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NARRATIVE REVIEW
Farnesoid X Receptor Agonists: A Promising Therapeutic
Strategy for Gastrointestinal Diseases
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Farnesoid X receptor (FXR) agonists have emerged as a
promising therapeutic strategy for the management of
various gastrointestinal (GI) diseases, including primary
biliary cholangitis, nonalcoholic fatty liver disease, in-
flammatory bowel disease, alcohol-related liver disease,
and primary sclerosing cholangitis. In this review, we
discuss the mechanisms of action of FXR agonists,
including their metabolic and immunomodulatory effects,
and provide an overview of the clinical evidence support-
ing their use in the treatment of GI diseases. We also
highlight the safety, adverse effects, and potential drug
interactions associated with FXR agonists. While these
agents have demonstrated efficacy in improving liver
function, reducing hepatic steatosis, and improving histo-
logical endpoints in primary biliary cholangitis and
nonalcoholic fatty liver disease, further research is needed
to determine their long-term safety and effectiveness in
other GI diseases, such as inflammatory bowel disease,
alcohol-related liver disease, and primary sclerosing chol-
angitis. Additionally, the development of next-generation
FXR agonists with improved potency and reduced side ef-
fects could further enhance their therapeutic potential.
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Introduction
Overview of FXR Agonists

Farnesoid X receptor (FXR) agonists are a class of
drugs that have shown potential for the treatment of

several gastrointestinal (GI) diseases. FXRs are nuclear re-
ceptors that are predominantly expressed in the liver and
intestine, among other tissues such as adipose tissue,
vascular endothelium, and pancreas, and are involved in the
regulation of bile acid homeostasis, glucose and lipid
metabolism, as well as immune responses.1,2 FXR agonists
are synthetic compounds that act by activating FXRs, leading
to the regulation of target genes that play important roles in
those biological processes. These agents have shown
promise in the treatment of GI diseases, including primary
biliary cholangitis (PBC) and nonalcoholic fatty liver disease
(NAFLD) among others. As the incidence of GI diseases is
increasing worldwide, FXR agonists offer a novel thera-
peutic strategy to manage these conditions.
Mechanisms of Action of FXR Agonists
for GI Diseases
Metabolic Effects of FXR Agonists in GI Diseases

FXRs play a crucial role in regulating the metabolism of
bile acids, lipids, and glucose. In the liver, FXR activation
leads to the suppression of bile acid synthesis and the
promotion of bile acid excretion, which can reduce the
accumulation of toxic bile acids in the liver. Bile acids are
the main endogenous activators of FXR as part of a negative
feedback loop. This is mainly driven by the interaction be-
tween FXR and small heterodimer partner (SHP). When bile
acids are present in high concentrations in the hepatocyte,
FXR is activated and stimulates the expression of SHP, which
then binds to and inhibits the expression of genes involved
in bile acid synthesis from cholesterol, such as CYP7A1 and
CYP8B1. SHP activation also promotes the conjugation of
bile acids with taurine or glycine.3 Furthermore, FXR acti-
vation leads to the modulation of the expression of bile acid
transporters in both the hepatocytes and distal ileal enter-
ocytes making it a key player in the enterohepatic circula-
tion of bile acids.4–8

FXR also plays a role in lipid metabolism by reducing
hepatocyte cholesterol accumulation by inhibition of
CYP7A1 and CYP8B1 via SHP and FGF19 activation. It
further directly promotes free fatty acid beta oxidation, in-
hibition of hepatic lipogenesis, reduction of very low-density
lipoprotein production, and promotion in triglyceride
clearance.9
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In addition, FXR plays a significant role in glucose
metabolism by regulating various metabolic pathways in the
liver and intestine. Activation of FXR can improve insulin
sensitivity in the liver as well as in peripheral tissues like
skeletal muscle and adipose tissue. This is achieved by
reducing circulating levels of triglycerides and free fatty
acids, which impair insulin signaling and reduce pancreatic
insulin secretion, resulting in “lipotoxicity”. By attenuating
this phenomenon, FXR activation leads to increased
glycogen synthesis and reduced gluconeogenesis. FXR acti-
vation promotes glycogen synthesis by inducing glycogen
synthase kinase 3-alpha expression and represses key en-
zymes involved in gluconeogenesis, such as phosphoenol-
pyruvate carboxykinase, fructose-1, 6-bisphosphatase 1, and
G6Pase, through a SHP-dependent mechanism.9

