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Background: This study proposes machine learning-driven data preparation

(MLDP) for optimal data preparation (DP) prior to building predictionmodels for

cancer cohorts.

Methods: A collection of well-established DP methods were incorporated for

building the DP pipelines for various clinical cohorts prior to machine learning.

Evolutionary algorithm principles combined with hyperparameter optimization

were employed to iteratively select the best fitting subset of data preparation

algorithms for the given dataset. The proposed method was validated for

glioma and prostate single center cohorts by 100-fold Monte Carlo (MC)

cross-validation scheme with 80-20% training-validation split ratio. In

addition, a dual-center diffuse large B-cell lymphoma (DLBCL) cohort was

utilized with Center 1 as training and Center 2 as independent validation

datasets to predict cohort-specific clinical endpoints. Five machine learning

(ML) classifiers were employed for building prediction models across all

analyzed cohorts. Predictive performance was estimated by confusion matrix

analytics over the validation sets of each cohort. The performance of each

model with and without MLDP, as well as with manually-defined DP were

compared in each of the four cohorts.

Results: Sixteen of twenty established predictivemodels demonstrated area under

the receiver operator characteristics curve (AUC) performance increase utilizing

the MLDP. The MLDP resulted in the highest performance increase for random

forest (RF) (+0.16 AUC) and support vector machine (SVM) (+0.13 AUC) model

schemes for predicting 36-months survival in the glioma cohort. Single center

cohorts resulted in complex (6-7 DP steps) DP pipelines, with a high occurrence of

outlier detection, feature selection and synthetic majority oversampling technique
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(SMOTE). In contrast, the optimal DP pipeline for the dual-center DLBCL cohort

only included outlier detection and SMOTE DP steps.

Conclusions: This study demonstrates that data preparation prior to ML

prediction model building in cancer cohorts shall be ML-driven itself, yielding

optimal prediction models in both single and multi-centric settings.
KEYWORDS

cancer, hybrid imaging, PET, data preprocessing, machine learning
Introduction

Cancer is the leading cause of death worldwide, accounting

for approximately 10 million death cases in 2020 (1). Molecular

and hybrid imaging have a prominent role in cancer detection,

diagnosis and evaluation by assessing physiological aspects on a

molecular level non-invasively (2, 3). Hybrid imaging provides

both morphological and functional information of patients, as

well as the assessment of quantitative information for tumor

characterization (4), however, it is mainly used for visual

assessment in the clinical routine. In contrast, recent studies

have demonstrated the added value of radiomics to analyze

tumors directly in imaging data. As such, radiomics was shown

to predict clinical endpoints, such as survival, risk assessment,

treatment response as well as to characterize tumor

heterogeneity (5–7). Here, the Imaging Biomarker

Standardization Initiative (IBSI) has been aiding to execute

and report radiomics analyses in a standardized way in order

to support repeatability of derived features (8). Once established,

radiomics readouts can be used in combinations with machine

learning (ML) approaches to establish high performing

predictive models (9–14). Due to the low sample count as a

natural characteristic of hybrid imaging datasets, classical ML

approaches are preferred over deep learning (DL) algorithms

that demand large scale input data for model training (15–17).

Nevertheless, radiomic studies routinely encounter

challenges, such as high feature counts (sparse feature spaces

for ML) as well as high feature redundancy when combined with

ML approaches (18, 19). In addition, the presence of outliers or

borderline cases may further affect the performance of ML

prediction models (20, 21). Last, class imbalance, originating

from sparse occurrence of various disease subtypes further

influences ML predictive performance, where minority

subtypes can be systematically misclassified (22, 23). The

above properties are representative in cancer cohorts.

Therefore, data preparation is increasingly becoming a
02
necessity in radiomic studies combined with ML approaches

to build oncological prediction models (24–26).

Data preparation refers to various methods that are

performed prior to ML to optimize the training data for e.g.,

subclass imbalance correction, outlier handling, as well as feature

selection and dimensionality reduction. While data preparation

remains underrepresented in the field of hybrid imaging ML

analysis, it has been estimated that approximately 70% of

workload is spent with manual data preparation prior to ML

in industry environments driven by ML (27, 28).

Since determining the ideal configuration of data

preparation is a complex and time-consuming process, we

hypothesize that it shall become ML-driven on its own, thus,

maximizing model performance in various cancer cohorts and

significantly reducing the time for the creation of ML workflows.

