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1Metabolic Engineering, VTT Technical Research Centre of Finland, Espoo, Finland, 2 Technologies for Health Promoting Foods, VTT Technical Research Centre of Finland,

Espoo, Finland, 3Metabolomics, VTT Technical Research Centre of Finland, Espoo, Finland, 4 Business Solutions Management, VTT Technical Research Centre of Finland,

Espoo, Finland

Abstract

Fungal secondary metabolites are a rich source of medically useful compounds due to their pharmaceutical and toxic
properties. Sequencing of fungal genomes has revealed numerous secondary metabolite gene clusters, yet products of
many of these biosynthetic pathways are unknown since the expression of the clustered genes usually remains silent in
normal laboratory conditions. Therefore, to discover new metabolites, it is important to find ways to induce the expression
of genes in these otherwise silent biosynthetic clusters. We discovered a novel secondary metabolite in Aspergillus nidulans
by predicting a biosynthetic gene cluster with genomic mining. A Zn(II)2Cys6–type transcription factor, PbcR, was identified,
and its role as a pathway-specific activator for the predicted gene cluster was demonstrated. Overexpression of pbcR
upregulated the transcription of seven genes in the identified cluster and led to the production of a diterpene compound,
which was characterized with GC/MS as ent-pimara-8(14),15-diene. A change in morphology was also observed in the strains
overexpressing pbcR. The activation of a cryptic gene cluster by overexpression of its putative Zn(II)2Cys6–type transcription
factor led to discovery of a novel secondary metabolite in Aspergillus nidulans. Quantitative real-time PCR and DNA array
analysis allowed us to predict the borders of the biosynthetic gene cluster. Furthermore, we identified a novel fungal
pimaradiene cyclase gene as well as genes encoding 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase and
a geranylgeranyl pyrophosphate (GGPP) synthase. None of these genes have been previously implicated in the biosynthesis
of terpenes in Aspergillus nidulans. These results identify the first Aspergillus nidulans diterpene gene cluster and suggest
a biosynthetic pathway for ent-pimara-8(14),15-diene.
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Introduction

Filamentous fungi produce various bioactive compounds as

secondary metabolites [1,2]. The genes encoding consecutive steps

in a biosynthetic pathway of secondary metabolites are often

clustered together on the chromosomes [3]. The clustering of such

genes, along with multiple genome sequencing projects [4,5], has

facilitated the prediction of new biosynthetic pathways using

bioinformatics. Since secondary metabolites are not crucial for the

survival of the organism, their production usually remains silent in

normal laboratory conditions [1,6]. As a result, for most cases in

which pathways are discovered through bioinformatic analysis, the

products remain undetected [1,4–7]. The role of secondary

metabolites for the producing organism is often unclear. They

are most likely used as chemical signals in communication and

defense to enhance the survival of the organism in its ecological

niche [8]. For example, activated secondary metabolite production

in Aspergillus nidulans has been shown to protect the fungus from

fungivory [9]. In addition, for many pathogenic fungi, the

virulence that has been hypothesized to protect the fungus in an

environment with a diverse array of competing organisms [10] is

often mediated by secondary metabolites. Nevertheless, in many

cases the biological importance of secondary metabolites for fungi

is elusive, and hence the conditions triggering the metabolic

biosynthesis are unknown [8].

A variety of methods have been used to uncover the products of

silent secondary metabolite clusters in filamentous fungi [3,11].

One approach has been to manipulate the transcriptional control

of the genes involved. Transcriptional regulation of fungal

biosynthetic genes for many secondary metabolites is carried out

by narrow and broad domain transcription factors [12]. AreA,

CreA and PacC are well-characterized broad domain regulators in

Aspergillus nidulans, where they regulate the production of secondary

metabolites in response to changes in the environmental nitrogen,

carbon and pH, respectively [8]. Another global regulator of
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secondary metabolite gene clusters, LaeA (Loss of AflR Expres-

sion), was identified in a screen for Aspergillus nidulans mutants

unable to produce sterigmatocystin [12]. AflR, the positive

regulator of aflatoxin and sterigmatocystin biosynthesis, is not

expressed in laeA mutants. Expression of also other genes in the

sterigmatocystin and penicillin gene clusters is downregulated in

the laeA deletion strain [13]. The overexpression of laeA instead

activates multiple putative secondary metabolite clusters. Activa-

tion of a biosynthetic gene cluster of previously unknown product

in Aspergillus nidulans, terrequinone A, was identified in a strain

overexpressing laeA [13,14]. LaeA has been implicated to function

in chromatin remodeling in the subtelomeric regions of fungal

chromosomes, where many secondary metabolite clusters are

located [15].

In addition to broad domain transcription factors, narrow

pathway-specific regulators also take part in the activation of

cryptic secondary metabolite gene clusters [16]. Binuclear zinc

cluster (Zn(II)2Cys6) proteins are a group of pathway-specific

transcription factors found only in fungi [17]. AflR, the regulator

necessary for aflatoxin and sterigmatocystin biosynthetic gene

activation, is a characteristic binuclear zinc cluster protein [18].

AflR is encoded within the sterigmatocystin gene cluster, and it

binds to 59-TCG(N5)GCA motifs found in most promoters of

sterigmatocystin/aflatoxin biosynthetic genes [12,18]. Structurally,

the Zn(II)2Cys6–type transcription factors have a well-conserved

cysteine rich domain that binds two zinc atoms. This DNA

binding domain recognizes CGG triplets in varying orientations

within the promoter region of the target genes [17]. Zn(II)2Cys6–

type proteins are typically encoded within the biosynthetic gene

cluster for which they positively regulate expression, as is the case

for Aspergillus nidulans polyketide asperfuranone and PKS-NRPS

hybrid metabolites aspyridone A and B [19,20]. Likewise in

Fusarium verticillioides, the overexpression of the Zn(II)2Cys6–type

transcription factor residing in the fumonisin gene cluster is able to

activate fumonisin production [21].

In Aspergillus nidulans, the discovery of unknown products by

using transcriptional upregulation of cryptic gene clusters has been

shown to be a potential method for finding novel bioactive

metabolites [13]. One such class of compounds, the terpenes, is of

particular interest because of their many bioactive and pharma-

ceutical properties [22,23]. Many pharmaceutical terpenoids have

been isolated from plants used in traditional medicine [24,25], but

there is increasing interest toward terpenoids produced by fungi

[26,27].

