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a b s t r a c t

We compared mouse embryonic stem (ES) cells and fibroblasts (MEFs) for their ability to metabolically
activate the environmental carcinogens benzo[a]pyrene (BaP), 3-nitrobenzanthrone (3-NBA) and
aristolochic acid I (AAI), measuring DNA adduct formation by 32P-postlabelling and expression of xeno-
biotic-metabolism genes by quantitative real-time PCR. At 2 lM, BaP induced Cyp1a1 expression in MEFs
to a much greater extent than in ES cells and formed 45 times more adducts. Nqo1 mRNA expression was
increased by 3-NBA in both cell types but induction was higher in MEFs, as was adduct formation. For
AAI, DNA binding was over 450 times higher in MEFs than in ES cells, although Nqo1 and Cyp1a1 tran-
scriptional levels did not explain this difference. We found higher global methylation of DNA in ES cells
than in MEFs, which suggests higher chromatin density and lower accessibility of the DNA to DNA dam-
aging agents in ES cells. However, AAI treatment did not alter DNA methylation. Thus mouse ES cells and
MEFs have the metabolic competence to activate a number of environmental carcinogens, but MEFs have
lower global DNA methylation and higher metabolic capacity than mouse ES cells.
� 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/3.0/).
1. Introduction

The protein p53, encoded by TP53, is a transcription factor that
induces cell cycle arrest, apoptosis and DNA repair in response to
cellular stress and DNA damage in order to protect the cell from
oncogenic transformation, which has led to its description as ‘the
guardian of the genome’ (Lane, 1992). Disruption of the normal
p53 response by TP53 mutation leads to the development of
tumours and as 50% of human tumours contain a mutation in
TP53 it is arguably the most important cancer gene (Olivier et al.,
2010).

Mouse models offer the possibility to study p53 function both
through phenotypic analysis of the whole organism and through
examination of a variety of primary cell types derived from mice
(Kenzelmann Broz and Attardi, 2010). These models include knock-
out of Trp53 to study loss of p53 function and knock-in strategies to
examine human TP53 mutants and polymorphic variants. For
example, studies in mouse strains expressing mutant p53 corre-
sponding to R175H and R273H hot spot mutations in human can-
cers revealed that these mutants exhibited gain-of-function
properties in addition to loss of normal p53 function (i.e. altered
tumour spectrum in addition to more metastatic tumours)
(Freed-Pastor and Prives, 2012; Lang et al., 2004; Olive et al.,
2004). In another study Song et al. (2007) introduced two common
human TP53 cancer mutations, R248W and R273H, independently
into humanized TP53 knock-in (Hupki) mice and found that the
tumour suppressor functions of p53 were abolished in mice with
mutant p53. Further, their findings suggested that mutant, but
not wild-type, p53 can interact with and inhibit ATM, a protein
involved in the recognition of DNA damage, indicating that p53
gain-of-function mutants can promote tumourigenesis by interfer-
ing with critical DNA damage response pathways (Song et al., 2007).

We have used the Hupki model to study carcinogen-induced
TP53 mutagenesis where primary Hupki embryo fibroblasts (HUFs)
were exposed to mutagens and then selected for bypass of culture-
induced senescence and immortalisation (Kucab et al., 2010; Luo
et al., 2001). Environmental carcinogens that have been examined
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using the HUF immortalisation assay include benzo[a]pyrene
(BaP), which is associated with tobacco smoke-induced lung cancer
(Liu et al., 2005; Reinbold et al., 2008) and aristolochic acid (AA),
which is linked to aristolochic acid nephropathy (AAN)-associated
urothelial cancer (Gokmen et al., 2013; Liu et al., 2004; Nedelko
et al., 2009). In both cases the generated TP53 mutation pattern
corresponded to the pattern found in human tumours (Hollstein
et al., 2013; Kucab et al., 2010).