Therefore, the objectives of this study were: (a) to propose an

ML-driven data preparation (MLDP) approach which

automatically selects consecutive data preparation algorithms

and their hyperparameters for defining a data preparation

pipeline prior to ML-based prediction modelling. (b) to

estimate the added value of MLDP in various ML predictive

models, comparing their respective predictive performance with

and without MLDP, as well as with manual preparation.
Materials and methods

Data collection

In this study, three clinically relevant cancer cohorts were

included retrospectively to investigate the added value of ML-

driven data preparation (MLDP) (Figure 1). Written informed

consent was obtained from all patients before examination and

their respective studies were approved by their local institutional

review boards (10, 29, 30). The cohort selection process focused on

collecting cancer imaging cohorts of various imaging systems,
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tracers, sample sizes, feature counts and subclass imbalance ratios.

In addition, all datasets were composed of radiomic features

coming from different imaging modalities (Table 1). Two out of

three analyzed cohorts originated from a single center-only, and

one originated from two centers. See Figure 1 for the CONSORT

diagram of the study. For the Imaging Biomarker Standardization

Initiative (IBSI)-conform extracted radiomic features of each

involved radiomic study, see their respective references.
Frontiers in Oncology 03
Dataset characteristics analysis

Outlier and borderline scores were calculated to estimate the

presence of outliers and borderline samples within the analyzed

datasets. The isolation forest (31) method was utilized for outlier

detection. To determine the outlier score, the percentage of

detected outliers was calculated with respect to total sample

count. For borderline score calculation, Tomek Links (32) was
frontiersin.org
TABLE 1 Characteristics of cancer cohorts used in study.

Cohort Prediction Centers Data Samples Features Imbalance ratio [%] Reference

Glioma 36-months survival Single 11C-MET PET 69 160 67-vs-33 (29)

Prostate cancer high-vs-low risk Single 68GA-PSMA PET/MRI 57 306 52-vs-48 (10)

DLBCL Center 1 24-months progression Dual 18F-FDG PET/CT 44 57 32-vs-68 (30)

DLBCL Center 2 41 39-vs-61
MET, Methionine; PET, Positron Emission Tomography; FNA, Fine Needle Aspiration; PSMA, Prostate specific membrane antigen; MRI, Magnetic resonance imaging; CT, Computed
Tomography; DLBCL, Diffuse large B-cell lymphoma.
FIGURE 1

In this study, two single center glioma (29) and prostate (10) cancer and one dual-center diffuse large B-cell lymphoma (DLBCL) (30) cohorts
were analyzed retrospectively. Outlier and borderline scores were calculated for all cohorts. For single center data, 100-fold Monte Carlo (MC)
cross-validation scheme was utilized with 80%-20% training/validation data split. For dual center DLBCL analysis, Center 1 dataset was used for
training and Center 2 for independent validation. Predictive models were established with and without machine learning-driven data preparation
(MLDP) per training-validation pair in each cohort. All model building utilized five machine learning (ML) schemes: Random Forest (RF), Multi
Gaussian (MG), Extreme gradient boosting (XGBoost), Neural networks (NN) and support vector machine (SVM). Predictive performance of each
model scheme was evaluated with confusion matrix analytics. Performance comparison of ML models with and without incorporated MLDP was
conducted for each analyzed cohort. DLBCL, Diffuse large B-cell lymphoma; ACC, Accuracy; SNS, Sensitivity; SPC, Specificity; PPV, Positive
predictive value; NPV, Negative predictive value; AUC, Area under the receiver operator characteristics curve.
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utilized including the minority subclass samples. The percentage