As such, given the central role FXR plays in bile acid,
lipids, and glucose metabolism, it is a promising therapeutic
target in cholestatic liver diseases such as PBC and primary
sclerosing cholangitis (PSC) as well as metabolic liver dis-
eases, specifically NAFLD.
Immunomodulatory Effects of FXR Agonists in GI
Diseases

FXR agonists not only regulate metabolic processes but
also exert immunomodulatory effects on cells of the innate
immune system. Macrophages and dendritic cells express
both GPBAR1 and FXR receptors, while evidence suggests
that natural killer T cells only express FXR.10 Activation of
these receptors by bile acids in macrophages promotes a
shift toward the anti-inflammatory M2 phenotype, which is
associated with an upregulation of interleukin (IL)-10 and a
downregulation of the proinflammatory cytokines IL-6 and
INF-g.11 In dendritic cells, bile acids down-regulate the
production of tumor necrosis factor-a and IL-12, which are
key cytokines involved in the activation of Th1 cells and the
promotion of inflammatory responses.10 Bile acids also
decrease the expression of osteopontin in natural killer T
cells, which plays a crucial role in the development of
various autoimmune diseases and inflammation.12,13

Therefore, FXR agonists may have potential therapeutic
applications in the treatment of inflammatory bowel disease
(IBD) and other autoimmune disorders, where dysregulated
innate immune responses play a crucial role in the patho-
genesis of the disease.

The key mechanistic effects of FXR and FXR agonists are
summarized in (Figure).
Clinical Evidence for FXR Agonist
Usage in GI Diseases
Primary Biliary Cholangitis

PBC, previously referred to as primary biliary cirrhosis,
is a rare liver disease caused by autoimmune factors that
lead to inflammation and destruction of small and inter-
mediate bile ducts within the liver. The disease progresses
slowly over time and can cause cholestasis, liver fibrosis,
and, subsequently, cirrhosis and end-stage liver disease. The
symptoms and clinical course of PBC can vary among in-
dividuals. The pathogenesis of PBC is complicated and in-
volves multiple factors, including immunological changes
that cause damage to bile ducts, as well as the toxic effects
of cholestasis and bile acids, which contribute to the loss of
bile ducts, hepatopathy, and progressive fibrosis.14–17

The mainstay of therapy for PBC is ursodeoxycholic acid
(UDCA), which improves liver function and prolongs sur-
vival and is supported by the current guidelines.16,18 How-
ever, up to 30%–40% of patients with PBC do not respond
to UDCA, and there is a need for alternative therapies.19,20

The FXR agonist obeticholic acid (OCA) was the first drug
approved for use in PBC as a second-line therapy in patients
who do not respond to UDCA.16 In a randomized, double-
blind, placebo-controlled phase 3 trial (the PBC OCA Inter-
national Study of Efficacy trial), OCA was demonstrated to
significantly reduce biomarkers associated with adverse
clinical outcomes in patients with PBC, including alkaline
phosphatase (ALP), bilirubin, aspartate aminotransferase,
and alanine aminotransferase, compared to placebo.21 In
this 12-month, double-blind, placebo-controlled phase III
trial, 217 patients with PBC were randomly assigned to OCA
at 10 mg (the 10-mg group) or 5 mg with adjustment to 10
mg if applicable (the 5–10-mg group) or placebo. Compared
to placebo, the primary endpoint of ALP level and total
bilirubin decrease was met in 46% and 47% in the 5–10-mg
and 10-mg groups, respectively. Pruritus, a common
adverse effect, was more commonly reported in the OCA
groups (56%–68% vs 38%).21 Similar effects of OCA were
seen in a long-term, randomized, double-blind, placebo-
controlled phase 2 study in patients with PBC, which was
followed up to 6 years. Patients in the OCA 10 mg and 50 mg
groups had significant reductions in ALP compared to the
placebo group (P < .0001).22 Additionally, OCA improved
gamma-glutamyl transpeptidase, alanine aminotransferase,
conjugated bilirubin, and immunoglobulin M, as well as
observed biochemical improvements through 6 years of
open-label extension treatment.