The p53 Platform (PLF) mouse is a novel mouse strain which
allows the precise importation of human TP53 sequences into the
endogenous mouse Trp53 gene (Wei et al., 2011, 2012). Integr-
ase-mediated cassette exchange in PLF embryonic stem (ES) cells
or mouse embryonic fibroblasts (MEFs) is an efficient way to gen-
erate kindred of distinct mutant clones that are closely matched in
genetic background for comparative functional analysis of p53
(Wei et al., 2012). The system not only allows one to determine
the extent to which a mutation compromises p53 wild-type func-
tion (Odell et al., 2013) but may also provide a powerful tool to
study the response of cells carrying mutant p53 to cellular stress
and DNA damage. Recent findings have indicated that wild-type
p53 can impact on the bioactivation of environmental carcinogen
and drugs indicating that the cellular TP53 status is linked to the
regulation of xenobiotic-metabolising enzymes (XMEs) (Goldstein
et al., 2013; Hockley et al., 2008; Simoes et al., 2008). Thus as
mutant p53 expressed in preneoplastic and/or neoplastic cells
severely limits or abolishes the capacity of p53 to regulate its tar-
get genes (Freed-Pastor and Prives, 2012), mutant p53 may also
impact on the expression of XMEs.

Prior to studying carcinogen-induced cellular responses of p53
mutated ES cells and MEFs derived from the PLF mouse it must be
ensured that they are metabolically competent to activate the car-
cinogen studied. We showed previously that primary HUFs have
the metabolic capacity to activate some environmental carcinogens
including BaP, AAI and the air pollutant 3-nitrobenzanthrone (3-
NBA), all of which have also been studied in the HUF immortalisation
assay and are capable of inducing TP53 mutations (Liu et al., 2004,
2005; Nedelko et al., 2009; Reinbold et al., 2008; vom Brocke et al.,
2009). However, little is known about the metabolic competence
of mouse ES cells with regard to environmental carcinogens. In the
present study we have compared ES cells and MEFs derived from
mice on a C57Bl/6 background, the same genetic background as
the PLF mouse, for their ability to metabolically activate the carcin-
ogens BaP, 3-NBA and AAI. Thus, these results are important for
future studies using ES cells and MEFs derived from the PLF mouse
carrying mutant p53. DNA adduct formation was assessed by 32P-
postlabelling and the DNA damage response proteins p53 and p21
were evaluated by Western blotting. We also determined by quanti-
tative real-time PCR (qRT-PCR) the gene expression of two selected
enzymes, cytochrome P450 1a1 (Cyp1a1) and NADP(H)quinone oxi-
doreductase (Nqo1).
2. Material and methods

2.1. Carcinogens

Benzo[a]pyrene (BaP) and aristolochic acid I (AAI, as sodium
salt) were obtained from Sigma Aldrich (Gillingham, UK). 3-Nitro-
benzanthrone (3-NBA) was synthesised as described (Arlt et al.,
2002).
2.2. Mouse breeding and isolation of murine embryonic stem cells (ES)
and murine embryonic fibroblasts (MEFs)

In the PLF mouse, exons 2-9 of the mouse Trp53 gene have been
replaced by a PGK-neomycin resistance gene cassette to allow effi-
cient exchange of the PGK-neo cassette with an incoming human
TP53 sequence of interest (Wei et al., 2011, 2012). The modified
Trp53 allele is the designated platform (plf) allele, where the plf/
plf genotype is nominally p53 null and plf/Trp53 retains one func-
tional mouse Trp53 allele along with the plf allele. Heterozygous
p53 PLF mice (plf/Trp53; on a C57Bl/6 background) were bred at
the Animal Facility of the German Cancer Research Center and
were kept under standard conditions with food and water ad libi-
tum. This breeding strategy allows for the generation of progeny
with the same genetic background but differing in Trp53 locus. Sib-
ling embryos can be harvested with or without the plf allele. The
reason for this breeding scheme is that a homozygous plf colony
is difficult to maintain due to the short life expectancy of plf/plf
(p53 null) mice. Sibling embryos that are Trp53/Trp53 (i.e. with
no plf allele) are not PLF mice and thus representative of a normal
wild-type p53 laboratory mouse strain but have the same genetic
background (i.e. C57Bl/6) as PLF mice. All animal procedures were
carried out under licence in accordance with the law, and with
local ethical review.