of the minority borderline samples presence was then calculated

with respect to total sample count. See Supplemental S1 for

hyper-parameters of the utilized algorithms for both outlier and

borderline score calculations.
Data preparation methods

In this study, various, well established, data pre-processing

methods were incorporated to perform data preparation prior

to machine learning. Synthetic minority oversampling

technique (SMOTE) (33), borderline synthetic minority

oversampling technique (BSMOTE) (34), and random

oversampling method (35) were employed to handle subclass

imbalance correction. Tomek link (32) approach was utilized

for data purification. Isolation forest (31) was employed for

outlier detection and elimination. R-squared based sequential

forward selection (SFS) (36) was employed to perform feature

selection and principal component analysis (PCA) (37) was

incorporated to reduce high number of dimensions with data

transformation approach.
Data preparation pipelines

Data preparation pipelines – containing an ordered list of

data preparation steps – were defined for each cohort

automatically (see Sec. ML-driven data preparation). To guide

and regulate this process, this study defined restrictions to build

data preparation pipelines. Restrictions covered the range of

maximum number of methods allowed in a pipeline, no

repetitions of the same method and restrictions regarding co-

existence of certain method pairs in each pipeline. For details of

these restrictions and the way of building pipelines see

Supplemental S2.
Frontiers in Oncology 04
ML-driven data preparation

This study utilized machine learning approaches to identify

the optimal data preparation pipeline for each of its input

cohorts, where receiver operator characteristics (ROC)

distance fitness is measured strictly over the training dataset

(29). The validation dataset was not involved in any decision

making processes. For this purpose, all possible pipeline variants

that satisfy the defined restrictions were pre-generated and

stored in a pipeline tree per cohort (Figure 2). The tree

contains pipelines with identical preparation algorithms

included but in different sequential order, thus allowing the

MLDP to evaluate the importance of preparation steps ordering

within a pipeline. The machine learning approach to build data

preparation pipelines utilized evolutionary principles (38–40) to

iteratively select pipeline variant pairs from the pipeline tree,

followed by generating a new offspring pipeline from them,

which also satisfies the pipeline restrictions. In addition,

hyperparameter optimization of established pipelines was also

performed (see Supplemental S3 and S6). This approach

naturally converged towards an optimal pipeline. See

Supplemental S3 for details of the evolutionary algorithm.
Predictive performance estimation

To estimate the performance of the evolutionary algorithm

for pipeline building, 100-fold Monte Carlo (MC) cross-

validation with training-validation split of 80-20% was utilized

for single-center cohorts, which assures lower data variance due

to the high iteration count compared to other suggested cross-

validation methods such as Leave One Out (LOO) (41). In case

of the dual-centric cohort, Center 1 and Center 2 was chosen to

act as a training set and independent validation set respectively.

The evolutionary algorithm utilized solely the given training

dataset to build an optimal data preparation pipeline, thus, risk
FIGURE 2

Pipeline tree generation based on the pre-determined restriction conditions. The pipeline restriction table contains rules regarding permitted,
consecutive data preparation steps and the permitted number of repetitions of particular data preparation methods. The Tree builder generates
a tree of all possible data preparation pipelines, satisfying the rules defined in the Pipeline restriction table. A particular pipeline is defined as the
ordered steps of data preparation methods from tree root to any leaf. Px, randomly selected data preparation pipeline; FS, Feature selection; DR,
Dimensionality reduction; OD, Outlier detection; US, Undersampling; OS, Oversampling.
frontiersin.org
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of overfitting the model was minimized. The ML predictive

model was established on the preprocessed training dataset

(Figure 3). In order to estimate machine learning method bias,

this study built five different machine learning models for each

preprocessed training set utilizing random forest (RF) (42),

multi-gaussian (MG) (29), support vector machine (SVM)

(43), extreme gradient boosting (XGBoost) (44) and neural

networks (NN) (45).

To estimate the performance of the MLDP-trained pipeline

in each Monte Carlo fold, the respective validation dataset was

processed by its methods that operate in the feature space (e.g.,

feature selection and dimensionality reduction). The reason of

not executing the whole pipeline on the validation set was that

some steps, such as SMOTE are operating in sample space and

hence, shall only be applied on the training set (25). The

processed validation cases were inputs of the RF, SVM,

XGBoost, NN and MG model variants per cross-validation

fold. Predictive performance estimation across 100-folds for

single-center studies and across Center 2 independent

validation cases of the dual-center study were done by

confusion matrix analytics (24), where accuracy (ACC),

sensitivity (SENS), specificity (SPEC), positive predictive value

(PPV), negative predictive value (NPV) and area under the

receiver operator characteristics curve (AUC) were calculated

per model variant across validation samples. The significance of

ML predictive model performance with and without MLDP was

analyzed with ANOVA test (Microsoft Excel 2016), resulting in

dedicated p-values, where p<0.05 was considered as significance

threshold. The analysis was conducted over validation results

across all MC folds for each predictive model. In addition, mean,

standard deviation and confidence interval (CI 95%) were

calculated. In order to compare the performance of MLDP to

manual preparation, a fixed data preparation pipeline including

feature selection and SMOTE algorithms was incorporated. The

choice of data preparation steps was based on the literature

review of similar works that addressed the high feature
Frontiers in Oncology 05
dimensionality of radiomic datasets and the highly imbalanced

