating the frequencies with an implicit
solvation model and the SPH algorithm.

To calculate the binding energy (ΔE) contribution to
ΔG, our default protocol uses the r2SCAN-3c single-point
energy. In general, composite DFT methods such as
r2SCAN-3c or B97M-V/def2-SVPD/DFT-C are efficient
alternatives to numerically converged QZ basis set DFT
calculations and approximately 50 times faster for this
system size. As evident from Figure 8, r2SCAN-3c (default,
leftmost bar), B3LYP-3c, and B97M-V/DFT-C are all in
good agreement with the reference. However, it should be
noted that when the systems are highly charged or feature
exotic chemical interactions, it is generally advisable to
compare ΔE obtained with composite methods to a more
robust DFT/QZ calculation with an accurate hybrid (e.g.,
ωB97M-V) to be on the safe side. The remaining scatter of
typically �2 kcalmol� 1 for ΔE can usually be attributed in
about half to the errors of the density functional and in the
other half to the errors of the dispersion correction, which is
particularly important in NCI examples (see the discussion
in Section 3.7). For this example, VV10/NL is actually more
accurate in combination with B3LYP than D4 (see Fig-
ure 8). Concerning the basis set for the DFT energy
calculation, the residual basis set errors are smaller than the
intrinsic functional error with QZ basis sets (often already
with large TZ basis sets). However, this changes when the
basis set size is further reduced to DZ, as evident from the
hierarchy of B3LYP-based results summarized in Figure 8:
With the TZ basis, the B3LYP-D4 results change only
slightly compared to QZ (and also M06-2X provides very
good agreement with the TZ basis), whereas the DZ basis 6-
31G* with B3LYP-D3 exhibits strong BSSE-induced over-
binding. In contrast, the still widely used B3LYP/6-31G*
approach drastically underestimates the ΔE contribution
due to the lack of a dispersion correction, and thus the
resulting ΔG is off by more than 20 kcalmol� 1. This
demonstrates that the often-assumed error cancellation
between lacking London dispersion and BSSE in B3LYP/6-
31G* can not be trusted. To show how the shortcomings of
B3LYP/6-31G* can be fixed at essentially no extra cost, we
included the value obtained with the B3LYP-3c approach,
which combines B3LYP-D3 with a DZ basis (def2-SVP) and
the default gCP correction for BSSE (see Figure 8).
Evidently, this physically sound approach gives results very
close to B3LYP-D4/QZ at the same cost as B3LYP/6-31G*,

demonstrating once again that there is no reason for using
this outdated but still popular method.[11]

The most challenging contribution in the entire work-
flow is the solvation free energy contribution ΔGsolv,
especially for higher or negatively charged systems in polar,
H-bonding solvents. Here, an error range of 2–3 kcalmol� 1

is realistic due to a large ΔδGsolv value, which has an
estimated intrinsic error of 10–20%, even with the best
implicit solvation models available. Among them, according
to our experience, COSMO-RS yields the most reliable
results, while SMD can serve as a good alternative. In
contrast, purely electrostatic models like COSMO and
CPCM often perform worse because they neglect all non-
electrostatic terms, which are particularly important if the
solvent-accessible molecular surface changes during the
reaction (as is the case here, see Figure 8).

Due to fortuitous error cancellation effects, the free
binding energy produced by our standard workflow is
typically accurate to within 1–3 kcalmol� 1 from experimen-
tally determined values,[203] which is much less than the sum
of the maximum errors of the individual contributions would
suggest. Also, for this example, the calculated ΔG value of
� 5.4 kcalmol� 1 agrees very well with the experimentally
determined one for a wide range of method combinations.
Moreover, the presented workflow has the advantage of
being computationally quite fast, requiring only about
30 hours in total on a common eight-core CPU for the
shown example. This efficiency largely results from the use
of fast semi-empirical methods for the frequencies and
efficient mGGA-based composite DFT methods for geo-
metries and single-point energies. With such an efficient
multi-level scheme, reliable affinity predictions are possible
for much larger complexes with up to 200–300 atoms in
practical computation times. Finally, we want to mention
that the protocol shown in Figure 4 is fully automated via
the freely available CREST and CENSO programs, and can
thus be invoked via two simple UNIX commands as
described in the documentation.[216,217]

4.3. Optical Rotation of α-/β-D-Glucopyranose

The calculation of relative electronic energies is funda-
mental and can indirectly have a crucial impact on
property calculations when ensemble-averaged treatments
are used. This is the case for the example of computed
specific optical rotation values of a mixture of α- and β-
glucopyranose depicted in Figure 9.[218] The optical rota-
tion strongly depends on details of the molecular struc-
ture, and for flexible systems, on a reliable calculation of
the relevant populated conformers. Further, the values of
α- and β-D-glucopyranose isomers differ strongly from
each other, and thus the accurate description of the
thermodynamic equilibrium between both forms is cru-
cial.

