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Simple Summary: Climate variability has influence on plague outbreaks worldwide. Usually, plague
cases increase with increasing precipitation. Currently there are many studies on the epidemics
of plague in human beings, whereas there are few studies on the dynamic of plague in animal.
Nevertheless, animal plague is key in the natural epidemiological cycle of plague. We identified
spatiotemporal changes of the plague territories in the Tibetan Plateau only using animal plague
records. Our risky plague maps are far superior to the county-based maps used currently and
have valuable applications for directly informing conservation and management decisions locally
and regionally.

Abstract: Plague persists in the plague natural foci today. Although previous studies have found
climate drives plague dynamics, quantitative analysis on animal plague risk under climate change
remains understudied. Here, we analyzed plague dynamics in the Tibetan Plateau (TP) which is
a climate-sensitive area and one of the most severe animal plague areas in China to disentangle
variations in marmot plague enzootic foci, diffusion patterns, and their possible links with climate
and anthropogenic factors. Specifically, we developed a time-sharing ecological niche modelling
framework to identify finer potential plague territories and their temporal epidemic trends. Models
were conducted by assembling animal records and multi-source ecophysiological variables with
actual ecological effects (both climatic predictors and landscape factors) and driven by matching
plague strains to periods corresponding to meteorological datasets. The models identified abundant
animal plague territories over the TP and suggested the spatial patterns varied spatiotemporal
dimension across the years, undergoing repeated spreading and contractions. Plague risk increased
in the 1980s and 2000s, with the risk area increasing by 17.7 and 55.5 thousand km2, respectively.
The 1990s and 2010s were decades of decreased risk, with reductions of 71.9 and 39.5 thousand
km2, respectively. Further factor analysis showed that intrinsic conditions (i.e., elevation, soil, and
geochemical landscape) provided fundamental niches. In contrast, climatic conditions, especially
precipitation, led to niche differentiation and resulted in varied spatial patterns. Additionally, while
increased human interference may temporarily reduce plague risks, there is a strong possibility of
recurrence. This study reshaped the plague distribution at multiple time scales in the TP and revealed
multifactorial synergistic effects on the spreading and contraction of plague foci, confirming that
TP plague is increasingly sensitive to climate change. These findings may facilitate groups to take
measures to combat the plague threats and prevent potential future human plague from occurring.

Keywords: Himalayan marmot; plague natural foci; climate change; spatiotemporal distribution;
Tibetan Plateau

1. Introduction

In history, plague pandemics have had devastating effects on politics, economics,
and demographics [1]. Plague is caused by the bacteria Yersinia pestis, which is directly
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transmitted via human to human or rodent to human contact or via fleas [2]. Yersinia
pestis, hosts, and its vectors are essential components for plague transmission and only
exist in specific geographical conditions (plague natural foci) [3,4]. Changes in climate and
land use affect land surface vegetation and landscape patterns of the foci, resulting in the
dispersal, migration, and adaptation of the species (hosts and vectors) and impacting the
risk dynamics of plague transmission [5].

The Tibetan Plateau (TP) is a major plague area in China and is highly sensitive to climate
change. Since the mid-1950s, there has been a significant warming trend in the TP [6], which
has made the ecological environment of local foci unstable and has resulted in changeable
and complex plague dynamics [7]. An analysis of the molecular genetics of Y. pestis in the
Qinghai Plateau (a significant part of the TP) found that Y. pestis populations have shifted
spatially because of local niche changes [8]. Indeed, since 1954, over 687 thousand km2 in
88 counties have gradually become threatened by plague in the TP. And 96.8% of plague cases
were caused by Himalayan marmot (main plague hosts in the TP). In this marmot plague foci,
animal plague pandemics continuously and human plague outbreaks occur frequently [9].
According to statistics, more than 3502 Y. pestis were isolated between 1954 to 2020, among
which 95.26% were from infected animal and vectors, 4.68% were from human and 0.06%
were from soil. In particular, Y. pestis has been isolated from animals for 65 years. Besides,
more than 65% of Y. pestis were isolated in Qinghai Province and Tibet Autonomous Region.
To date, at least 24 species of mammals and 13 species of fleas have been identified as infected
by Y. pestis in the foci, meaning that the risk of contact with any species of infected animal
can be substantial [8]. In recent years, the tourism industry of the TP has grown significantly,
which further increases the spread risk of plague. However, the current reported plague risk
areas are based on a county scale, which makes it difficult for public managers to allocate
surveillance resources more reasonably and to achieve effective prevention and control efforts.
Consequently, it is essential to identify the truly threatened plague territories to implement a
more effective focus control.