nature of diseases they attempted to characterize (13, 46, 47). In

addition, comparisons without MLDP or any preprocessing

were also performed. In latter case, the datasets were not

modified at all but taken for analysis on an as-is basis.
Results

Dataset characteristics analysis

The outlier score calculations revealed low outlier presence

across all analyzed cohorts (0.0% - 2.4%). The Center 1 cohort

from the DLBCL dataset presented outliers (2.4%), while Center

2 had no outliers present (0.0%). The average borderline score

across all cohorts were 25.7% (21.4% - 29.6%). See Table 2 for

outlier and borderline score calculations across all cohorts.
ML-driven data preparation

Analysis of data preparation method occurrences per 100

MC cross-validation folds revealed high presence of the outlier

detection algorithm (IF) in pipelines with 70% - 80% occurrence

in single-center cohorts. In the dual-center cohort, both IF and
FIGURE 3

The concept of machine learning-driven data preparation (MLDP). Given a training and validation subset pair, the training subset is the input of
MLDP, which has access to the pipeline tree (Figure 2). The MLDP identifies an optimal data preparation pipeline from the tree by solely
analyzing the training subset. The preprocessed training dataset is the input for machine learning (ML) to build the prediction model. Data
preparation algorithms that operate in the feature space are also applied to the validation subset (e.g., feature selection). The preprocessed
validation subsets serve as inputs to the built ML prediction model to estimate cross-validation performance of the given model. ML – Machine
learning; * - only preparation steps, which operate in feature space (feature selection/dimensionality reduction) are applied on validation data.
TABLE 2 Outlier and borderline score ratio across the MC folds of
each analyzed cohort.

Prostate
cancer

Glioma DLBCL
Center 1

DLBCL
Center 2

Outlier
score

0.5 1.3 2.4 0.0

Borderline
score

29.6 21.4 29.3 25.0
DLBCL, Diffuse large B-cell lymphoma. Scores are expressed in percentages [%].
frontiersin.org
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SMOTE were present in the optimal pipeline as provided by the

MLDP. Furthermore, SMOTE yielded high presence in single-

center data preparation pipelines (39% - 50%) as well as the R-

Squared feature selection method (38% - 82%). Random

undersampling occurred moderately (30% - 35%). Borderline

SMOTE and Tomek Links showed minor impact with 0% - 4%

and 0% - 14% occurrences, respectively. See Table 3 for detailed

description of data preparation pipelines across the 100 Monte

Carlo cross-validation folds for all cohorts.

Established data preparation pipelines showed high

complexities in preparation the prostate cancer, and glioma

cohorts, by incorporating high numbers of data preparation

methods (n=6-7). In contrast, the pipelines for preparing the

training data for DLBCL machine learning analysis consisted of

only two methods (Table 3).
Predictive performance estimation

The random forest (RF) model scheme achieved the highest

performance increase of +0.16 AUC (p<0.001) with MLDP (0.87

AUC) compared to no MLDP (0.71 AUC) for predicting 36-

months survival in the glioma cohort. Similarly, the SVM

demonstrated a +0.13 AUC (p<0.001) increase with MLDP

(0.86 AUC) compared to no MLDP (0.73 AUC) in the same

cohort. In contrast, MG demonstrated the lowest performance

increase of +0.01 AUC with MLDP (0.75 AUC). On average, the

RF and NN models benefited the most with the average

performance increase of +0.06 AUC across all cohorts, while

XGBoost model demonstrated the least performance increase of

+0.01 AUC. Average performance increase across all ML

approaches was +0.05 AUC while utilizing MLDP.

In addition, ML schemes with utilizing MLDP outperformed

the manual data preparation-based models across all cohorts,

except for predicting 36-months survival in the glioma cohort

where the NN model benefited equally from both data

preparation approaches (0.80 AUC).

On average, the highest increase of +0.09 AUC was achieved

in the glioma cohort across all ML methods when utilizing

MLDP (0.85 AUC). In contrast, ML models for prostate cancer

high-vs-low risk prediction benefited the least from utilizing

MLDP with +0.01 AUC (0.78 AUC). See Table 4 for the cross-
Frontiers in Oncology 06
validation AUC of all cohorts and MLmethods with and without

MLDP, with manual data preparation, as well as for their

respective p-values.