The objective of the present study was to determine the terpene

producing capability of Aspergillus nidulans. Earlier reports suggest

the existence of at least one terpene gene cluster in Aspergillus

nidulans [13]. Here we describe the identification and activation of

a novel gene cluster that produces the diterpene ent-pimara-

8(14),15-diene. We show that genomic mining in the prediction of

novel secondary metabolite clusters, and the subsequent transcrip-

tional activation of the clusters, serve as a tool for discovering new

metabolites and biosynthetic pathways.

Results

Genomic Mining Reveals Two Putative Diterpene Clusters
in Aspergillus Nidulans
Despite earlier published work suggesting that the Aspergillus

nidulans genome has only one terpene cluster [13], our analysis

instead revealed multiple terpene synthase genes potentially

located in biosynthetic clusters. The genes with ‘terpenoid

synthase’ or ‘terpenoid cyclase’ InterPro [28] domains were

searched from the genome of Aspergillus nidulans FGSC A4 [4]. We

found 26 such genes, and this group of genes was analyzed by

using BLASTp [29] homology search to find putative diterpene

synthase homologs. Three ORFs, encoded by locus AN1594,

AN3252 and AN9314, showed significant homology to known ent-

kaurene synthases, whereas the AN6810 sequence shared

sequence homology with fungal fusicoccadiene synthase [30].

The genomic neighborhood of these four diterpene synthase

homologs was screened for zinc binuclear cluster (Zn(II)2Cys6)

proteins, because these are known to positively regulate the genes

within the cluster that encodes them [17–21]. We also searched for

genes encoding putative cytochrome P450 monooxygenases, since

these enzymes are many times involved in terpenoid biosynthesis

[31]. We found two gene clusters containing all three genes

encoding putative terpene synthase, cytochrome P450, and

Zn(II)2Cys6 protein. Both clusters were selected for further

analysis. The selected clusters also contained other putative

secondary metabolism pathway genes [6], including dehydro-

genases, oxidoreductases, and terpene precursor synthase genes.

Overexpression of pbcR Enhances the Transcription of
Seven Diterpene Cluster Genes in Aspergillus Nidulans
We discovered a transcriptional regulator, which we named

Pimaradiene Biosynthetic Cluster Regulator (PbcR). PbcR is

encoded by the Aspergillus nidulans chromosome VII locus

AN1599.4 (GenBank accession number: CBF85190.1), and was

cloned as a genomic construct with Aspergillus nidulans gpdA

promoter and transformed into FGSC A4 wild type strain by

random integration. Three independent transformant strains

oe:AN1599_9, oe:AN1599_42 and oe:AN1599-_45 were obtained

from two different transformations. The presence of the over-

expression construct was verified by PCR (Figure S1). FGSC A4

and the transformant strains were grown in YES medium, and the

expression levels of pbcR (AN1599.4), putative terpene synthase

(AN1594.4) and cytochrome P450 (AN1598.4) genes were

analyzed by using quantitative real-time PCR (qPCR). As

expected, the transcription of pbcR was clearly elevated in all

three transformant strains compared to FGSC A4; with qPCR

analysis demonstrating an 86-fold, 109-fold and 79-fold increase in

expression in oe:AN1599_9, oe:AN1599_42 and oe:AN1599-_45,

respectively (Figure 1A). The different strain-specific levels of pbcR

overexpression may have been due to a number of factors

including the possibility of overexpression constructs integrating

into different portions of the genome or varying pbcR copy

numbers. For putative terpene synthase gene we observed a 9,000

to 11,000-fold increase in expression in the three transformant

strains. For putative cytochrome P450 we observed a 2,400 to

4,500-fold increase in expression (Figure 1A). These results suggest

that PbcR is a positive regulator for the diterpene metabolite

cluster genes. The strain with the highest transcription of pbcR,

oe:AN1599_42 was selected for further analysis and named

oe:PbcR.

The putative transcriptional regulator gene at chromosome VI

locus AN3250.4 (GenBank accession number: CBF83099.1) was

also cloned and overexpressed in FGSC A4. Two isolated

transformant strains oe:AN3250_9 and oe:AN3250_11 were

analyzed by using qPCR. Although we detected a 431-fold and

2680-fold increase in expression of the putative transcription factor

in oe:AN3250_9 and oe:AN3250_11, respectively, no significant

upregulation of the two target genes for this cluster was observed

(Figure 1B). In sum, these results suggest that in contrast to pbcR,

AN3250.4 overexpression alone does not activate its own putative

terpene cluster. However, regulation of AN3250.4 activity at the

post-translational level cannot be ruled out.

Aspergillus nidulans Diterpene Gene Cluster
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To define the borders of the biosynthetic cluster, expression of

13 putative cluster genes was analyzed by using qPCR in oe:PbcR

and FGSC A4. The expression of these genes in the wild type

strain was very low, whereas a massive upregulation of seven

adjacent genes was seen in oe:PbcR (Figure 2). The highly

upregulated genes were homologous to GGPP synthase;

AN1592.4 (307,000-fold), HMG-CoA reductase; AN1593.4

(12,000-fold), diterpene synthase; AN1594.4 (21,700-fold), trans-

lation elongation factor c; AN1595.4 (19,000-fold), short-chain

dehydrogenase; AN1596.4 (420-fold), hypothetical protein with

some similarity to methyltransferase; AN1597.4 (310-fold), cyto-

chrome P450; AN1598.4 (8,400-fold) and Zn(II)2Cys6 –type

transcription factor; AN1599.4 (50-fold). Expression levels of five

other putative cluster genes were not as significantly altered by the

overexpression of pbcR (Figure 2). Taken together, these data

suggest that the predicted diterpene cluster consists of eight

adjacent genes on Aspergillus nidulans chromosome VII in the region

AN1592.4 to AN1599.4.