Ecological niche models (ENMs) allow the assessment of how plague risks respond
to changing environments and provide spatially explicit risk maps of plague [10–14].
Many studies have attempted to understand plague outbreak dynamics using ENMs
and some general patterns of factor-attributable risks have been made. These models
have demonstrated good predictive ability and have helped identify underlying spatial
patterns and reveal certain qualitative connections [15,16]. However, most previous studies
focused on the relationships between human plague cases, species abundance, and climate
variation [17,18]. Hence, the following problems still exist: (1) Humans are accidental hosts
and are not part of the maintenance cycle of plague. The transmission of plague is the
result of a complex and multifactorial system and only using human case data in models
without considering host ecology will inevitably lead to areas with high human density
or connectivity being identified as high-risk regions [19]. (2) When reservoir species (one
part of the epizootic cycle) are considered, they are not sufficient to clarify the landscape
epidemiology and infection ecology of plague [10,20]. Likewise, if only climate variables
are considered, but biotic factors are ignored, the range and niche may produce erroneous
inferences [21]. (3) There is a mismatch between the scale of existing climate data and
the scale at which organisms experience their environment. Many prior models do not
incorporate spatiotemporal heterogeneous ecological and environmental information, such
as environmental differences, leading to variation in host suitability. Previous studies
tended to select the mean effects of climate over multiple years, generally an average of
50 years [10,22]. However, there is a lack of detailed studies on the historical spatiotemporal
dynamics of risk and on the driving factors of risk under different climates. Therefore, these
studies may not be sufficient to disentangle variations in plague enzootic foci, diffusion
patterns, and their possible links [23].

In this study, we aimed to: (1) identify the finer scale plague regions to break through
the currently zoned foci on the county scale; (2) estimate time-series changes of the iden-
tified plague regions to reveal the mechanism between the incidence of plague and the
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changing environment. More specifically, We propose a time-sharing strategy which has
the following advantages: (1) only plague data isolated from animals were used, which
can minimize contingency; (2) environmental variables of ecological significance beyond
climate surfaces were selected by considering Y. pestis, hosts, and vectors, which can im-
prove the definition of ecological niche and habitat properties; (3) the plague data were
matched by dividing them into five groups according to epidemic characteristics with
the meteorological and vegetation data of the same period, which is helpful for matching
temporal consistency. From all these data, five separate models from different times were
built to define the geographical limits of plague foci as well as their changes. And their
predominant influencing factors were identified in each model to clarify the feedbacks of
spatial variation under changing climate.

2. Materials and Methods
2.1. Plague Data Compilation

Epidemic data for Y. pestis were compiled from published literature in the History
of Plague Epidemic in China, Plague Prevention and Control in Tibet for 50 Years and
Qinghai Plague. There were 1607 Y. pestis isolated in animals and 531 Y. pestis isolated from
vectors from 1954–2016 in Qinghai Province and Tibet Autonomous Region. However, we
can hardly direct exact geo-location for each Y. pestis from the constrained description, so
we used infected regions data which were well documented as the spatial scale of village
or hamlet. Then we transformed each occurrence site into spatial points using Google
Earth and ArcGIS 10.8 software (ESRI, Redlands, CA, USA). By all the infected regions, we
removed duplicates when they occurred in the same hamlet and year. Finally, 623 valid
geographic points were compiled as epidemic data that applied in this paper.