In an open-label extension study, the efficacy of long-
term OCA treatment was assessed in a 5-year follow-up.
Results from an interim 3-year analysis found that concen-
trations of ALP and total and direct bilirubin were signifi-
cantly reduced compared to baseline, suggesting that OCA
improves cholestasis and liver injury in the long term.23

The effects of OCA on histological endpoints in patients
with PBC were also studied in a POISE substudy. Results
from this study showed that OCA was associated with sig-
nificant reductions in collagen area ratio, collagen fiber
density, collagen reticulation index, and fibrosis composite
score. Additionally, OCA was associated with improvements
in ductular injury, fibrosis, and collagen morphometry fea-
tures.24 OCA was also shown to improve hepatic bile acid
excretion in patients with PBC. In a double-blind, placebo-
controlled study, OCA increased the transport of bile acids
from blood to bile, resulting in a reduction in the time that
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Figure.Mechanisms of action of FXR agonists in GI diseases. This figure provides a simplified overview of the mechanisms
through which FXR agonists can impact gastrointestinal diseases. The metabolic effects of FXR agonists can be divided into
three categories: bile acid metabolism, lipid metabolism, and glucose metabolism. Activation of FXR results in suppression of
bile acid synthesis, promotion of bile acid excretion, and reduced toxic bile acid accumulation in the liver. Additionally, FXR
activation reduces hepatocyte cholesterol accumulation, promotes free fatty acid beta oxidation, inhibits hepatic lipogenesis,
reduces VLDL production, and increases triglyceride clearance. FXR activation also leads to improved insulin sensitivity,
reduced circulating levels of triglycerides and free fatty acids, increased glycogen synthesis, and reduced gluconeogenesis.
The immunomodulatory effects of FXR agonists can impact macrophages, dendritic cells, NKT cells, and IBD patients.
Activation of FXR in macrophages causes a shift toward the anti-inflammatory M2 phenotype, upregulation of IL-10, and
downregulation of proinflammatory cytokines IL-6 and INF-g. Bile acids can also down-regulate TNF-a and IL-12 in DCs,
leading to reduced activation of Th1 cells and decreased inflammatory responses. APO-C11, apolipoprotein C-III; BA, bile
acids; BAAT, bile acid-CoA: amino acid N-acyltransferase; BACS, bile acid-CoA synthetase; CYP7A1, Cytochrome P450
Family 7 Subfamily A Member 1; CYP8B1, Cytochrome P450 Family 8 Subfamily B Member 1; FBP1, fructose-1,6-
bisphosphatase 1; FGF19, fibroblast growth factor 19; FXR, farnesoid X receptor; G6Pase, glucose-6-phosphatase; GSK3-
a, glycogen synthase kinase 3-alpha; GI, gastrointestinal; IBD, inflammatory bowel disease; IL, interleukin; INF, interferon;
NKT, natural killer T; PEPCK, phosphoenolpyruvate carboxykinase; PPAR-a, peroxisome proliferator-activated receptor-alpha;
SHP, small heterodimer partner; Th1, T helper 1; TNF, tumor necrosis factor; VLDL, very low-density lipoprotein.
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potentially toxic bile acids stayed in the liver by approxi-
mately one-third.25 Finally, OCA was found to reduce and
stabilize bilirubin in patients with elevated baseline direct
bilirubin levels.26

Taken together, these studies suggest that OCA has
diverse beneficial effects in reducing cholestasis, improving
histological endpoints, and improving hepatic bile acid
excretion in patients with PBC (Table).

OCA was first approved in 2016 by the US Food and
Drug Administration for use in patients with PBC.34 The
current guidelines from the American Association for the
Study of Liver Diseases recommend the use of OCA in
patients who are inadequate responders to UDCA.16

However, it’s important to note that OCA has been asso-
ciated with certain risks. In patients with advanced
cirrhosis, OCA has been linked to a worsening of the
disease and even death. This is likely due to the drug’s
effects on bile acid transport, which can potentially
exacerbate cholestasis in these patients. Furthermore,
high doses of OCA have been linked to an increased risk of
serious adverse effects, including severe pruritus and
potential hepatotoxicity. Therefore, careful dose titration



Table. Summary of FXR Agonists Usage in GI Diseases

Disease Agent Daily dose Effects Trials Citations

PBC OCA 5–10 mg Reduces biomarkers,
improves cholestasis, liver
injury, histological
endpoints, and hepatic bile
acid excretion

POISE, POISE substudy,
12-mo double-blind trial

21–24,26

NAFLD OCA Not specified Improves insulin sensitivity,
liver inflammation, fibrosis,
steatohepatitis activity, and
histologic activity

FLINT, REGENERATE 27,28

Cilofexor Not specified Reduces steatosis,
downstages hepatic
fibrosis without worsening
steatohepatitis (in
combination with
firsocostat)