Figure 1. Identification of putative diterpene cluster transcription factor in Aspergillus nidulans. Two putative diterpene clusters in
Aspergillus nidulans were identified by using genomic mining of public databases. Putative transcription factors for the identified clusters were cloned
as genomic constructs and overexpressed in Aspergillus nidulans FGSC A4. The expression levels of the transcription factors as well as two predicted
target genes from each cluster were analyzed by using qPCR. A) Overexpression of pbcR (AN1599.4) activates transcription of terpene synthase
(AN1594.4) and cytochrome P450 (AN1598.4) in three Aspergillus nidulans transformant strains (oe:AN1599_9, oe:AN1599_42 and oe:AN1599_45). B)
Overexpression of the putative transcription factor AN3250.4 fails to alter the transcription of putative terpene synthase (AN3252.4) or cytochrome
P450 (AN3253.4) in two Aspergillus nidulans transformant strains (oe:AN3250_9 and oe:AN3250_11).
doi:10.1371/journal.pone.0035450.g001

Aspergillus nidulans Diterpene Gene Cluster
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Overexpression of pbcR Leads to Widespread Changes in
the Transcriptome of Aspergillus Nidulans
DNA array analysis was used to analyze the transcriptome of

both oe:PbcR and FGSC A4. Since most secondary metabolites are

produced after the fungus has completed its initial growth phase

[32], samples for the expression analysis were taken at the early

exponential growth phase when secondary metabolite production

for the wild type fungus was expected to be very low. Both strains

were grown in YES medium. The eight terpene cluster genes

identified by qPCR also displayed similar enhanced expression

when assessed by using DNA array analysis. In fact, when

compared with FGSC A4, the most abundant transcripts in

oe:PbcR were the seven PbcR target genes of the predicted terpene

cluster, including: AN1592.4 (673-fold), AN1593.4 (439-fold),

AN1594.4 (785-fold), AN1595.4 (513-fold), AN1596.4 (41-fold),

AN1597.4 (58-fold) and AN1598.4 (156-fold). The DNA array

data also confirmed the overexpression of pbcR (4-fold) compared

to FGSC A4 (Figure 2, Table S1).

In addition to the predicted target cluster genes, the expression

of a number of secondary metabolite synthase genes was altered in

oe:PbcR. The polyketide synthase participating in penicillin

biosynthesis, acvA (AN2621.4), was 5.7-fold downregulated in

oe:PbcR (Figure 3A, Table S2). Additionally three other putative

polyketide synthase genes; AN0523.4 (17.8-fold) (Figure 3B),

AN2032.4 (3.3-fold) and AN2035.4 (2.5-fold) (Figure 3C) were

downregulated in oe:PbcR. Interestingly, many genes adjacent to

these synthases were also downregulated, suggesting that the

penicillin and two putative polyketide gene clusters are down-

regulated in the strain overexpressing pbcR (Figure 3 A–C). One

putative nonribosomal peptide cluster was also dowregulated in

oe:PbcR (Figure 3D). A significant decrease in expression was seen

for the two nonribosomal peptide synthases (NRPS) of this cluster;

AN3495.4 (285-fold) and AN3496.4 (167-fold) (Figure 3D). These

data demonstrate that activation of the terpene cluster in oe:PbcR

is associated with changes in the transcriptome of Aspergillus

nidulans including downregulation of four secondary metabolite

clusters. Chromosomal locations of the synthases from this study

are shown in Figure S2.

Activation of the Terpene Cluster Results in ent-pimara-
8(14),15-diene Biosynthesis in Aspergillus Nidulans
To identify potential compounds produced in oe:PbcR, we

analyzed the strains by using solid phase microextraction gas

chromatography mass spectrometry (SPME-GC/MS). This ana-

lytical method allows identification of volatile and semi-volatile

terpenoids [33]. Oe:PbcR and FGSC A4 were grown in complete

medium for 44 hours and subjected to SPME-GC/MS analysis

without further manipulation. An accumulation of an oe:PbcR-

specific product was observed (Figure 4A). The mass spectrum for

the product peak matched the spectral library compound ent-

pimara-8(14),15-diene (Figure 4B). Also, the calculated retention

index for identified ent-pimara-8(14),15-diene was 1943, which is

in accordance with previous literature values of 1939–1963 [34–

37]. To determine if non-volatile compounds were produced by

oe:PbcR, both the cells and the media from fungal cultures were

extracted with hexane:ethyl acetate (1:1) and polar phase extracts

subjected to GC/MS-analysis. The data from the cell extracts

were consistent with the SPME-GC/MS analysis (Figure 4A, C)

Figure 2. Expression analysis defines the borders of the PbcR activated diterpene cluster in Aspergillus nidulans. Transcription factor
pbcR was overexpressed in Aspergillus nidulans strain FGSC A4 (oe:PbcR). FGSC A4 and oe:PbcR were grown to their early exponential growth phase in
YES-medium. In both strains, the expression levels of 13 genes in the predicted cluster area were measured with qPCR. The fold-change in expression
was calculated (white bars). Error bars represent standard error of the mean (SEM, n= 9) for three individual samples with three technical replicates
each. The transcriptome of the pbcR overexpression strain and the FGSC A4 wild type strain was analyzed by using DNA array and fold differences in
expression calculated (black bars). Error bars represent SEM (n= 12) for two cultures with three replicates each; and, each array included duplicate
probes. DNA array data represent the comparison of the mean values using confidentiality level 99% with p-values # 0.01 in student’s t-test. Both
qPCR as well as DNA array analysis show that overexpression of pbcR (AN1599.4) leads to significant upregulation of seven genes in the predicted
diterpene cluster area. Predicted genes in the cluster are GGPP-synthase (AN1592.4), HMG-CoA reductase (AN1593.4), diterpene synthase (AN1594.4),
elongation factor 1-gamma (AN1595.4), short-chain dehydrogenase (AN1596.4), conserved hypothetical protein (AN1597.4), cytochrome P450
(AN1598.4), and Zn(II)2Cys6–type transcriptional regulator pbcR (AN1599.4). Chromosomal area has been adapted from Aspergillus Genome Database
[19] showing 27 kb from Aspergillus nidulans FGSC A4 chromosome VII positions 1275000 to 1302000 (upregulated genes highlighted in gray).
doi:10.1371/journal.pone.0035450.g002

Aspergillus nidulans Diterpene Gene Cluster
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and the oe:PbcR-specific product was identified as ent-pimara-

8(14),15-diene according to its mass spectrum (data not shown).

No significant product peaks were detected in the extracts from

growth medium (data not shown) suggesting that the ent-pimara-

8,14(15)-diene is not secreted. Taken together this data demon-

strates that an activation of a biosynthetic pathway for a diterpene

compound occurs in oe:PbcR.