2.2. Environmental Variables of Plague Foci

Twenty-two ecophysiologically relevant variables were initially selected as factors that
play a significant role in plague occurrence. The explanations behind variable choice and
generation of data layers are available in Tables 1 and S1. Generally, as far as the hosts
are concerned, their density, distribution and migration are closely related to vegetation
conditions. Vegetation growth depends on climatic factors which have indirect effects on
hosts. In addition, seasonal variation of vegetation phenology may make hosts emerge
earlier in the spring from hibernation. As for fleas, meteorological factors, especially
temperature, play a key role on their life cycle, infection rate, bacterial virulence and so
on. As for Y. pestis, although it remains controversial, it is certain the strains exist steadily
in specific natural foci after a long period of natural selection and evolution. We hence
selected soil and topography to delineate finer plague ranges.

Five types of data were collected: topography, vegetation, soil, climate, and river
network data. Digital Elevation Model (DEM) data were obtained from the GMTED2010
dataset (Global Multi-resolution Terrain Elevation Data 2010 courtesy of the U.S. Geological
Survey) in Google Earth Engine (GEE) [24]. The river network data calculated by DEM
can be downloaded directly in RESDC [25], which was then used to calculate Euclidean
distances in ArcGIS 10.8. Gravity data were provided by the Technical University of
Denmark [26]. The vegetation data were also from GEE in the dataset of LANDSAT3/5/7/8
(GLS1975, LANDSAT SR from courtesy of the U.S. Geological Survey) [27]. Subsequently,
normalized difference vegetation index (NDVI) was calculated and the median values of
each pixel were exported into five stages: 1958–1979 (hereafter, S1), 1980–1989 (hereafter,
S2), 1990–1999 (hereafter, S3), 2000–2009 (hereafter, S4), and 2010–2016 (hereafter, S5). The
geochemical landscape data were derived from the Atlas of Plague and its Environments
in the People’s Republic of China [28]. Detailed classification of the geochemical landscape
was in Table S2. The pH in H2O at a depth of 200 cm was obtained from GEE in the
OpenLandMap dataset [29]. Soil data were obtained from Harmonized World Soil Database
(HWSDv1.2), and FAO90 attributes were used. Their detailed list can be found on pages
24 and 25 of the PDF [30]. Soil moisture and climate data were obtained from TerraClimate
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in GEE [31] and were then processed as mean values for the above five stages. Meanwhile,
the minimum monthly temperature values were also obtained between April and October
(Table 1). The reason we chose the above time scale was the consistency of the historical
plague prevalence [8].

In addition, global terrestrial Human Footprint maps for 1993 and 2009 [32] were used
to clarify the influence of human disturbance by grouping values based on their changes.
Using the results from Section 3.2, we combined human footprint maps to determine the
relationship between human activity and the spatial variation characteristics of plague
areas. We calculated the difference in human footprint between 1993 and 2009 and divided
it into six levels based on its changes. Moreover, the average risk and the percentage of areas
with risk values greater than 0.5 for different levels of human disturbance were calculated.

Table 1. Environmental variables used in Maxent models for Himalaya plague in the TP.

Data Type Variables Biological Relevance Abbreviation Units

Topography
DEM Habitats of hosts: Number of marmot holes is largest at

an altitude between 3200–3500 m [33]; E m

Distance to river Field investigation: Almost all marmot holes are
around one river; D km

Gravity Effect in astronomy: Geomagnetism may affect the
plague cycle [34]; G mGal

Vegetation NDVI NDVI→ Population density: Higher density is often
linked to higher prevalence [35]; NDVI —

Soil

Geochemical landscape Evolution of Y. pestis: Geochemical evolution and
biological evolution are a kind of conjugation

process→ Persistence of plague [36,37];

GL —
Soil type ST —

pH pH −log (H+)