Models with unchanged AUC performance for predicting

high-vs-low risk in prostate cancer cohort still demonstrated a

more balanced sensitivity (SENS) and specificity (SPEC) with

MLDP. Utilizing MLDP, the NN model yielded 0.77% SENS and

0.78% SPEC, respectively, compared to 0.83% SENS and 0.71%

SPEC without MLDP. Similarly, the SVM model yielded 0.76%

SENS and 0.78% SPEC with MLDP compared to no MLDP

(0.80% SENS, 0.74% SPEC). See Supplemental S4 for sensitivity,

specificity, positive predictive value, negative predictive value

and accuracy cross-validation values across each model and

cohort. For detailed information about conventional statistical

analysis such mean, standard deviation, confidence interval (CI

95%) and p-values of each establ ished model see

Supplemental S5.
Discussion

In this study we proposed a machine learning-driven data

preparation approach (MLDP) to automate the building process

of data preparation pipelines prior to building ML prediction

models for radiomic studies. We investigated the effects of the

proposed approach on machine learning predictive performance

across various single and dual-center cancer cohorts and

achieved up-to +0.16 AUC increase compared to performing

no data preparation and up to +0.08 AUC com-pared to

manually performed data preparation.

Across all ML approaches, the prediction models established

for glioma cohort benefited the most from MLDP (+0.09 AUC)

compared to +0.05 AUC from manual DP, while the models for

prostate cohort did not significantly benefit from it. This is in

line with their respective imbalance ratios (0.33 for glioma vs.

0.48 for prostate), implying, that class imbalance – even with

utilizing imbalance correction approaches such as SMOTE – has

the most-influential effect on ML prediction. The above findings

are logical, given that most disease subtypes have an imbalanced

occurrence (10, 13, 24, 25, 46–48). The RF and NN methods

demonstrated the highest average AUC increase of +0.06 across

all cohorts, while XGBoost yielded the lowest AUC increase of
TABLE 3 Data preparation method occurrences across the 100 Monte Carlo cross-validation folds per cohort.

Cohort OD FS RO RU SMOTE BSMOTE TL

Prostate 70 38 9 35 39 4 8

Glioma 80 82 5 30 50 0 14

DLBCL 100* 0 0 0 100* 0 0
frontiersin.o
Note that non-zero occurrences of DP steps do not imply that they were mutually present in particular pipelines. Method occurrence is shown in percentage [%]. OD, Outlier detection; FS,
Feature selection; RO, Random oversampling; RU, Random undersampling; SMOTE, Synthetic minority oversampling technique; BSMOTE, Borderline synthetic minority oversampling
technique; TL, Tomek Links.
Cell color codes demonstrate data preparation occurrences within the range of 0% to 100% with bright and dark colors respectively. * - occurrence in multi-center data analysis is always
100% due to independent validation (single run – no cross-validation).
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average +0.01. Nevertheless, XGBoost demonstrated a relatively

high performance compared to other ML approaches before

applying MLDP. We assume that this is due to the guided

training process of XGBoost, also referred to as gradient

boosting (44). The highest average AUC of 0.85 across all

cohorts was achieved by the RF models when utilizing MLDP.

MLDP pipelines that increased overall performance the

most, were also the most complex, containing an average of 6-

7 data preparation steps. The highest occurrence of data

preparation steps across single-center MC folds were outlier

detection (70% - 80%), imbalance correction (SMOTE) (39% -

50%) and feature selection (38% - 82%) methods. On the other

hand, MLDP only included two data preparation steps (OD and

SMOTE) in the dual-center cohort. We consider that the high

data preparation step count in single center studies may be due

to the chosen cross-validation scheme. Monte Carlo cross-

validation performs a random split to generate a training and

a validation subset. It is one of the preferred cross-validation

approaches, since it minimizes the risk of training subset

selection bias (49). Nevertheless, selected splits may result in

training-validation feature value distributions that are less

similar compared to distributions of a dual, or multi-center

dataset which represents reality. While this phenomenon

appears suboptimal, it is one of the best practices to avoid

overestimating single-center prediction model performance

(4). Since MLDP was utilized per-training split, we assume
Frontiers in Oncology 07
that the high preparation step count is the result of attempting

to counter-balance the above effect.