Reduced Conidia and Increased Fruiting Body Formation
in Oe:PbcR
Morphological changes were observed in oe:PbcR compared

with FGSC A4. Specifically, oe:PbcR cultures typically grew slower

than the wild-type strain (data not shown); and, when grown on

plates, oe:PbcR appeared yellow whereas FGSC A4 were green

(Figure 5A). To characterize the morphological phenotype further,

microscopic analysis of the plate cultures was performed, and the

conidia were quantified. Sexual fruiting body (cleistothecium) was

the predominant structure in oe:PbcR and the fruiting bodies were

also larger (Figure 5). Hülle cell formation was unaffected in

oe:PbcR, and the sterigmata of the conidiophores in oe:PbcR

appeared darker compared to FGSC A4 (Figure 5B). Also, the

number of asexual spores (conidia) was reduced 6-fold in oe:PbcR

compared to FGSC A4 (Figure 6).

The Sequence Analysis of Terpene Synthase Orthologs
Suggests a Bifunctional Role for AN1594.4
The putative terpene synthase gene orthologs were identified

using BLASTp search of public sequence databases. AN1594.4

(accession XP_659198.1) showed sequence homology to known

bifunctional terpene synthases. Although overall sequence homol-

ogy was relatively low (Table 1), as is typical for terpene synthase

genes generally [38], we identified conserved motifs required for

Figure 3. Overexpression of pbcR leads to downregulation of four secondary metabolite clusters in Aspergillus nidulans. Diterpene
cluster transcription factor pbcR was overexpressed in Aspergillus nidulans strain FGSC A4 (oe:PbcR). FGSC A4 and oe:PbcR were grown to their early
exponential growth phase in YES-medium. The transcriptome of the oe:PbcR and FGSC A4 was analyzed by using DNA array and fold differences in
expression calculated. DNA array data represent the comparison of the mean values using confidentiality level 99% with p-values# 0.01 in student’s
t-test. Downregulation of four putative gene clusters was seen in oe:PbcR. A) Shown are expression ratios (oe:PbcR to FGSC A4) for genes on
chromosome VII in the region AN2030.4 to AN2040.4 (black bars) encoding a putative polyketide gene cluster with polyketide synthase genes
AN2032.4 and AN2035.4 (asterisks). B) Shown are expression ratios (oe:PbcR to FGSC A4) for genes on chromosome VIII in the region AN0523.4 to
AN0527.4 (black bars) encoding a putative polyketide gene cluster with polyketide synthase gene AN0523.4 (asterisk). C) Shown are expression ratios
(oe:PbcR to FGSC A4) for genes on chromosome VI in the region AN2621.4 to AN2623.4 (black bars) encoding a penicillin gene cluster with genes
acvA (AN2621.4), ipnA (AN2622.4) and aatA (AN2623.4). D) Shown are expression ratios (oe:PbcR to FGSC A4) for genes on chromosome II in the
region AN3490.4 to AN3496.4 (black bars) encoding a putative nonribosomal peptide cluster with two nonribosomal peptide synthases AN3495.4
and AN3496.4 (asterisks).
doi:10.1371/journal.pone.0035450.g003

Aspergillus nidulans Diterpene Gene Cluster
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Figure 4. Overexpression of pbcR leads to production of ent-pimara-8(14),15-diene in Aspergillus nidulans. Diterpene cluster
transcription factor pbcR was overexpressed in Aspergillus nidulans FGSC A4 (oe:PbcR). The product composition of the oe:PbcR and wild type strain

Aspergillus nidulans Diterpene Gene Cluster
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the two cyclization steps carried out by known bifunctional terpene

synthases [39] (Figure 7A). A-type cyclization motif, VYDTAW,

was identified at position 34–39 and B-type cyclization motif,

DEFME, at position 664–668. In addition, the position 328–331

of AN1594.4 encodes a DADD motif, which is conserved among

diterpene synthases [38]. A phylogenetic tree was constructed

using ClustalW2 multiple alignment analysis of AN1594.4 and the

orthologous genes from other fungi, as well as known pimaradiene

synthase genes from Oryza sativa [40]. The analysis demonstrates

that AN1594.4 is related to fungal bifunctional diterpene

synthases. Although there are no annotated fungal pimaradiene

synthases, AN1594.4 is nonetheless distantly related to known

pimaradiene synthases from plants (Figure 7B). The data from the

sequence analysis supports the conclusion that AN1594.4 encodes

a bifunctional diterpene synthase.

Discussion

Here we show that the Zn(II)2Cys6-type transcriptional regulator

PbcR (Pimaradiene Biosynthetic Cluster Regulator) activates

a normally silent secondary metabolite gene cluster in Aspergillus

nidulans. Upregulation of eight genes in the biosynthetic gene cluster

results in ent-pimara-8(14),15-diene production in a strain over-

expressing pbcR (oe:PbcR). To our knowledge, ent-pimara-8(14),15-

dienehasnot been reported as anatural product inAspergillus nidulans.

Previously unknown genes coding for fungal ent-pimara-8(14),15-

diene synthase, HMG-CoA reductase, and GGPP-synthase are also

present in the cluster we describe. We observed morphological

changes in the pbcR overexpression strains: the number of asexual

spores (conidia) is reduced, and the formation and size of sexual

fruiting bodies (cleistothecia) is elevated.

The approach we used has been used previously to identify

products of other silent metabolite clusters in Aspergillus nidulans.

For example, the biosynthesis of polyketide asperfuranone and

PKS-NRPS hybrid metabolites aspyridone A and B was activated

with the overexpression of their pathway-specific transcription

factors [19,20]. The pimaradiene gene cluster upregulated in

oe:PbcR was previously shown to be one of the putative secondary

metabolite clusters upregulated in a laeA-overexpressing Aspergillus

nidulans (OE::laeA) [13]. Bok et al. [13] demonstrated the

upregulation of putative short-chain dehydrogenase (AN1596),

cytochrome P450 (AN1598), GGPP-synthase (AN1592), HMG-

CoA reductase (AN1593) and terpene synthase (AN1594) in

OE::laeA. The expression levels of the genes in the pimaradiene

gene cluster are different in OE::laeA compared to what we

observe for oe:PbcR. For example, in OE::laeA, the expression

levels of GGPP-synthase, HMG-CoA reductase and terpene

synthase genes were fairly low; and, three cluster genes showed

no increase in expression [13]. In contrast, highly elevated

expression of eight cluster genes was seen in oe:PbcR, and the

expression of laeA itself was not changed. This suggests that the

activation of the diterpene cluster we identified can be differen-

tially regulated by both PbcR and also LaeA. Since multiple

secondary metabolite clusters are activated in the laeA-over-

expressing strain [13], the upregulation of the putative short-chain

dehydrogenase and cytochrome P450 genes of the pimaradiene

cluster might be needed for modification of secondary metabolites,

rather than ent-pimara-8(14),15-diene production per se. It would

be interesting to investigate if ent-pimara-8(14),15-diene is pro-

duced in the laeA-overexpressing strain.