Isolation of mouse ES cells was performed as described previ-
ously (Wei et al., 2011). Briefly, 2.5 day-old morulas were isolated,
denuded and plated on a feeder layer (Tesar, 2005). Three days
after plating, attached structures were isolated, trypsinised and
reseeded until clones with appropriate morphology were har-
vested (Wei et al., 2011). The ES cells used in this study were from
the F2 clone (Trp53/Trp53) which have wild-type p53.

To obtain primary embryonic fibroblasts, day 13.5 Trp53/Trp53
embryos were harvested according to a standard protocol, and
fibroblasts were isolated from each embryo as described previ-
ously (Liu et al., 2007). Briefly, neural and hematopoietic tissue
was removed from each embryo by dissection. The remaining tis-
sue was minced and then trypsinised at 37 �C for 5 min. Cells were
grown under standard conditions (see below) to 100% confluence
before preparing frozen stocks (passage 0). These MEFs on a
C57Bl/6 background have wild-type p53.

2.3. Cell culture and carcinogen treatment

Mouse ES cells were cultured at 37 �C and 5% CO2 in Dulbecco’s
modified Eagle’s medium (DMEM), high glucose (4.5 g/L), supple-
mented with 15% of ES Cell Fetal Bovine Serum (FBS; PAN Biotech,
Aidenbach, Germany), 2 mM L-glutamine, 1 �MEM non-essential
amino acids (11140050; Invitrogen, Darmstadt, Germany), 1 mM
sodium pyruvate, 100 U/mL antibiotics (15140122; Gibco; penicil-
lin and streptomycin), 100 lM of 2-mercaptoethanol (Sigma, Tauf-
kirchen, Germany) and 1000 U/mL leukemia inhibitory factor (LIF)
ESGRO (Millipore, Darmstadt, Germany). Cell culture dishes used
for ES cells were pre-coated with 0.2% gelatin (dissolved in PBS,
Invitrogen, Germany) at room temperature for at least one hour
which was removed just prior to use. MEFs were cultured at
37 �C and 5% CO2 in DMEM, high glucose (4.5 g/L) supplemented
with 10% FBS (PAN), 2 mM L-glutamine, 1 mM sodium pyruvate
and 100 U/mL antibiotics (penicillin and streptomycin). All cell cul-
ture reagents were purchased from Invitrogen (Germany) unless
stated otherwise.

Cells were seeded 48 h prior to carcinogen treatment with BaP,
3-NBA and AAI. BaP and 3-NBA were dissolved in dimethyl sulfox-
ide (DMSO); the DMSO concentration was always kept at 0.5% of
the total culture medium volume. AAI was dissolved in water. Cells
treated with solvent only were used as controls.

2.4. Cell viability and DNA adduct analysis

Cell numbers were counted using the Countess� Automated Cell
Counter (Life Technologies, Darmstadt, Germany) and are repre-
sented as percentage of the control cell number.
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DNA was isolated from carcinogen-treated cells using standard
phenol/chloroform extraction method. DNA adduct formation was
analysed by 32P-postlabelling as described with minor modifica-
tions (Schmeiser et al., 2013). Briefly, 6.25 lg DNA were digested
using micrococcal endonuclease (375 mU/sample; Sigma, Taufkir-
chen, Germany) and spleen phosphodiesterase (31.25 mU/sample;
Worthington, Lakewood, NJ, USA) for 3 h at 37 �C. An aliquot
(1.25 lg) of the digest was removed and diluted for determination
of normal nucleotides. For BaP and AAI, adducts were enriched
using nuclease P1 digestion, whereas for 3-NBA, adducts were
enriched using butanol extraction as reported (Schmeiser et al.,
2013). Subsequently, adducts were labelled by incubation with
[c-32P]ATP (50 lCi/sample; Hartmann-Analytic, Braunschweig,
Germany) and T4-polynucleotide kinase (USB, Germany) for
30 min at room temperature.