Phase II study 29

Tropifexor Not specified Dose responseon liver enzyme
elevations and hepatic fat
fraction

Randomized, multicenter,
double-blind phase 2 study

30

Vonafexor Not specified Reduces body weight, liver
enzymes, and liver fat
content

LIVIFY phase IIa study 31

PSC OCA 1.5–3 mg or 5–10 mg Reduces ALP levels by 14%–

25%, depending on dose
and concomitant use of
UDCA

Randomized controlled trial 32

Cilofexor 100 mg Reduces ALP levels by 21%
after 12 wk of treatment

Phase II clinical trial 33

ALP, alkaline phosphatase; FLINT, Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic
steatohepatitis; NAFLD, nonalcoholic fatty liver disease; OCA, obeticholic acid; PBC, primary biliary cholangitis; PSC, pri-
mary sclerosing cholangitis; REGENERATE, Randomized Global Phase 3 Study to Evaluate the Impact on Non-alcoholic
steatohepatitis, With Fibrosis of Obeticholic Acid Treatment; UDCA, ursodeoxycholic acid.
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and close monitoring of liver function tests are crucial
when using this medication.35 As such, in 2021, the Food
and Drug Administration issued a warning restricting its
use in patients with advanced cirrhosis, and subsequently,
the American Association for the Study of Liver Diseases
updated its guidance.36,37
Nonalcoholic Fatty Liver Disease
NAFLD is a common liver disease characterized by the

accumulation of fat in the liver in the absence of excessive
alcohol consumption. NAFLD is closely associated with
obesity, type 2 diabetes, and metabolic syndrome. There are
no approved therapies for NAFLD, and lifestyle modifica-
tions are the mainstay of therapy. FXR agonists have shown
promise in the treatment of NAFLD by improving liver
function, reducing hepatic steatosis, and improving insulin
sensitivity in preclinical studies.38 Several FXR agonists are
being evaluated in clinical trials for the treatment of NAFLD
(Table). A proof-of-concept trial showed that OCA was well
tolerated in patients with NAFLD and type 2 diabetes and
had improvement in insulin sensitivity and markers of liver
inflammation and fibrosis.39 In the multicenter randomized
placebo-controlled trial, Farnesoid X nuclear receptor
ligand obeticholic acid for non-cirrhotic, non-alcoholic
steatohepatitis, OCA was shown to improve NAFLD histo-
logically in 45% of patients when compared to 23% in the
placebo group over a period of 72 weeks.27 This was the
first study to demonstrate that FXR activity may be an
important target in improving the histologic activity of
NAFLD. In the interim analysis of a large ongoing clinical
trial, the Randomized Global Phase 3 Study to Evaluate the
Impact on Non-alcoholic steatohepatitis With Fibrosis of
Obeticholic Acid Treatment Study, OCA resulted in
improvement in fibrosis as well as steatohepatitis activity in
a dose-dependent manner over a period of 18 months.28

There are many other FXR agonists that are currently un-
der investigation for the treatment of NAFLD, including
cilofexor and tropifexor, among others, which show some
promise in few trials to reduce steatosis as well as fibrosis.
Cilofexor was shown in a phase II study to downstage he-
patic fibrosis without worsening of steatohepatitis when
used in combination with firsocostat (an acetyl CoA
carboxylase inhibitor).29 Tropifexor was evaluated in a
randomized, multicenter, double-blind, three-part adaptive
design phase 2 study in patients with nonalcoholic steato-
hepatitis and showed a dose response on liver enzyme el-
evations and hepatic fat fraction.30 Another FXR agonist,
vonafexor, was evaluated in the LIVIFY trial, a double-blind
phase IIa study conducted in patients with suspected
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fibrotic non-alcoholic steatohepatitis. It was generally well-
tolerated, and the highest dose of vonafexor was associated
with significant reductions in body weight, liver enzymes,
and liver fat content on magnetic resonance imaging.31

Other preclinical studies continue to evaluate the use of
dual FXR and other receptor agonists such as FGF15 and
TGR5, as well as the use of combination therapy with UDCA
on the development of NAFLD in mouse models.40–42