As this example is typical for the complex decision-
making in computational chemistry protocols, the applica-
tion of the conceptual flowchart illustrated in Figure 2 will
be demonstrated in the following.
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First, the investigated molecules are typical organic
molecules that are known to bear no multi-reference
character. Accordingly, we employed the single-reference
electronic structure methods DFT in combination with semi-
empirical methods (for the initial conformer search).

Secondly, since the optical rotation value was meas-
ured in solution, a solvation model was applied in all
steps. In this case, the individual technical limitations (see
below) lead to the choice of DCOSMO-RS for the
geometry optimizations, COSMO for the optical rotation
value calculation, and COSMO-RS for the free energy
evaluation. COSMO-RS yields improved results for free
energy calculations but is not available for geometry
optimizations. Therefore, DCOSMO-RS, an improved
variant of COSMO, is applied in the geometry optimiza-
tion step. Since neither of the aforementioned is available
for the calculation of optical rotation values, the most
simple COSMO solvation model is the remaining choice.

Thirdly, we consider the role of conformers and
molecular flexibility. Evidently, this is of particular
importance here since α- and β-D-glucopyranose both
bear a pronounced structural flexibility due to the large
number of hydroxy substituents. Accordingly, a conforma-
tional search algorithm was used to identify the energeti-
cally lowest and thus relevant conformers. In this case, we
employed the CREST in combination with CENSO.While
CREST uses a fast semi-empirical level to find the low-
lying conformers, CENSO automatically refines their
energies and structures at a more accurate DFT level.

Next step is the choice of the functional. The r2SCAN-
3c composite method has proven to yield both, good
geometries and conformational free energies, as discussed

in section 3.4. Therefore, it is chosen here as the default
method. Further alternatives are evaluated and discussed
in detail below. Since no heavy elements are present in
the molecules, no relativistic treatment has to be consid-
ered. Also, the choice of the basis set is implicit since we
are using a “3c” method, which comes with a built-in basis
(def2-mTZVPP).

Finally, to optimize the ensembles, the CREST/CEN-
SO approach with the r2SCAN-3c[COSMO-RS]//r2SCAN-
3c[DCOSMO-RS] level was applied. Each ensemble
includes 15–18 relevant (low-lying) conformers per anom-
er, which are considered in the Boltzmann-averaging of
the target property. This target property is the specific
optical rotation value, whose calculation requires speci-
alized settings. It was found that for this task, the PBE
GGA functional with the augmented double-zeta basis set
def2-SVPD and the COSMO solvation model is sufficient.
Note that usually hybrid functionals are recommended for
this purpose, whereas PBE was chosen here for technical
reasons (origin-independence of OR calculation) after
careful testing against B3LYP results (see Ref. [218] for
details). The double-zeta quality basis set is sufficient as
the target property is generally not very basis set depend-
ent. However, it was shown that the augmentation with
diffuse functions is important to obtain reliable results.[218]

Even though this complex protocol involves many
specific decisions, as illustrated above, the perhaps most
obvious choice is that of the density functional for the
calculation of the electronic energies. The impact of this
choice on the final optical rotation values (via Boltzmann-
weighting) is discussed in the following.

The conformer ensembles obtained from the afore-
mentioned protocol are here re-ranked employing as an
example B3LYP method combinations (B3LYP/QZ,
B3LYP-D4/QZ, B3LYP/6-31G*, QZ=def2-QZVP), as
well as BP86[177, 220]-D4/QZ for the electronic energy
contribution. All others (zero-point vibrational energy,
thermostatistical, and solvation) were taken from the
preceding r2SCAN-3c calculation. In agreement with
results from benchmark studies, the r2SCAN-3c composite
method yields a very good energetic ranking, such that the
Boltzmann-weighted optical rotation value is in excellent
agreement with the experimental value of αexptl. =52.7 (all
values in the following in the usual degree dm(g/cm3)� 1

units). The same holds for the value that is based on a
B3LYP-D4/QZ ranking amounting to αB3LYP-D4/QZ =54.6.
For the plain B3LYP/QZ level, a worse result of αB3LYP/

QZ =41.2 is obtained, underlining the indispensability of a
London dispersion correction even for relatively small
molecules. The frequently used B3LYP/6-31G* approach
relies on a difficult-to-control error cancellation between
neglected London dispersion and BSSE. Nevertheless, the
contribution of α-D-glucopyranose is overestimated, re-
sulting in a relatively bad value of αB3LYP/6-31G* =61.7. The
pure GGA functional BP86-D4/QZ, which in general does
not perform well for conformational energies, yields an
even worse agreement with the experiment (αBP86-D4/QZ =

72.2). This example clearly demonstrates that the best
results are obtained if all physically and technically

Figure 9. Calculated, Boltzmann-weighted optical rotation for the
equilibrium of α- and β-D-glucopyranose in water at 20 °C. For each
anomer, 15–18 conformers are considered in the example. QZ=def2-
QZVP.
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relevant effects, such as London dispersion and basis-set
completeness, are properly taken into account. Further-
more, conformation-sensitive properties like optical rota-
tion can indirectly be used to assess the quality of
theoretical approximations.