32P-labelled adduct nucleoside bisphosphates were separated
by thin-layer chromatography (TLC) on polyethylenimine (PEI)-
cellulose sheets (Macherey-Nagel, Düren, Germany). The following
solvents were used (Schmeiser et al., 2013): for all experiments �
D1, 1 M sodium phosphate, pH 6.5; D5, 1.7 M sodium phosphate,
pH 6.0; for BaP � D3, 3.5 M lithium formate, 8.5 M urea, pH 3.5;
D4, 0.8 M lithium chloride, 0.5 M Tris, 8.5 M urea, pH 8.0; for 3-
NBA � D3, 4 M lithium formate, 7.0 M urea, pH 3.5; D4, 0.8 M lith-
ium chloride, 0.5 M Tris, 8.5 M urea, pH 8.0; for AAI � D3, 3.5 M
lithium formate, 8.5 M urea, pH 4.0; D4, 0.8 M lithium chloride,
0.5 M Tris, 8.5 M urea, pH 9.0. After chromatography, electronic
autoradiography of TLC sheets was performed using a Packard
Instant Imager (Dowers Grove, IL, USA). DNA adduct levels (RAL,
relative adduct labelling) were calculated as counts per minute
(cpm) adducts per cpm normal nucleotides and expressed as
adducts per 108 normal nucleotides (Schmeiser et al., 2013). No
DNA adduct spots were observed in control (untreated) cells (data
not shown).
2.5. Western blot analysis

After treatment cells were lysed with 62.5 mM Tris-HCl pH 6.8,
500 mM EDTA pH 8.0, 2% sodium dodecyl sulphate (SDS) and 10%
glycerol supplemented with fresh protease inhibitors (78425;
Thermo Scientific, Loughborough, UK). Lysates were sonicated to
shear genomic DNA and protein concentration was determined
using the Pierce™ BCA Protein Assay Kit (Thermo Scientific, UK).
Lysates were separated on sodium-polyacrylamide gel electropho-
resis (SDS-PAGE) using NuPage 4-12% gels (Life Technologies, Pais-
ley, UK) and transferred to nitrocellulose membranes by
electroblotting as previously reported (Hockley et al., 2006). Mem-
branes were blocked with 3% non-fat dried milk in Tris-buffered
saline (TBS) + Tween (0.1%) for 1 h at room temperature and incu-
bated overnight with primary antibody diluted in blocking buffer.
The following antibodies were used: anti-p53 (1C12, mouse mAb
#2524, 1:5000; Cell Signalling, Hitchin, UK); anti-p21 (mouse
mAb #556431, 1:2000; BD Bioscience, Oxford, UK); and GAPDH
(mouse mAb #MAB374, 1:10,000; Millipore, Watford, Hertford-
shire, UK). Membranes were washed and incubated with horserad-
ish peroxidase-conjugated goat anti-mouse secondary antibody
(CST 7074, 1:10,000; Cell Signalling, UK). Proteins were visualised
using the enhanced chemiluminescent SuperSignal West Pico
detection reagent according to the manufacturer’s instruction
(#34080; Thermo Scientific, UK).
2.6. Gene expression analysis

Prior to assessing the expression of XMEs, carcinogen treatment
conditions were optimised to ensure, where possible, that suffi-
cient DNA damage was induced without significant adverse effects
on cell viability in order to compare DNA adduct formation both in
ES cells and MEFs (Fig. 2).

Cells were washed in phosphate-buffered saline (PBS) and total
RNA was extracted using the GenElute Mammalian Total RNA
Miniprepkit (Sigma, UK). Reverse transcription was performed
using random primers and SuperScript� III Reverse Transcriptase
(Life Technologies, UK). RNA expression was analysed by quantita-
tive real-time polymerase chain reaction (qRT-PCR) using Taq-
Man� Universal PCR Master Mix (Life Technologies) and
TaqMan� gene expression primers according to the manufacturer’s
protocol with a 7500HT Fast Real Time PCR System (Applied Bio-
systems, UK). Probes (Life Technologies, UK) used were
Mm01253561_m1 (Cyp1a1) and Mm00487218 (Nqo1) and expres-
sion levels were normalised to Gapdh (4352341E). Relative gene
expression was calculated using the comparative threshold cycle
(CT) method (Kucab et al., 2012).
2.7. Global methylation analysis