Soil moisture Vegetation→ Population density, migration→
Increased risks [35]; SM mm

Climate

PDSI
Aridity is significantly associated with ecological risk

factors for relapsing plague [36], and drought can
control the synchrony of plague outbreaks [36];

PDSI —

Precipitation Phenology [38]→ Vegetation→ Population density,
migration→ Increased risks [35]; PR mm

Solar Radiation Governing the surface temperature and hydrologic
cycle [39]→ Vegetation→ Increased risks; SR W/m2

Temperature

Yersinia pestis: survives for a long time under low
temperature conditions [40];Fleas: survival and
development→ plague persistence [4] Hosts: a

prolonged active season [41].

T ◦C

Most noticeably, highly correlated variables may result in over-fitting and hinder
obtaining the actual response curves. Hence, we excluded redundant variables that had a
high correlation (R ≥ |0.8|) determined by Pearson’s correlation analysis [42,43] in R4.0.4
(Figure S1). The most important variables selected are summarized in Table 1. All environ-
ment variables were projected onto Albers-CGCS2000 coordinate system. In particular, to
avoid spatial mismatch between the size of organisms and the scale at which climate data
were collected, we resampled all the variables to a spatial resolution of 5 km [44], which is
the migration distance of marmot. Therefore, we regarded a 5-km spatial resolution as the
basic area unit for plague infection among animals.

2.3. Modelling the Potential Areas of Animal Plague

Maxent quantifies the statistical relationship between predictor variables at locations
where a species has been observed versus background locations in the study region.
This software has been proven to perform the best in the potential species distribution
assessment [45–47].
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We divided the valid set of plague occurrence points into five subsets according to years
(S1–S5). For each period, 10 models were established to guarantee that the results were
stable, and every model was created with the occurrence localities by randomly selecting 75%
of the occurrence localities as training data with cross-validation, reserving the remaining
25% for testing. The ultimate outcomes were selected from an average of 10 replicates. In
addition, we assigned a combination of four types of features to generate models, including
L (linear), Q (quadratic), P (product), and H (Hinge) features. We used default values in all
runs, that is, threshold = 10−5, maximum iterations = 1000 for the algorithm convergence,
and regularization value β = 1. The default regularization value was applicable for this study
because we did not involve model transfer across either space or time. Each pixel in the
study area was assigned a nonnegative probability value using Maxent. We chose the logistics
outputs for easier usage and interpretation, which gave an estimate between 0 and 1 for risk of
presence. The threshold segmentation was determined by the “maximum training sensitivity
plus specific logic threshold” method: all pixels with a value greater than the threshold were
classified as risk areas of plague [12,48]. Based on the classified results, the average risks over
the TP and the total areas of risk regions were analyzed.

The model evaluation was first verified to perform significantly better than ran-
dom [45]. Considering that we need to compare performance from different stages, the
area under the ROC curve (AUC), which has been proved useful to compare performance
between multiple Maxent models, was used to measure performance between the five
averaged models. The closer the values are to 1.0, the better is the performance of the
model. Models with values above 0.75 were generally considered potentially useful [46].
The importance of variables was evaluated using the Jackknife [49].

3. Results
3.1. Model Performance and Changes of Plague Areas

Each average from the five stages of the 10 replicate models had high AUC scores (>0.9)
and consistently performed significantly better than random across the entire spectrum
(Table 2). The results suggested our five-stage models had high performance, and the
estimated distributions were a close approximation of the real probability distribution.

Table 2. Predicted results at different times over TP.