We identified putative genes for HMG-CoA reductase and

GGPP-synthase (AN1593.4; GenBank accession number

CBF85179.1 and AN1592.4; GenBank accession number

CBF85177.1). These genes have not been previously implicated

in isoprenoid precursor biosynthesis in Aspergillus nidulans. Other

studies have identified HMG-CoA reductase (AN3817.2) and

GGPP-synthase (AN0654.2, AN2407.2 and AN8143.2) homologs

that have been linked to terpenoid biosynthesis in Aspergillus

nidulans [41–43]. However, HMG-CoA reductase and GGPP-

synthase identified in this study may specifically provide precursors

for the production of ent-pimara-8(14),15-diene. The same

phenomenon has been suggested for gibberellin biosynthesis in

Gibberella fujikuroi [44], where a number of precursor synthase genes

function separately in different secondary metabolite pathways.

The clustering of the HMG-CoA reductase (AN1593.4) and

GGPP-synthase (AN1592.4) with the pimaradiene synthase

(AN1594.4) may indicate a need for high precursor production

required for the biosynthesis of this particular compound.

Although there are some reports of fungal pimaradiene

compounds [45,46], no specific pimaradiene synthases have been

identified in fungi. The diterpene synthase identified in our study

(AN1594.4; GenBank accession number CBF85181.1) showed

similarity to the known fungal ent-kaurene synthases GfCPS/KS

and PfCPS/KS from Gibberella fujikuroi and Phaeosphaeria sp.,

respectively. These terpene synthases catalyze two sequential

cyclization steps from GGPP to ent-kaurene via ent-copalyl

diphosphate intermediate [47,48]. Phomopsis amygdali phyllocla-

dan-16a-ol synthase PaDC1 is also a bifunctional terpene synthase

having three conserved amino acid domains responsible for the

different cyclisation reactions [39]. The diterpene synthase

AN1594.4 contains all of these three conserved sequences

suggesting the ability to perform two cyclization reactions.

Based on the data presented here, we suggest a model for ent-

pimara-8(14),15-diene biosynthesis in Aspergillus nidulans. Specifi-

cally, HMG-CoA reductase (AN1593.4) functions in the mevalo-

nate pathway, which produces isoprenoid precursors. GGPP

synthase (AN1592.4) is needed in the formation of GGPP, the

precursor for diterpenes. Lastly, the two cyclization steps needed

to convert GGPP to ent-pimara-8(14),15-diene is carried out by

pimaradiene synthase (AN1594.4) (Figure 8).

Our analysis revealed four additional genes upregulated in the

Aspergillus nidulans strain producing pimaradiene. These putative

genes encode translation elongation factor 1 gamma (AN1595.4;

GenBank accession number CBF85182.1), short-chain dehydro-

genase (AN1596.4; GenBank accession number CBF85184.1),

hypothetical protein with some similarity to a methyltransferase

(AN1597.4; GenBank accession number CBF85186.1), and

a cytochrome P450 (AN1598.4; GenBank accession number

CBF85188.1). The putative role of these genes in ent-pimara-

8(14),15-diene biosynthesis is unclear. Cytochrome P450

(AN1598.4), short-chain dehydrogenase (AN1596.4) and methyl-

transferase (AN1597.4) typically function as decorative enzymes in

secondary metabolite biosyntheses [2]. For example, cytochrome

(FGSC A4) was analyzed by using gas chromatography mass spectrometry (GC/MS). Fungal cultures were grown to their exponential growth phase in
YES medium. A) Cultures were analyzed for the production of diterpene compounds using solid phase micro extraction (SPME)-GC/MS analysis as
described in Materials and Methods. One prominent peak (labeled A) was observed in the chromatogram of oe:PbcR, but no products were detected
in FGSC A4. B) Product peak A was identified as ent-pimara-8(14),15-diene by comparison of its mass spectrum to Palisade Complete 600K Mass
spectral library compounds. C) Cells from oe:PbcR and FGSC A4 were extracted with hexane:ethyl acetate (1:1) and extracts subjected to GC/MS. As
with SPME-GC/MS, one prominent peak (A) was detected. Product peak A was again identified as ent-pimara-8(14),15-diene (data not shown).
doi:10.1371/journal.pone.0035450.g004
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P450s add oxygen to the basic terpenoid backbone. This enables

chemical modifications of the created hydroxyl group, allowing the

formation of a variety of different compounds from the same

precursor molecule [31]. Despite the fact that we could not detect

the oxidized form of ent-pimara-8(14),15-diene in our assay, it is

possible that in biological conditions the compound is oxidized to

ent-pimara-8(14),15-dien-19-oic acid, which is a bioactive diter-

pene compound predominant in many plant extracts [49,50].

Figure 5. Changes in morphology can be seen in Aspergillus nidulans FGSC A4 overexpressing pbcR (oe:PbcR). Pimaradiene gene cluster
regulator pbcR was overexpressed in Aspergillus nidulans FGSC A4 (oe:PbcR). Both wild type FGSC A4 and oe:PbcR were grown on potato dextrose
plates for 3 days and their morphology studied by microscopy. A) Fewer conidiophores (arrows) are seen in oe:PbcR compared to FGSC A4.
Conidiophore structures in both strains were verified at higher magnification (data not shown). Enhanced sexual fruiting body (cleistothecium, dotted
circle) formation can be seen in oe:PbcR three-day plate cultures. B) The size of cleistothecia in oe:PbcR is increased compared to FGSC A4 (upper
panels), whereas Hülle cell formation around the fruiting body is similar in both strains. The sterigmata of conidiophores in oe:PbcR are darker, and
less spores are formed at the tips of the conidiophores than in wild type Aspergillus nidulans (lower panels).
doi:10.1371/journal.pone.0035450.g005
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The expression of two genes (AN1590.4 and AN1591.4) were

slightly upregulated in oe:PbcR. The expression of these genes was

much lower compared to the other putative cluster genes. We

identified orthologs of all eight genes included in our cluster in

Neosartorya fischeri. There, the genes are also adjacent to each other

in a putative cluster (Figure S3). But, orthologs of AN1590.4 and

AN1591.4 are not present or near this cluster region in N. fischeri.