DNA (1 lg) was dissolved in water (7.5 lL) and incubated for 3 h
at 37 �C with a mixture of 2.1 lL of micrococcal endonuclease
(150 mU/lL, Sigma, Germany) and spleen phosphodiesterase
(12.5 mU/lL, Worthington, USA) and 0.4 lL buffer (250 mM HEPES,
100 mM calcium chloride pH 6.0). Hydrolyzed dNps were deriva-
tised with BODIPY FL EDA as described before (Krais et al., 2011).
Briefly, to the DNA digests was added: 15 lL HEPES buffer
(50 mM, pH 6.5), 15 lL 1-ethyl-3-(30-N,N0-dimethyl-aminopro-
pyl)-carbodiimide hydrochloride (EDC; Sigma, Germany; 1.8 M in
50 mM HEPES buffer, pH 6.5, Sigma) and 15 lL 4,4-difluoro-5,7-
dimethyl-4-bora-3a,4a-diaza-s-indacene-3-propionyl ethylene
diamine hydrochloride (BODIPY FL EDA; Invitrogen, Germany;
27 mM in 50 mM HEPES buffer, pH 6.5). Samples were incubated
for 25 h at 25 �C in the dark.

After overnight incubation, 30 lL of the reaction mixture was
diluted with 270 lL water and then 300 lL of a solution of sodium
tetraphenylborate (Merck, Darmstadt, Germany; 52.5 mM in 1 mM
sodium phosphate buffer, pH 6.0) was slowly added to precipitate
the excess of BODIPY FL EDA and EDC. After mixing, 10 mL methy-
lene chloride was added, followed by vortex mixing and centrifu-
gation for 4 min at 3000 rpm. The aqueous phase was removed
and directly analyzed by capillary electrophoresis coupled with
laser-induced fluorescence (CE-LIF). Correction factors were deter-
mined as described previously (Krais et al., 2011).

CE-LIF analysis was performed on a PACE™ MDQ system with a
Laser System Sapphire 488 CW (kem = 488 nm) from Coherent (Ger-
many). Electrolyte and separation conditions were: 90 mM SDS in a
solution of 90% (v/v) sodium phosphate buffer (18 mM, pH 9.0) and
10% (v/v) methanol as organic modifier; fused-silica capillary col-
umn, total length 59 cm; length to the detection window 48.5 cm;
inner diameter 50 lm; injection 2.5 psis; temperature 20 �C;
applied voltage 20 kV. Data were collected and analysed using 32
Karat software (version 5.0, Beckman Coulter). Time corrected indi-
vidual peak areas were determined as described previously (Krais
et al., 2011).
3. Results and discussion

Mouse ES cells are increasingly being used in mechanism-based
genotoxicity testing (Hendriks et al., 2012; Pines et al., 2011). They
provide an attractive system as they are untransformed, continu-
ously proliferating cells that are proficient in the main DNA dam-
age signalling pathways and cell cycle control systems and are
genetically stable (Hendriks et al., 2013). As most environmental
carcinogens require metabolism to exert their genotoxic activity
we compared ES cells and MEFs derived from mice on a C57Bl/6
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genetic background carrying wild-type Trp53 for their ability to
metabolically activate environmental carcinogens. We selected a
variety of environmental carcinogens of different chemical classes
where the metabolism is well studied and characterised. The cell
culture test conditions were based on previous studies using these
carcinogens in mammalian cells (Arlt et al., 2007; Hockley et al.,
2008; Kucab et al., 2012; Simoes et al., 2008). We used carcino-
gen-DNA adduct formation as a surrogate measure of the relevant
XME activity as all tested environmental carcinogens induce spe-
cific and structurally-identified DNA adducts which can be
detected by the 32P-postlabelling assay (Schmeiser et al., 2013).