Phases
The Average
Test/Training

AUC
Threshold Average

Risk
Areas of

Prediction
(Thousand km2)

Areas of
Published Data
(Thousand km2)

S1 0.93/0.95 0.169 0.041 301.9 99.79

S2 0.90/0.95 0.319 0.055 319.6 —

S3 0.94/0.96 0.218 0.033 247.7 408.38

S4 0.92/0.95 0.259 0.045 303.2 634.49

S5 0.93/0.96 0.180 0.032 263.7 687.04

The predicted risk area increased by 17.7 thousand km2 from S1 to S2, decreased by
71.9 thousand km2 from S2 to S3, increased by 55.5 thousand km2 from S3 to S4, and finally
decreased by 39.5 km2 from S4 to S5 (Table 2). The average risks showed similar fluctuation
trends (Table 2). Consequently, S2 and S4 were regarded as stages of increased plague risk,
but the risk decreased in S3 and S5.

Moreover, we compared our results with the officially announced areas of confirmed foci
counties. The area of confirmed foci counties across the study period continually increased
from 99.79 thousand km2 in S1 to 687.04 thousand km2 in S5, which were almost twice as
large as our predicted areas in S3 and S4 and 2.6 times as large as that in S5 (Table 2).

3.2. Plague Risk Areas at Different Time

Figure 1 shows the identified plague territories of the five stages, and each of the
five niches estimated almost exactly coincided with their respective occurrence points.
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Here, we were mainly interested in pixels that had a higher risk value than 0.5 to analyze
spatial variation. The estimated ranges exhibited significant inter-decade variability from
1954–2016. Most noticeably, very high (risk > 0.7) and high (risk > 0.5) risk regions differed
significantly between stages in both location and scope.
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Figure 1. Distributions of plague risk at various stages. (A) The distributions of plague risk in
1954–1979 (White blocks are due to the scarcity of Landsat data with cloud cover less than 10); (B) The
distributions of plague risk in 1980–1989; (C) The distributions of plague risk in 1990–1999; (D) The
distributions of plague risk in 2000–2009; (E) The distributions of plague risk in 2010–2016. Further-
more, most of the historical plague data shown in the bottom right corner has been anonymized by
aggregation at the county level, fulfilling rules of confidentiality.
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In the initial stage (S1), very high-risk regions tended to cluster around Qinghai Lake,
the northern Qilian area, as well as Gonghe, Xinghai counties in Tibetan Autonomous
Prefecture of Hainan and Nagqu area in northeastern Tibet (Figure 1A). In S2, the high-risk
regions spread and were heavily located in the southwest TP; in particular, there were many
zones in and near the south of the Tibetan Autonomous Prefecture of Yushu in southern
Qinghai (Figure 1B). Simultaneously, some regions in Lhasa and the surroundings were
at higher risk. In S3, plague risk throughout Qinghai Province was reduced (Figure 1C).
However, in S4, a handful of scattered high-risk regions appeared in the south of the
Delingha, Wulan county, Dulan county in Haixi Mongolian, and Yushu city in Tibetan
Autonomous Prefecture in Qinghai Province (Figure 1D). In particular, Maxent prediction
identified the middle part of the TP as an area of constant high risk for the geographical
range of the plague. Specifically, the risk regions were larger in central and southern Tibet
plague and were prolonged over a long period from S2 to S5 (Figure 1B–E).

Overall, we identified abundant discontinuous niches for plague over the entire TP,
and large differences in risk patterns were apparent from 1954–2016. The areas underwent
repeated spreading and contraction of spatial ranges. Spreading occurred in S2 and S4
while contraction occurred in S3 and S5.