4.4. Reaction Barriers

4.4.1. SN2 and Diels–Alder Reactions

The reliable calculation of reaction barriers is crucial for
the investigation of complex reaction mechanisms. They
allow for a deeper understanding of key reactions and
thus the computer-aided design of novel catalysts and
targeted tuning of chemical reactions.[221] SN2 and Diels–
Alder reactions represent well-known reaction types in
organic chemistry. Although these basic reaction types
seem comparably simple, their theoretical description still
requires a profound choice of the applied quantum
chemical method. Accurate reference electronic activation
energies (ΔE) are available for the [4+2] cycloaddition of
ethylene to cyclopentadiene (Figure 10a) and the nucleo-
philic attack of OH� to fluoromethane (Figure 10b).[27]

For optimal comparability, the original geometries at the
B3LYP/6-311G(2d,d,p) and QCISD/ MG3 were used. For
both examples, the BP86-D3/QZ (QZ=def2-QZVP)
GGA strongly underestimates the reaction barrier. Specif-
ically, the reaction barrier of the SN2 reaction is under-
estimated by 10.2 kcalmol� 1. Here, the pronounced
charge-delocalization in the transition state causes SIE-
related issues with the GGA method. The mGGA M06-L/
QZ yields much improved results, which may be attrib-
uted to its highly empirical character, with the functional
being also trained on reproducing barrier heights in
similar systems. Nevertheless, hybrid functionals such as
PBE0 are expected to yield improved results over the
(m)GGA methods by an enhanced physical description
and for both reactions. Accordingly, PBE0-D3/QZ yields
a significant improvement over BP86-D3/QZ, while M06-
2X is more accurate than M06-L. For M06-2X, the very
large amount of Fock exchange is beneficial in this special
case, reducing the SIE drastically. Nevertheless, func-
tionals with very high amounts of Fock exchange should
be used with caution (cf. Section 2.5). Finally, the range-
separated hybrid functionals ωB97X-V/QZ and ωB97M-
D4/QZ yield good results for both reactions, underlining
their robustness. ωB97X-V/QZ underestimates the SN2
reference reaction barrier only slightly by –1.8 kcalmol� 1.
It also yields comparably good agreement for the Diels–
Alder activation reaction, overestimating the reference
value by only 1.8 kcalmol� 1.

4.4.2. Hydrogen-Atom-Transfer Reaction

Another challenging example reaction is depicted in
Figure 11. Here, a hydrogen atom is transferred from a
molybdenum hydride complex TpMo(CO)3H (Tp=

trispyrazolylborate) to a Gomberg-type (tBu-4-C6H4)3C
*

radical.[222] The experimental free energy activation bar-
rier was determined as ΔG=19.2 kcalmol� 1. As discussed
in the previous sections and the electronic activation
energy examples, transition states with stretched covalent
bonds are prone to SIE, and thus a significant under-
estimation of the reaction barrier by (m)GGA methods is
expected. This especially applies to bonds involving
hydrogen, where the one-electron character is usually
large. Compared with the previous example, the desired
property is an activation free energy in solution, involving
additionally ZPVE, thermal, solvation, and entropy ef-
fects. Even though typical (m)GGA functionals should be
used with care regarding the computation of electronic
energies of transition states, they typically yield reason-
able geometries and thermostatistical corrections even for
such cases. Accordingly, the B97-3c composite method
was used for geometry optimization and frequency calcu-
lation in this example. For this reaction, the BP86-D4/QZ

Figure 10. Calculated gas-phase electronic reaction barriers (ΔE) for
selected functionals using the def2-QZVP basis set[27] for a) the Diels–
Alder cycloaddition of cyclopentadiene and ethylene (reference level:
accurate W1-F12 wavefunction theory at B3LYP/6-311G(2d,d,p) geome-
try), and b) the SN2 reaction of fluoromethane with a hydroxide anion
(reference level: very accurate W2-F12 wavefunction theory at QCISD/
MG3 geometry. MG3 is a modified 6-311+ +G(3d2f,2df,2p) basis set).
The light-gray area indicates the expected error range of the reference
method.
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functional used for the electronic energy underestimates
ΔG by almost 4 kcalmol� 1. This is even more pronounced
upon decreasing the basis set size from QZ to TZ to DZ
with a severe underestimation by over 7 kcalmol� 1 for
BP86-D4/DZ. With the B3LYP-D4 hybrid functional, ΔG
is slightly overestimated by 1.4 kcalmol� 1 yet close to the
chemical accuracy window of 1 kcalmol� 1. Nevertheless,
also for hybrid functionals, small basis sets result in an
underestimation of the reaction barrier which seems to be
rather sensitive here. The GGA functional even yields a
negative electronic activation energy of ΔE=