3.1. Metabolic activation and DNA damage induced by BaP in ES cells
and MEFs

The metabolic activation of BaP is catalysed predominantly by
cytochrome P450-dependent monooxygenases (CYPs), mainly
CYP1A1 and CYP1B1, in combination with microsomal epoxide
hydrolase (mEH), resulting in the highly reactive BaP-7,8-dihydro-
diol-9,10-epoxide (BPDE) capable of forming covalent DNA adducts
(Fig. 1A) (Arlt et al., 2008; Stiborova et al., 2014b). The effect of BaP
on cell viability was similar in ES cells and MEFs at concentrations
up to 5 lM (Fig. 2A and B). With a loss of viable cells of around 50%
at 10 lM after 48 h of exposure, ES cells were more sensitive than
MEFs. ES cells and MEFs were both capable of generating BaP-
induced DNA adducts (Fig. 3A and B). The major DNA adduct
(assigned spot B1) was previously identified as 10-(deoxyguano-
sin-N2-yl)-7,8,9-trihydroxy-7,8,9,10-tetrahydrobenzo[a]pyrene
(dG-N2-BPDE) (Arlt et al., 2008). Interestingly, in ES cells we iden-
tified another adduct (assigned spot B2) that was more hydropho-
bic on PEI-cellulose than dG-N2-BPDE. In accordance with a recent
study (Stiborova et al., 2014b) we suggest that adduct spot B2 is a
guanine adduct derived from reaction with 9-hydroxy-BaP-4,5-
epoxide. Using CYP1A1 reconstituted systems it was recently
shown that the formation of dG-N2-BPDE (adduct B1) depended
on the presence of epoxide hydrolase while adduct B2 was solely
formed when CYP1A1 and NADPH:cytochrome P450 oxidoreduc-
tase (POR) only were present (Stiborova et al., 2014b). In MEFs
two additional BaP-derived DNA adduct spots were detectable that
were not structurally identified. No such adduct spots were
detected in control (untreated) cells (data not shown). In ES cells
BaP induced up to 126 ± 31 adducts per 108 nucleotides at 10 lM
after 48 h, with adduct levels being �3-fold lower after 24 h
(Fig. 3A). BaP–DNA adduct levels in MEFs were manifoldly higher
(Fig. 3B). The highest DNA adduct level in MEFs was observed at
2 lM after 48 h of BaP exposure (4583 ± 392 adducts per 108

nucleotides), which was 44 times higher than in ES cells under
the same experimental conditions. In a recent study using primary
HUFs treated with 1 lM BaP for 48 h, levels of 175 ± 62 adducts per
108 nucleotides were detected (Kucab et al., 2012), indicating that
the response of MEFs to BaP can differ. However, it may also be dif-
ficult to try to directly compare these findings as strain differences
(C57Bl/6 versus 129/Sv) and the p53 phenotype (Hupki versus
Trp53) might have influenced the results between studies.

Because cellular levels of p53 protein increase via post-tran-
scriptional mechanisms upon genotoxic stress (Hockley et al.,
2008), we measured protein expression of p53 and its downstream
target p21 (Fig. 4). p53 and p21 expression was not altered in ES
cells after BaP exposure (Fig. 4A), however, a clear increase in
p53 expression was observed in BaP-treated MEFs while p21
remained unchanged (Fig. 4B). These results were in line with
the results obtained by 32P-postlabelling analysis. ES cells have
been shown to contain a higher amount of p53 than differentiated
cells (Solozobova and Blattner, 2010) and regulation of p53 is
known to differ in ES cells and differentiated cells, thus the p53
response to DNA damage in these cell types may also be different
(Liu et al., 2014; Solozobova et al., 2009).