3.3. Impacts of Environmental Variables in Different Time

To determine the factors that led to the characterization of distributed differences,
we analyzed the alteration of variable importance in each stage. The variable importance
dynamics were analyzed using the jackknife test. The quantified results are depicted in
Figure 2 where higher values of gain represent a greater contribution when training the
models. The changing spatial patterns are profoundly associated with different factor
combinations. Intrinsic features had definitive advantages in fitting the distribution of
occurrence data in S1. Because these variables contained more useful information, the top
three in order were GL (0.93), ST (0.78), and E (0.58). However, in the subsequent stages,
ST had displaced GL, and it did not change until PR contributed the highest gain in S5
(Figure 2A). After that, there came to at least one variable feature in the first three rankings
instead of merely intrinsic variables since S2. Notably, two variable features appear in S3.
More specifically, in S3, the highest gains were ST, followed by PR (0.83), and NDVI (0.52).
For S2, S4, and S5, ST, D, and PR had relatively uniform gains (even distribution around
0.5–0.6), but different sorting results.
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Figure 2. The results of the Jackknife test of variable importance. (A) The training gains of each
variable if the model was run in isolation, and the variable had useful information when the gain
was high. This is useful for identifying the variables that contribute the most individually; (B) The
reduction in gains when the variable is excluded compared to all variables. If it reduces the gain most
when it is excluded, the variable has unique information. Additionally, intrinsic features include GL,
ST, D, pH, E, and G; variable features include PR, SR, SM, NDVI, PDSI, and T.
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In general, the importance of the primary variables and other factors changed continu-
ously across the study period, which resulted in diverse distributions of plague between
stages. The main drivers shifted from solely predominant invariable attributes (elevation
and geochemical landscape) to include both invariable and variable attributes (soil and
rainfall). In this conversion, variable importance analyses revealed an increasing explana-
tion of precipitation for plague, with diffusion along a precipitation gradient (Figure 2B). In
addition, relatively uniform gains in the combined variables corresponded to wider spatial
distributions (Figure 2B). In contrast, the spatial ranges tended to shrink when each variable
had different gains (Figure 2A). However, on the whole, variables including ST, D, GL, PR,
and their combinations were always key factors for plague risk. They not only showed
some of the strongest relationships (Figure 2A), but also contained unique information
(Figure 2B). Similarly, NDVI was an important variable that corresponded to the plague
risk distribution.

3.4. Human Disturbance Evaluation on the Different Distributions

Our modelling environmental variables were natural factors; however, human factors,
including urbanization and construction projects, could have altered the environment of
some regions during the study period.

The mean values showed a decreasing trend under different degrees of human dis-
turbance (Table 3), indicating that human activities had some restraining effects on plague
intensity (Figure S2). And the differences were highly significant from S2 to S3. Further
statistics on the high-risk areas (>0.5) showed that these areas decreased steeply following
human disturbance, but then increased after the change in human footprint was greater
than 2 (Table 3). The results revealed that the plague risk has been controlled by human
activity to a certain extent since S3. However, with increasing human activity, the plague
risk has gradually returned to pre-disturbance conditions.

Table 3. Changes of risk areas at different levels of human disturbance.

Change in Human
Footprints from 1993 to 2009

Mean Risk
in S2

Mean Risk
in S3

Mean Risk
in S5

Areas with
Risk > 0.5 in

S2(%)

Areas with
Risk > 0.5 in

S3(%)

Areas with
Risk > 0.5 in

S5(%)

−19–−0.01 0.157 0.072 0.068 8.706 1.997 1.198

0 0.094 0.058 0.055 4.999 1.68 1.641

0–2 0.091 0.063 0.052 3.778 1.866 1.588

2–5 0.114 0.060 0.053 6.602 2.117 2.268

5–10 0.107 0.065 0.062 5.310 2.438 3.369

10–20 0.149 0.082 0.077 7.5 2.5 4.167

Average plague risk at different intensity of the human activities.

4. Discussion

Plague regions of TP were identified using models, which represented the finer and
true risky areas better. Because in the current publications, plague risk zonation and
management were based on counties. And the risk areas were manually estimated based
on the sizes of townships. In addition, the estimates are annual accumulations failing to
consider plague dynamics, especially dynamics for decreasing risk. Besides, we found
that the most evident indicator of Himalaya plague foci was the existence of independent
foci with scattered distributions in the vast geographic regions over the TP. Indeed, the
range edges, extents, and clustering of foci exhibited spatiotemporal variations caused by
different climate variable combinations and human activity.
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4.1. Basic Factors for Plague Distributions