However, while FXR agonists in experimental settings may
improve insulin resistance, clinical trials such as Farnesoid
X nuclear receptor ligand obeticholic acid for non-cirrhotic,
non-alcoholic steatohepatitis and Regenerate have shown
mixed results. In these trials, some patients with non-alco-
holic steatohepatitis experienced worsened insulin sensi-
tivity, indicating that the relationship between FXR agonists
and insulin resistance may be more complex than initially
thought. This highlights the need for further research to
fully understand the role of FXR agonists in the management
of insulin resistance in patients with NAFLD.27,28
Inflammatory Bowel Disease
IBD is a chronic inflammatory disorder of the intestine

that includes Crohn’s disease and ulcerative colitis. IBD is
associated with dysregulated immune responses and alter-
ations in the gut microbiota. FXR agonists have shown
immunomodulatory effects that may be beneficial in the
management of IBD. Bile acids play a significant role in
triggering intestinal inflammation and cell death. However,
FXR helps regulate bile acid homeostasis and prevent
toxicity.43,44 Studies have shown that decreased FXR activity
is associated with the development of IBD in both humans
and animal models.45,46 In the inflamed colonic mucosa of
IBD patients, decreased FXR activity leads to altered pri-
mary bile acid biosynthesis, which results in increased
inflammation and cell death in the intestinal mucosa.

Recent studies have highlighted the potential of FXR as a
therapeutic target for IBD. Treatment with mesenchymal
stem cell-derived exosomes has been found to restore
colonic FXR expression and improve gut microbiota in a
mouse model of IBD, leading to a reduction in IBD symp-
toms.47,48 In animal models of colitis, the intestines of FXR-
deficient mice display a more severe proinflammatory and
profibrotic state, accompanied by immune dysfunction.
Treatment with OCA effectively inhibits colitis in wild-type
mice but not in FXR-deficient mice.49 The activation of
FXR also reduces goblet cell loss, protects the intestinal
barrier, and inhibits the inflammatory response, which leads
to the prevention of colon shortening and weight loss.50

However, excessive activation of NF-kB in IBD patients
leads to FXR inhibition and suppression of its target genes
such as SHP, IBABP, and FGF15/19, which can contribute to
inflammation and epithelial barrier dysfunction.50–53 Con-
servative NF-kB binding sites are also found in the promoter
of the FXR target gene, indicating a close relationship be-
tween the 2 pathways.54 Therefore, the regulation of FXR
activity can have unintended effects in IBD treatment, and
the use of FXR agonists must be carefully considered.

Overall, FXR agonists may have potential as therapeutic
agents for IBD, with the ability to reduce inflammation,
improve intestinal barrier function, and regulate bile acid
homeostasis. However, further studies are needed to
determine the long-term safety and efficacy of FXR agonists
in IBD treatment, as excessive activation of FXR can have
negative consequences in the presence of excessive NF-kB
activation. To date, there has not been a clinical trial that
assesses the usefulness of any FXR agonist in IBD patients.
Alcohol-Related Liver Disease (ALD)
Alcohol-induced disruption of the enterohepatic circu-

lation has been linked to decreased activity of the nuclear
receptor FXR. Chronic alcohol consumption results in FXR
inactivation due to increased acetylation of FXR, which may
be potential pharmacological targets for alleviating alcohol-
induced cholestasis and liver injury.55–57

Pharmacological activation of FXR by specific agonists
such as WAY and 6ECDCA attenuated chronic alcohol-
induced liver injury and steatosis by decreasing lipogen-
esis through the SHP-LXR axis, ablating SREBP1-mediated
lipogenesis, and reducing oxidative stress. Additionally,
FXR activation induced expression of ADH1A and ADH1B,
resulting in increased ADH1 enzymatic activity, which may
play a protective role against human alcohol-related liver
disease (ALD). Conversely, ablation of FXR exacerbated
alcohol-induced liver injury likely by regulating lipid meta-
bolism, sensitivity to inflammation, and CYP2E1-mediated
oxidative stress.56,58–60

The gut microbiome plays a critical role in ALD with
bacterial overgrowth and dysbiosis being hallmarks of
various liver diseases, including ALD.61–63 ALD patients
exhibit bacterial overgrowth along the GI tract, which affects
alcohol metabolism, resulting in an increased concentration
of acetaldehyde.64–67 Endotoxemia is well-documented in
patients with ALD, and it increases hepatic inflammation
due to activation of Kupffer cells and subsequent toll-like
receptor 4-mediated cytokine and chemokine produc-
tion.63,68 Alcohol exposure induces bacterial translocation
and increases gut permeability, promoting endotoxemia and
facilitating the development of ALD.63 The gut microbiota
also plays an essential role in bile acid metabolism, with
chronic alcohol consumption increasing the concentration of
unconjugated bile acids along the GI tract, particularly in the
small intestines, and decreasing the concentration of
taurine-conjugated bile acids.69 This perturbed bile acid
profile may be due to gut bacterial overgrowth, resulting in
increased deconjugation of bile acids and taurine meta-
bolism.63 Activation of FXR by bile acids induces expression
of genes involved in enteroprotection and inhibits bacterial
overgrowth and mucosal injury, while FXR knockout mice
display more severe bacterial overgrowth and epithelial
barrier deterioration.3
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Further research is required to investigate the involve-
ment of FXR and bile acids in alcohol-induced hepatotoxicity
and steatosis, as FXR-bile acid axis appears to hold potential
as a therapeutic target for ALD.
Primary Sclerosing Cholangitis (PSC)
FXR agonists have also been investigated in PSC. In a