Thus, we did not include these genes in our putative cluster.

However, the possibility that AN1590.4 and AN1591.4 would be

under the regulation of PbcR cannot be ruled out.

An increase in fruiting body formation and a reduction in the

number of conidia were observed in all pbcR transformants. As the

integrations were random in nature, it is possible that the

phenotype in the transformants is due to insertional mutagenesis.

The velvet family of regulators (veA, velB, vosA, and velC)

participates in sexual fruiting body formation in Aspergillus nidulans

[51,52], whereas other genes (e.g., brlA, abaA, wetA, flbA, fluG, and

fadA) [53,54] are implicated in asexual conidiation. All of these

genes were similarly expressed in both FGSC A4 and oe:PbcR,

suggesting they are not regulated by PbcR (data not shown).

Siderophore iron metabolism has also been linked to Aspergillus

nidulans sexual development [55]. Eisendle et al. [55] showed that

the absence of intracellular siderophore impairs both sexual and

asexual reproduction in Aspergillus nidulans. The same has been

reported for ascomycetes Cochliobolus heterostrophus and Gibberella

zeae, where intracellular siderophores are essential for sexual

development [56]. The expression levels of siderophore trans-

porter genes mirA and mirB [57] were upregulated in oe:PbcR. In

addition, orthologs of genes implicated in SreA-regulated iron

metabolism in Aspergillus fumigatus [58] were upregulated in oe:PbcR

(Table S3). It is tempting to speculate that the sexual phenotype

seen in oe:PbcR is, at least in part, due to altered regulation of

siderophore metabolism genes. Identifying specific genes involved

in the altered morphogenesis is beyond the scope of this work

given that Aspergillus nidulans could conceivably possess as many as

2000 genes that function in some aspect of morphogenesis and

development [59].

Overexpression of pbcR led to the activation of a pimaradiene

gene cluster in Aspergillus nidulans FGSC A4. There may be as

many as 49 putative secondary metabolite clusters in Aspergillus

nidulans [13], and we detected downregulation of four of them

(penicillin gene cluster, two putative polyketide clusters, and one

putative nonribosomal peptide cluster) in oe:PbcR. The down-

regulation of other clusters in the pimaradiene-producing strain

might be a way for Aspergillus nidulans to ensure sufficient primary

metabolites for cell growth, or facilitate the specific production of

ent-pimara-8(14),15-diene. However, the mechanism for the

downregulation of these clusters in oe:PbcR is not clear.

We report the first diterpene biosynthetic gene cluster in

Aspergillus nidulans. Our results affirm the terpene producing ability

of Aspergillus nidulans, and serve as a proof of principle in finding

novel metabolites even in a microbe so widely studied. The results

reported here highlight the advantage of using genomic mining in

the search for novel biosynthetic pathways.

Materials and Methods

Bioinformatic Methods
Putative terpene synthase genes were identified by using

InterPro [28] web portal search using domain identifiers

IPR008949 ‘Terpenoid synthase’ and IPR008930 ‘Terpenoid

cyclase’. To find the potential terpene biosynthetic gene clusters

with a positive regulator and characteristic genes for secondary

metabolism, InterPro domains IPR001138 ‘Fungal transcriptional

regulatory protein’, IPR002403 ‘Cytochrome P450, E-class, group

IV’, and IPR001128 ‘Cytochrome P450’ were searched for in

20 kb genomic area around terpene synthase genes.

Aspergillus Nidulans Strains and Growth
Aspergillus nidulans strain FGSC A4 (wild type, veA+) [60] from

Fungal Genetics Stock Center was used in all transformations and

experiments as wild type control. Overexpression strains

oe:AN1599_9, oe:AN1599_42 (oe:PbcR), oe:AN1599_45,

oe:AN3250_9 and oe:AN3250_11 were constructed as described

below. Strains were grown in liquid YES-media (2% yeast extract,

4% sucrose) supplemented with 3% gelatin. Transformants were

selected on Aspergillus minimal medium (MM) [61] with 200 mg/
mL of glufosinate ammonium.

Construction of Plasmids
Genomic DNA was isolated from FGSC A4 mycelia disrupted

with glass beads using standard phenol extraction and ethanol

precipitation protocol [62]. DNA was further purified with Qiagen

MiniPrep kit. Genomic sequences of AN1599.4 (GenBank:

BN001307) and AN3250.4 (GenBank: BN001306) were cloned

into the pCR2.1 TOPO (Invitrogen) with SpeI and SpeI and ApaI

sites, respectively. Overexpression vector, pKB1, was constructed

by adding glufosinate ammonium resistance gene bar from pTJK1

[63] into NotI site of modified pAN52-1NotI-vector [64]. Bar gene

in pKB1 is fused with Aspergillus nidulans trpC promoter. AN1599.4

and AN3250.4 genomic sequences were cloned into their

respective restriction sites in pKB1 fused with Aspergillus nidulans

gpdA promoter. All constructs were analyzed by sequencing before

transformations. Primers used in PCR are listed in Table S4.

Transformation
Protoplasting of Aspergillus nidulans FGSC A4 was carried out

at 30uC in citrate buffer (0.8 M KCl, 0.05 M Na-citrate,

pH 5.8) supplemented with 1mM DTT and 1% w/v Hydro-

lyzing enzymes from Trichoderma harzianum (Sigma). Protoplasts

were collected by filtration and suspended in 180 mL of cold

GTC buffer (1 M glucose, 50 mM CaCl2, 10 mM Tris-HCl,

pH 5.8). 20 mg of linearized expression plasmid DNA was

added and volume adjusted to 200 uL. 50 mL of PEG-solution

(25% PEG6000, 50 mM CaCl2, 10 mM Tris-HCl, pH 7.5) was

Figure 6. Conidiation is reduced in oe:PbcR. FGSC A4 and oe:PbcR
were grown on potato dextrose plates for three days at 37uC. Spores
were quantified from three agar plugs isolated from the PD-plates
(average area 85 mm2). The number of conidia is 6-fold lower in oe:PbcR
(average number of conidia 3.96105) compared to FGSC A4 (average
number of conidia 23.96 105).
doi:10.1371/journal.pone.0035450.g006
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added and the suspension incubated on ice for 20 minutes.