The variables of intrinsic features are important delineators of the risk distribution of
plague. The risk ranges tended to be in a basic niche when intrinsic features were the main
factors impacting distribution. This contributed much to the qualitative analysis of foci,
because the delineated ranges were closely correlated with the natural focus characteristics
of the plague. For example, geochemical landscape and soil type, which had the highest
gains in S1 and S3 (Figure S3), showed a wide border with risk regions. Our analysis
indicated that high-risk regions were predicted in soils rich in calcium, and this result
is compatible with the conclusion of previous studies that plague occurs more easily
in calcium soils. In addition, we found that plague tended to occur in leptosols and
gleysols, particularly in gelic gleysols [16], where excessive soil moisture accumulates
during seasonal melts. The regions with lighter texture and shallower soil layers were ideal
for marmots to dig deep burrows and were beneficial for keeping the burrows dry owing
to their strong infiltration capacity [50]. Therefore, these soil types are essential and Y. pestis
can persist for years in these soil conditions [37]. In that sense, the plague natural foci
were concentrated in these areas. Similarly, the distance to a river was a relatively strong
and useful predictor across all stages and the risk of plague was higher closer to rivers
(Figure 3A). Habitat preference may explain the close relationship between risk and D as
infected hosts often suffer from dehydration as a symptom and need access to water to
relieve discomfort; therefore, they are easier to find closer to rivers.
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Figure 3. Response curves of environmental variables. The response curves were derived from
Maxent runs with variables used in isolation to avoid interference with other variables. They describe
how the logistic prediction responds with alteration of each environmental variable. (A) The response
curves of distance to river in different time; (B) The response curves of rainfall in different time;
(C) The response curves of solar radiation in different time; (D) The response curves of temperature
in different time; (E) The response curves of elevation in different time; (F) The response curves of
soil moisture in different time.

In addition, the contribution of elevation continuously decreased, reducing from
0.58 to 0.1, indicating that E had less impact on risk distribution (Figure 3E). The response
curves of E showed that the highest risk occurred in S1 at an altitude of 3241.43 m, however,
this subsequently shifted to higher but wider altitudes. This finding agrees with studies
that found that marmots have widened their ranges and no longer only live on high frigid,
subalpine, and alpine meadows at high altitudes [51], and are often found at lower altitudes,
around farmland and vegetable fields.
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4.2. Major Factors That Affect Plague Spatiotemporal Distributions

There was always a strong connection between plague variation and the difference
in multifactorial synergy between variables. Climate factors, especially precipitation, are
critical for spatial variation. Plague risk increased significantly when PR was between
411.54mm and 493.64mm (Figure 3B). During this study, the cycle changes of plague were
in line with precipitation periodical oscillations (10 to 15 years) in the TP over the past
several decades [8,52]. In addition, the spatial variation of the plague was consistent with
the distribution of precipitation in each stage. For example, regions in Lhasa and the
surrounding areas appeared to have more high-risk zones than Qinghai since S2. This
was because there was more precipitation and rainy days in Tibet between 1980 and 2013
than in Qinghai [52]. Furthermore, NDVI was also a direct indicator of the diffusion of
plague regions. Over the TP, there were many meadow types between northeast and
southwest connecting plague niches, which can be easily influenced by precipitation and
further cause wider risk distributions. Consequently, in S2, the extensive plague territories
were caused by increased participation of NDVI. In fact, these fluctuations in plague and
precipitation can be interpreted using the trophic cascade hypothesis. That is, precipitation
increases food availability through vegetation-mediated effects, which increases rodent
populations and activities, which causes an increase in risk zones [53,54]. However, while
these were factors, plague distributions relied on combined effects of a complex synergy of
factors rather than just two variables (rainfall and NDVI). For example, in S3, PR rose to
0.83 (Figure 3A) and NDVI to 0.52 to become the third most important factor. However,
large-area foci of spatial connectivity did not appear as a result of significantly varying
contributions between the variables.