Single-center machine learning studies even with utilizing

cross-validation may tend to over-estimate performance because

of the bias in the data itself (49). Therefore, the characteristics of

MLDP outputs shall not be interpreted solely by single-center

investigations. Nevertheless, our dual-center cohort analysis

successfully demonstrated the expected behavior of MLDP.

Specifically, the Center 1 dataset had detectable outliers (2.4%) in

the DLBCL dual-center cohort. The optimal data preparation steps

as built by the MLDP contained outlier detection (OD) as a

necessary step for preparation Center 1 prior to machine

learning. The dual-center DLBCL dataset originated from the

same country and region representing similar cohort

characteristics, even though the imaging data came from two

different scanner types. Consistently, the DLBCL optimal

pipeline contained only two data preparation steps that were

sufficient to yield high-performing prediction models in this

cohort. Nevertheless, feature distribution similarities in case of

multi-national and/or multi-centric datasets is not guaranteed and,

thus, may require a more complex data preparation pipeline.

Even though borderline score calculations yielded relatively

high presence across all cohorts (21% – 30%), we recorded low

borderline handling method (BSMOTE and TL) occurrences across

all data preparation pipelines (4% - 14%). This may have two

reasons: first, some ML methods may be able to handle borderline
TABLE 4 The cross-validation area under the receiver operator characteristics curve (AUC) of all cohorts and machine learning (ML) methods with
and without ML-driven data preparation (MLDP) as well as manually preprocessed across Monte (MC) cross-validation folds.

Classifier MLDP Prostate Glioma DLBCL Average

AUC P-value AUC P-value AUC P-value

RF No 0.77 0.002 0.71 <0.001 0.76 NA* 0.75

Yes 0.79 0.87 0.78 0.81

Manual 0.77 0.79 0.76 0.77

MG No 0.74 0.496 0.73 <0.001 0.68 NA* 0.72

Yes 0.75 0.83 0.74 0.77

Manual 0.74 0.82 0.73 0.73

XGBoost No 0.79 0.244 0.88 0.028 0.67 NA* 0.78

Yes 0.79 0.92 0.67 0.79

Manual 0.75 0.84 0.67 0.75

NN No 0.78 0.761 0.71 <0.001 0.55 NA* 0.68

Yes 0.78 0.80 0.63 0.74

Manual 0.73 0.80 0.61 0.71

SVM No 0.77 0.517 0.75 <0.001 0.63 NA* 0.72

Yes 0.77 0.85 0.69 0.77

Manual 0.76 0.82 0.67 0.75

Average No 0.77 0.404 0.76 <0.001 0.66 NA* 0.05

Yes 0.78 0.85 0.70

Manual 0.75 0.81 0.69
fron
RF, Random Forest; MG, Multi gaussian; XGBoost, Extreme gradient boosting; NN, Neural networks; Cell color codes demonstrates the increased/unchanged performance of ML models
combined with. In addition, p-values of compared predictive models (with and without MLDP) are included.
tiersin.org

https://doi.org/10.3389/fonc.2022.1017911
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Krajnc et al. 10.3389/fonc.2022.1017911
cases more effectively compared to others, especially if they rely on

kernel methods (e.g., SVM) or if they are ensemble approaches (e.g.,

RF, XGBOOST). And, secondly, the Tomek Links approach may

overestimate the percentage of borderline samples, as it does not

consider individual ML strategies to handle such samples.

The application of data preparation principles has been

recently increasing in machine learning, radiomics and

imaging analysis studies (50) (13, 24, 25, 46–48). These studies

rely on manually pre-selected singular data preparation steps or

combining thereof. Cysouw et al. performed dimensionality

reduction by applying the principal component analysis

(PCA); in addition, they performed subclass imbalance

correction using SMOTE to characterize prostate cancer in

[18F]DCFPyL PET (13). Umutlu et al. utilized least absolute

shrinkage and selection operator (LASSO) regression to perform

feature preselection, and in addition the employed adaptive

synthetic (ADASYN) approach for subclass imbalance

correction in their [18F]-FDG PET/MRI study to predict

hormone receptor status and proliferation rate (48). Chang

et al. employed SMOTE as subclass imbalance correction

technique in their PET/CT radiomics study to predict

anaplastic lymphoma kinase (ALK) rearrangement status in

lung adenocarcinoma. In addition, they utilized LASSO

regression for feature selection (46). Sanduleanu et al.