� 2.2 kcalmol� 1 (BP86-D4/QZ) and the transition state
does not represent a stationary point at the corresponding
potential energy surface. B3LYP-D4/QZ yields a small,
yet reasonable ΔE value of 3.0 kcalmol� 1. The small
electronic activation energy further underlines the impor-
tance of solvation, enthalpy, and free energy corrections
for a direct comparison to the experiment. The free
activation barrier is only well-described upon inclusion of
all relevant contributions (corrections computed at the
geometry optimization level B97-3c, solvation corrections
by COSMO-RS), leading to an increase of the barrier
from 3.0 (ΔE) to 7.2 (ΔH) and finally 20.6 kcalmol� 1

(ΔG).

5. Perspectives

The development of quantum chemistry over the last 20–
30 years, and foremost DFT, is a great success story. The
fact that nowadays, non-experts can do reasonable
quantum chemistry calculations for large, chemically
relevant systems on desktop computers is fantastic. The
influence of having widely available computational tools
on chemical research cannot be understated and will
presumably grow even larger in the future. We hope that
the guidelines and recommendations given in this work
help to increase the reliability of DFT-based quantum
chemistry predictions in the daily work of many chemists.

We strongly emphasize the aspect of finding the right
methodological compromise between computational ef-
fort (speed) and desired accuracy, while still obtaining as
close as possible “the right answer for the right reason”.
An often-overlooked aspect of this balance is that faster
theoretical methods enable a more extensive—and hence
more reliable—study of the system under investigation,
for example regarding its conformational behavior, molec-
ular dynamics, or explicit solvation issues. This is of
particular importance since, in our experience, errors and
deviations due to the neglect of important low-lying
conformers (ensemble properties vs. individual molecule
property) can be even larger than the errors in the
electronic energy by the functional or basis set approx-
imations. We thus want to motivate the reader to conduct
systematic conformational searches, explore the dynam-
ical behavior by means of MD simulations, consider
explicit solvation treatments more routinely with cur-
rently developed methods, and employ efficient multi-
level approaches for chemically realistic models.

However, also on the electronic structure side of the
problem, there are challenges ahead. Although many very
relevant chemical properties and problems nowadays can
be solved by standard DFT treatments as described here,
there are still problematic systems (e.g., open-shell tran-
sition metal complexes), open questions (e.g., how to treat
strongly solvated, highly charged systems), and problems
that are fundamentally difficult (entropy). For those
aspects, non-standard treatments and expert knowledge
are often required and should be involved.

In our opinion, the positive development of the basic
density functionals over the last decade has slowed down
and entered a kind of saturation regime in terms of the
“peak” accuracy achieved. Nevertheless, we note some
promising new developments that are already applicable
such as local hybrid functionals[223–225] or non-self-consis-
tent field treatments with cheap (m)GGAs to avoid
exchange-correlation-potential-driven errors.[226–228] Cur-
rently, machine-learned functionals[229–231] are still in their
infancy, but the potential of such extremely empirical
(and in no way “cheap”) methods could be high, at least
for organic and main-group compounds. In turn, DFT is
the method of choice for generating extremely large
databases with millions of compound entries for machine-
learning algorithms.[232–234] In this context, we still see a
great potential to make the best-performing functionals

Figure 11. Calculated contributions to the activation free energy ΔG for
a metal-centered hydrogen-transfer reaction based on hybrid (B3LYP-
D4) and GGA (BP86-D4) electronic energies (gray bars), B97-3c
thermostatistical contributions (yellow bars), and COSMO-RS solvation
and entropic corrections (blue bars). Black lines represent the sum of
all contributions yielding ΔG. DZ=def2-SVP; TZ=def2-TZVP;
QZ=def2-QZVPP basis set. The light-gray area indicates the expected
error-range of the reference method.
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(which are sufficiently accurate for about >90% of all
chemical applications) significantly faster but without
losing robustness or numerical accuracy. Central here are
accurate yet efficient approximations of the non-local
Fock exchange of hybrid or double-hybrid density func-
tionals and, for (m)GGA functionals, the numerical
integration of the semi-local exchange-correlation energy.
Because DFT is a rather general “first-principles” ap-
proach, we believe that most of our conclusions also hold
true for computations of (molecular) solids and liquids
under periodic boundary conditions, although we do not
explicitly consider these here. For more special cases like
low-band-gap systems, such as metallic solids, however,
things may change more drastically, such that a consid-
eration of special technical settings may be required to
avoid a fundamental breakdown of approximations.
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