Simultaneously, other inconstant factors such as solar radiation, temperature, soil
moisture, and PDSI also impacted plague risk, generating different risk zones. The SR
variable had a high value of 244.41 for very high-risk areas (>0.7). The risk threshold of SR
was more similar in S4 than in S1, both of which were stages in which the plague epidemic
increased. The peak value T for risk shifted rightward along the axes since S1, exhibiting
increasing risks with higher temperatures in the subsequent four stages. Indeed, warmer
temperatures impact plague through both flea and bacteria (Y. pestis) survival [55]; higher
temperatures advance the date of returning vegetation following winter, leading to the
earlier revival of hosts [56,57]. Recent studies show that as temperatures increase, hosts
adapted to cooler climates may suffer an increased risk of infectious disease outbreaks [58].
Furthermore, high irradiance values result in surface drying, combined with the finding
that summer soil drying was exacerbated by earlier spring greening [59], which may
increase migration for local food shortage, leading to more contact with infectious rodents.
Moreover, marmots can suffer declines in body condition because of food decline, tending
to exhibit easier defenses by infectious fleas [60]. SM and PDSI were equally variables
related to water; thus, they were explained through the influencing mechanism the same
as precipitation.

4.3. Human Disturbance for Plague Distributions

The reduction of plague because of increased human disturbance can be explained
by two factors: first, the 1990s saw serious advancements in the prevention and control of
plague, enabling comprehensive monitoring and control of plague among animals, which
played an active role in weakening plague intensity (Figure S2) [61]. Second, human distur-
bance destroys suitable habitats for hosts, resulting in lower abundance thresholds of host
populations, thereby decreasing local plague transmission [62]. Unfortunately, other sites
with modified habitats (e.g., anthropogenically restored ecological and agricultural sites)
may later mediate reservoir abundance and cause changes in rodent and flea community
composition, increasing plague risk [35,63]. Additionally, rodents enter sites where the
ecology is more susceptible to plague [64]. This explains why plague increased in S5 in our
results [65]. Therefore, environmental change should be stressed, and active surveillance
programs should be coordinated to prevent the re-emergence of plague [66].
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This study had several limitations. There may exist biases in our data as epidemic data
were more often collected from general surveillance after human plague was identified.
Some sites with adapted environments for plague may thus have not been explored;
consequently, our samples may fail to represent all the possible environmental conditions,
resulting in a risk underestimation. Additionally, the modelling results were geographical
distributions that conformed to the constraint of all the environmental factors based on
the epidemic data. However, the barrier restrictions, dispersal disequilibrium, or negative
interactions were not considered [67,68], which could result in overestimation of risk [69].
Moreover, we used plague data from the two main hotspots, Qinghai Province and the
Tibet Autonomous Region; however, there are risk areas in other provinces, such as the
Xinjiang Autonomous Region, which were not considered or modeled (Table 2, Figure 1).

However, these limitations do not invalidate our results and we suggest that our
results still demonstrate alterations of the risks and relative influences, which is essential for
revealing the long-term effects of climate variation on plague. In the future, projections of
plague risk variation under future climate change scenarios are necessary. Homoplastically,
when considering human disturbance, it would be invaluable if deeper research could be
devoted to understanding the long-term effects on plague risks of eco-relevant exploitation
and conservation.

5. Conclusions

The study demonstrated differences in the ranges of plague for the five different
stages over the TP from 1954–2016. For all stages, the modeled distributions were in
agreement with the historical data. The modifications of plague risk regions revealed
potential synergistic effects between plague and ecological variability. Specifically, we
found that the degree of difference in primary controlling factor compositions changed the
spatial pattern of the plague. Generally, climate change-induced wetting generates more
favorable sites for plague and may further influence niche differentiation of the Himalayan
marmot plague. However, despite the strong connection between climate and plague, we
detected significant improvements in human plague dynamics. Our results had advantages
on the quantitative description of plague dynamics characterization and generalization of
occurrence regularity.
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