2 mL of PEG-solution was added, and the suspension incubated

at room temperature for 5 minutes. Protoplasts were plated on

selective MM plates in top agar and incubated at 30uC until

transformed colonies were visible. Colonies were further grown

on selective MM plates and positive colonies verified with PCR.

Quantitative Real-time PCR Analysis (qPCR)
FGSC A4 and transformant strains were grown in YES

medium at 30uC for 42 hours. Due to different germination

and/or growth rate of different strains, the conidia were

inoculated in varying densities to achieve comparable growth

of the cultures at the time of collection. Three individual

Figure 7. Phylogenetic and primary structure analysis suggests a bifunctional role for Aspergillus nidulans pimaradiene synthase
(AN1594.4). A) A phylogenetic tree of diterpene synthases was generated by using ClustalW2. Alignment of Aspergillus nidulans pimaradiene
synthase AN1594 (XP_659198.1) with Gibberella fujikuroi ent-kaurene synthase; GfCPS/KS (Q9UVY5.1), Phaeosphaeria sp. L487 ent-kaurene synthase;
PfCPS/KS (O13284.1), Phoma betae aphidicolan-16b-ol synthase; PbACS (BAB62102.1), Phomopsis amygdali phyllocladan-16a-ol synthase; PaDC1
(BAG_30961.1), Oryza sativa ent-pimara-8(14),15-diene synthase; OsKSL5 (NP_001047190.1), and Oryza sativa syn-pimara-7,15-diene synthase; OsKSL4
(NP_001052175.1). Phylogenetic tree indicates the similarity of AN1594 to fungal bifunctional diterpene synthases GfCPS/KS, PfCPS/KS, PbACS and
PaDC1. AN1594 is also distantly related to known plant pimaradiene synthases OsKSL5 and OsKSL4. The phylogenetic distances are indicated next to
the gene names. B) The primary structures of AN1594.4, PbACS, GfCPS/KS, PfCPS/KS and PaDC1 are shown. The inverted triangles indicate conserved
motifs in fungal diterpene synthases. The AYDTAW motif is conserved among diterpene cyclases from plants and fungi. The DxDD and DExxE motifs
are responsible for the type B cyclization (GGPP to copalyl diphosphate) and type A cyclization (copalyl diphosphate to diterpene), respectively. The
InterPro domain IPR008930 ‘‘Terpenoid cyclase’’ is indicated with white bars. The total amino acid length of the proteins is indicated.
doi:10.1371/journal.pone.0035450.g007
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100 mL samples from each culture were collected and frozen in

liquid nitrogen. Total RNA of the homogenized samples was

extracted using Qiagen RNeasy Plant Mini Kit following

manufacturer’s suggestions for fungal RNA extraction. Extracted

RNA was treated with DNaseI digestion (Qiagen) and

quantified using Nanodrop (Thermo Scientific). cDNA synthesis

was done with Transcriptor First Strand cDNA Synthesis Kit

(Roche). DNA was analyzed by qPCR with LightCycler 480

SYBR Green I Master mix (Roche) on a LightCycler 480

(Roche). All samples were tested in three replicates. Expression

levels were normalized to the levels of b-actin expression in each

sample. Efficiencies for each primer set were calculated, and the

expression fold ratios of transformant to FGSC A4 were

quantified using pfaffl-equation [65]. Expression levels were

checked in similar manner multiple times with consistent results.

Primers are listed in Table S4.

Table 1. Protein BLAST alignment of AN1594 shows similarity to known fungal diterpene synthases.

Terpene synthase Accession Score Identities Positives Coverage

Aspergillus nidulans AN1594 XP_659198.1 2042 100% 100% 100%

Phomopsis amygdali phyllocladan-16a-ol synthase, PaDC1 BAG_30961.1 674 39% 55% 94%

Gibberella fujikuroi ent-kaurene synthase, GfCPS/KS Q9UVY5.1 629 37% 57% 94%

Phoma betae aphidicolan-16b-ol synthase, PbACS BAB62102.1 598 36% 53% 97%

Phaeosphaeria sp. L487 ent-kaurene synthase, PfCPS/KS O13284.1 547 36% 53% 94%

Oryza sativa ent-pimara-8(14),15-diene synthase, OsKSL5 NP_001047190.1 63.9 28% 45% 25%

Oryza sativa syn-pimara-7,15-diene synthase, OsKSL4 NP_001052175.1 60.8 28% 45% 23%

doi:10.1371/journal.pone.0035450.t001

Figure 8. Proposed model of the ent-pimara-8(14),15-diene biosynthesis pathway in Aspergillus nidulans. PbcR activates key enzymes for
pimaradiene biosynthesis. HMG-CoA reductase (AN1593.4) functions as a rate-limiting enzyme in the mevalonate pathway. GGPP-synthase
(AN1592.4) provides geranylgeranyl diphosphate precursor for diterpene compounds. Pimaradiene synthase (AN1594.4) is proposed to catalyze two
cyclization steps from GGPP to ent-pimara-8(14),15-diene via ent-copalyl diphosphate intermediate.
doi:10.1371/journal.pone.0035450.g008
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Analysis of Diterpenes by Solid Phase Microextraction
Gas Chromatography Mass Spectrometry (SPME-GC/MS)
and GC/MS
Conidia of oe:PbcR and FGSC A4 were inoculated in varying

densities and grown in YES-media at 30uC for 44 hours. SPME-

GC/MS was done for cultures with comparable growth. 2 mL of

the cultures were transferred into airtight SPME vials. Extraction

of volatile and semi-volatile compounds was done at 80uC for

1 hour with preconditioned (250uC, 30 min) 100 mm PDMS fibre

(Supelco, USA). Analytes were desorbed during 5 minutes at

250uC in the splitless injector (flow 14.9 mL/min) of the gas

chromatograph (Agilent 6890 Series, USA) combined with an MS

detector (Agilent 5973 Network MSD, USA) and SPME

autosampler (Combipal, Varian Inc., USA). Analytes were

separated on BPX5 capillary column of 60 m x 0.25 mm with

a phase thickness 1.0 mm (SGE Analytical Science Pty Ltd,

Australia). The temperature programme started at 40uC with

1 minute holding, then increased 9uC/min up to 130uC, followed
by 2uC/min increase up to 230uC, where the temperature was