employed recursive feature elimination (RFE) for feature

selection, combined with SMOTE for subclass imbalance

correction in their [18F]FDG-PET/CT radiomics study to

predict tumor hypoxia (47). Parmar et al. investigated the

effects of various feature selection algorithms combined with

different ML classifiers to establish the highest performing

predictive model for lung cancer and head and neck cancer

cohorts (51, 52). Authors reported highest performing models of

0.69 AUC and 0.68 AUC respectively over independent

validation data. Xie et al. investigated class imbalance

correction approaches in a cohort of head and neck cancer

patients in their [18F]FDG-PET/CT-based radiomics study, by

testing various resampling techniques for generating minority

subclass samples and for cleaning noisy and redundant data (25).

Authors evaluated their preprocessed data using various

classifiers, with highest reported performance increase of +0.32

AUC (0.50 AUC vs 0.82 AUC) with applying data resampling

techniques. Their study utilized individual pre-processing

methods, without combining them prior to machine learning.

Furthermore, only Xie et al. compared predictive performance

with and without data preparation (25). Lv et al. employed

LASSO logistic regression for feature selection combined with

various oversampling techniques for imbalance correction to

predict lymph node metastasis (LNM) in clinical stage T1 lung

adenocarcinoma (LUAD). The authors reported highest

performance increase of +0.05 AUC (0.70 AUC vs 0.75 AUC)

utilizing the edited nearest neighbors (ENN) method (53). Du

et al. utilized various feature selection techniques combined with
Frontiers in Oncology 08
different classification algorithms for recurrence vs

inflammation differentiation model establishment. The authors

reported highest predictive performance of 0.89 AUC (0.83

sensitivity vs 0.87 specificity) utilizing the cross-combination

of fisher score (FSCR) and random forest classifier (54). None of

the above studies performed hyperparameter optimization of the

utilized data preparation methods or automatized the building of

data preparation pipelines.

Compared to the above studies, our proposed data

preparation approach differs in several aspects: First, prior

studies focused only on subclass imbalance correction and

feature preselection, without handling outliers in their training

data. Second, prior studies performed data preparation

manually. This allows retesting various data preparation steps

while utilizing the whole dataset prior to executing and reporting

the given study, thus, may expose the given study to data leakage.

In contrast, our approach provides a data preparation pipeline

for the given data automatically, eliminating the possibility of

data leakage that may occur due to incremental manual reuse of

the whole dataset. Third, our solution provides hyperparameter

optimization of various data preparation approaches being

present in each pipeline on subsets of the training set.

The above findings imply that data preparation is indeed a

non-trivial approach, however, it is a pre-requisite for state-of-

the-art machine learning. Given the high level of expertise and

the amount of time required to build optimal data preparation

pipelines (27, 28), we argue that such activities may likely result

in suboptimal prediction models, when performed manually.

Given the above characteristics of our MLDP, it is applicable to a

wide range of machine learning scenarios even beyond the scope

of medical imaging. In contrast to the above, we wish to

emphasize that MLDP does not substitute high-quality input

data or clinical domain knowledge, which is still a prerequisite –

even with utilizing MLDP – to properly collect, interpret and

annotate data as well as to identify clinically-relevant hypotheses

to be tested by building prediction models.

We also wish to highlight the relationship of our MLDP

approach to automated machine learning (AutoML) approaches

(30, 55). AutoML optimizes data preparation and ML classifier

hyperparameters together. Therefore, in case of AutoML, the

contribution of DP steps is not possible to analyze in retrospect.

In contrast, our MLDP approach intentionally wishes to handle

DP independently from ML, as it can better support the

identification of biomarkers and the interpretation of data

characteristics for clinicians before ML takes place.

Nonetheless, our study has a few limitations: First, only a

limited number of preparation methods was included in the

MLDP. Therefore, extending it with additional data preparation

approaches may increase the resulting ML model performances.

Second, we used default parameters for the utilized ML

algorithms to build prediction models, while hyperparameter

optimization (56) may further increase predictive performance.
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Conclusions

Automated data preparation (MLDP) can help increase the

predictive performance of machine learning models, while

eliminating the need of manual interventions to preprocess the

data. Therefore, we consider that future machine learning

studies, particularly in the field of clinical research shall rely

on MLDP as a standard data preparation approach instead of

performing such steps manually.
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