Phase II clinical trial of PSC patients without cirrhosis and
with elevated ALP levels, cilofexor demonstrated a 21%
reduction in ALP levels after 12 weeks of treatment with a
daily dose of 100 mg.33 In a randomized controlled trial,
OCA was also found to reduce ALP levels in PSC patients by
14%–25%, depending on the dose (1.5–3 mg daily or 5–10
mg daily) and concomitant use of UDCA32 (Table). These
findings suggest that FXR agonists may provide a novel
therapeutic approach for PSC patients, although further
research is needed to determine the long-term effects and
potential side effects of these treatments.
Safety, Adverse Effects, and Drug
Interactions of FXR Agonists

Like any other pharmacological agent, FXR agonists are
not without adverse effects. However, their side effect pro-
file is generally well tolerated by patients. OCA has been
associated with adverse effects such as pruritus and fatigue,
which may limit its use. After a three-year follow-up period
of patients with PBC on OCA, up to 77% of patients devel-
oped pruritis, and 33% developed fatigue.23 Other side ef-
fects include GI symptoms such as diarrhea, abdominal
discomfort, and bloating. These effects are typically mild
and self-limited and can be managed with dose reduction or
discontinuation of the drug.

On the other hand, nonsteroid FXR agonists are being
developed and studied for their potential to offer similar ther-
apeutic benefits with fewer side effects. They may provide a
more favorable safety profile, particularly in terms of hepato-
toxicity, which is a concern with steroid-based FXR agonists.70

Overall, FXR agonists are considered to be relatively safe
and well-tolerated by patients with GI diseases. However,
clinicians should be aware of the potential for adverse ef-
fects and drug interactions and should take appropriate
steps to minimize these risks.
Summary
In summary, FXR agonists have emerged as a promising

therapeutic strategy for the management of various GI dis-
eases, including PBC, NAFLD, IBD, ALD, and PSC. These
agents exert their beneficial effects through the regulation of
bile acid, lipid, and glucose metabolism, as well as immu-
nomodulatory effects on the innate immune system. Clinical
evidence has demonstrated the efficacy of FXR agonists,
such as OCA, in improving liver function, reducing hepatic
steatosis, and improving histological endpoints in patients
with PBC and NAFLD. While the potential therapeutic ben-
efits of FXR agonists in IBD, ALD, and PSC have been sug-
gested by preclinical and early-phase clinical studies,
further research is needed to determine their long-term
safety and effectiveness in these diseases.

Despite their generally favorable safety profile, FXR ag-
onists can be associated with adverse effects such as pru-
ritus, fatigue, and GI symptoms. Clinicians should be aware
of these potential side effects and manage them appropri-
ately through dose reduction or discontinuation, if neces-
sary. Additionally, the potential for drug interactions should
be considered when prescribing FXR agonists.
Conclusion
FXR agonists represent a novel and promising thera-

peutic approach for the management of various GI diseases.
Their ability to regulate critical metabolic processes such as
bile acid, lipid, and glucose metabolism and their immuno-
modulatory effects on the innate immune system make
them an attractive option for the treatment of GI diseases.
As clinical evidence supporting the efficacy of FXR agonists
in these conditions continues to grow, they may become a
more prominent component of the therapeutic arsenal
employed by clinicians to manage these disorders.

However, further research, including long-term studies
and evaluations of their safety and effectiveness in a
broader range of GI diseases, is necessary to fully under-
stand the potential of FXR agonists as a treatment option. In
addition, the development of next-generation FXR agonists
with improved potency and reduced side effects could
further enhance their therapeutic potential. Ultimately, the
continued investigation and optimization of FXR agonist-
based therapies hold great promise for improving the lives
of patients suffering from GI diseases.
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