kept for 1 minute. MSD was operated in electron-impact mode at

70 eV, in the full scan m/z 40–550. The ion source temperature

was 230uC and the interface was 280uC. Compounds were

identified by comparing the mass spectra on Palisade Complete

600 K Mass Spectral Library (Palisade Mass Spectrometry, USA).

For GC/MS analysis, hexane:ethyl acetate (1:1) extracts were

prepared. FGSC A4 and oe:PbcR cells were homogenized with

mortar and pestle in liquid nitrogen. 2 g of homogenized cells and

100 mL of growth media were ultrasonically extracted for 1 hour

with 20 mL of hexane:ethyl acetate (1:1) 1mL of solvent phase,

concentrated by evaporation, was analyzed by using GC/MS

(Agilent 6890 Series, USA combined with Agilent, 5973 Network

MSD, USA and Combipal injector, Varian Inc., USA). Analytes

were injected on split mode (10:1) and separated on HP-1 capillary

column (25 m x 0.2 mm) with a phase thickness 0.33 mm (Agilent,

USA). Helium was used as carrier gas, 1.3 mL/min. The

temperature program started at 100uC with 0.5 minute holding

time, then increased 10uC/min up to 320uC where kept for

25 minutes. MSD was operated in electron-impact mode at

70 eV, in the full scan m/z 40–550. The ion source temperature

was 230uC and the interface was 280uC. Compounds were

indentified with the Palisade Complete 600K Mass spectral library

(Palisade Mass Spectrometry, USA). Kovats retention index was

determined in relation to a homologous series of n-alkanes (C8–

C24) as standards.

DNA Array Expression Analysis
FGSC A4 and oe:PbcR were inoculated in different densities in

50 mL of YES medium. The pH values of each culture were

monitored during growth and the mycelia harvested from cultures

with pH values ranging from 5.76 to 5.94 indicating the early

exponential growth phase of the fungal strains. FGSC A4 was

grown for 22 hours and oe:PbcR for 26 hours at 37uC. Three RNA

extractions were made from two separate culture flasks for both

WT and oe:PbcR. The quality of RNA was assessed with the

standard protocol of Agilent 2100 Bioanalyzer (Agilent Technol-

ogies). DNA array chip was designed and manufactured by

NimbleGen Systems Inc., Madison, WI USA, using Custom

Eukaryotic 126135K Array format. Sequences for the 10597

transcripts in the DNA array design were downloaded from the

Central Aspergillus Data Repository, CADRE [66] via FTP server

at Ensembl Genomes browser (ftp://ftp.ensemblgenomes.org/

pub/fungi/release4/fasta/aspergillus_nidulans/cdna/

Aspergillus_nidulans.CADRE2.4.cdna.all.fa.gz). Expression por-

tion was designed by selecting 6 probes per transcript for 10546

out of 10597 transcripts. Each probe had a replicate for a final

expression analysis for total of 126,260 probes. cDNA synthesis of

total RNA, probe hybridization, scan and preliminary analysis was

performed by NimbleGen Systems Inc., Madison, WI USA,

following their standard operating protocol. Normalized DNA

array data was further analyzed using the ArrayStar (DNASTAR)

software. Expression fold changes were calculated with unpaired,

two-tailed, equal variance student’s t-test with 99% significance

level, p-value # 0.01. All data are MIAME compliant and the raw

data has been deposited in GEO (Accession # GSE32954).

Conidia Quantification
FGSC A4 and oe:PbcR were grown on potato dextrose (PD)

plates at 37uC for three days. Three agar plugs were isolated from

three PD-plates with a stainless-steel tube with inner diameter of

60 mm (surface area of three plugs is approximately 85 mm2).

Each plug was homogenized in 500 uL ddH20. The conidial

suspension was diluted 1:10 and spores counted with hemocy-

tometer. The statistical analysis was done with GraphPad InStat

using unpaired student’s t-test (p-value ,0.0001, n = 9).

Microscopy
FGSC A4 and oe:PbcR were grown on PD plates for three days at

37uC. Stereomicroscope images of untreated samples were taken

using Zeiss SteREO DiscoveryV8 microscope equipped with

Olympus Soft Imaging Systems DP-25 camera using 8 X magnifi-

cation. For higher magnification images, conidia were suspended in

20% glycerol and spread to cover slips. Images were taken using

Olympus1X81microscopeequippedwithQImagingRetiga-2000R

camera. All image visualizations were performedwithOlympusCell

P software.

Supporting Information

Figure S1 PCR analysis shows the presence of over-
expression constructs in pbcR (AN1599.4) transformants.
Aspergillus nidulansFGSCA4was transformed tocarryagenomiccopy

of pbcR (AN1599.4) with Aspergillus nidulans gpdA promoter. Genomic

DNA of FGSC A4 and the overexpression strains (oe:AN1599_9,

oe:AN1599_42 and oe:AN1599_45) was purified and the integration

of the construct was verified by PCRamplification of a 540 base-pair

fragment.

(TIF)

Figure S2 Chromosomal locations of the secondary
metabolite synthases from this study. The chromosomal

location of Aspergillus nidulans pimaradiene synthase (AN1594) is

shown in red. The chromosomal locations of nonribosomal

peptide synthases (AN3495 and AN3496), polyketide synthases

(AN2032, AN2035 and AN0523) and isopenicillin A synthetase

(ipnA, AN2622) downregulated in oe:PbcR are shown in blue.

Putative diterpene synthase AN3252 is shown in black.

(TIF)

Figure S3 Aspergillus nidulans pimaradiene cluster
gene orthologs (AN1592.4 to AN1599.4) are found in
Neosartorya fischeri. All eight pimaradiene cluster genes in

Aspergillus nidulans have orthologous genes clustered in Neosartorya

fischeri. Figure is adapted from Aspergillus Genome Database [19]

using ortholog cluster search.

(TIF)

Table S1 Genes with over 5-fold upregulation in oe:PbcR

compared to FGSC A4 (p-value # 0.01).

(DOCX)
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Table S2 Genes with over 5-fold downregulation in oe:PbcR

compared to FGSC A4 (p-value # 0.01).

(DOCX)

Table S3 Genes implicated in iron metabolism.

(DOCX)

Table S4 Primers used in this study.

(DOCX)
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