In order to determine whether the differences in BaP-induced
DNA adduct levels observed between ES cells and MEFs could be
due to differences in their metabolic competence, the expression
of XMEs involved in BaP metabolism was evaluated. We therefore
analysed Cyp1a1 and Nqo1 mRNA expression by RT-PCR. In BaP-
treated ES cells expression of Cyp1a1 was up-regulated �40-fold
(Fig. 5A) independent of the BaP concentration used, which was
in line with the observed BaP-induced DNA adduct levels. In MEFs
BaP exposure resulted in a massive induction of Cyp1a1 expression
(Fig. 5B) and in comparison to ES cells this induction was �20-fold
higher. Thus, these results suggest that MEFs have more BaP met-
abolising potential than ES cells and that the level of Cyp1a1
expression can help to explain the differences in BaP–DNA adduct
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formation between both cell types. However, the lack of a suitable/
sensitive antibody did not allow us to verify these results at the
protein level of Cyp1a1 and it may be important to point out that
gene expression does not always correlate with protein expression.
Nqo1 mRNA expression was induced after BaP exposure both in ES
cells and MEFs (Fig. 6A and B), which is in line with previous stud-
ies using other mammalian cells (Hockley et al., 2006, 2008). It is
noteworthy that in the ToxTracker assay BaP required the addition
of an exogenous metabolic activation system (i.e. liver S9 mix) to
induce reporter activation in mouse ES Bscl2-tagged reporter cells
(Hendriks et al., 2012), suggesting there are differences in the met-
abolic competence of ES cells of different origin.

3.2. Metabolic activation and DNA damage induced by 3-NBA in ES
cells and MEFs

Bioactivation of 3-NBA is catalysed by nitroreductases such as
NQO1 leading to N-hydroxy-3-aminobenzanthrone (N-OH-3-ABA)
(Arlt et al., 2005; Stiborova et al., 2010). Further activation of
N-OH-3ABA by N-acetyltransferases and/or sulfotransferases leads
to the formation of reactive N-acetoxy and/or sulfooxy ester capa-
ble of forming DNA adducts (Fig. 1B) (Arlt et al., 2002). While BaP
had only a small effect on cell viability in ES cells, 3-NBA was
highly toxic to these cells; viability was already by �50% at 2 lM
of 3-NBA (Fig. 2C). In comparison, 3-NBA treatment had little effect
on cell viability in MEFs (Fig. 2D). The DNA adduct pattern induced
by 3-NBA in ES cells and MEFs was the same, consisting of 4 major
adducts (Fig. 3C and D). Three of these adducts were previously
identified as 20(20-deoxyadenosine-N6-yl)-3-aminobenzanthrone
(dA-N6-3-ABA; spot N1), N-(20-deoxyguanosine-N2-yl)-3-amino-
benzanthrone (dG-N2-3-ABA; spot N3), and N-(20-deoxyguanosin-
8-yl)-3-aminobenzanthrone (dG-C8-N-3-ABA; spot N4) (Arlt
et al., 2006; Gamboa da Costa et al., 2009). DNA adduct formation
by 3-NBA was time- and concentration dependent (Fig. 3C and D).
In MEFs 3-NBA-induced DNA adduct formation was higher after
48 h, while adduct levels in ES cells were lower after 48 h. It is pos-
sible that DNA adduct formation in ES cells might have been com-
promised by the high level of cytotoxicity at 48 h. Using Western
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blot analysis we observed an increase in p53 protein expression in
both cell types, but the downstream target p21 was only strongly
induced in 3-NBA-treated ES cells (Fig. 4A and B). A strong p53
response has also been observed in other mammalian cells after
3-NBA treatment (Landvik et al., 2010). Further, it has been shown
previously that 3-NBA induces a DNA damage response character-
ised by phosphorylation of ATM, Chk2/Chk1 and p53 (Oya et al.,
2011), suggesting that 3-NBA-induced cell death, as seen in the
ES cells (compare Fig. 2C), is a result of p53 activation.

The highest DNA binding by 3-NBA in ES cells was observed at
10 lM after 24 h with 863 ± 74 adducts per 108 nucleotides
(Fig. 3C). Interestingly, and in contrast to BaP, adduct levels for
3-NBA in MEFs were only 1.5-fold higher (1266 ± 188 adduct per
108 nucleotides) under the same experimental conditions
(Fig. 3D). DNA binding was highest in MEFs at 10 lM after 48 h
with 2478 ± 455 adducts per 108 nucleotides. Previously, in
primary HUFs previously treated with 10 lM 3-NBA for 48 h,
adduct levels were 680 ± 147 adducts per 108 nucleotides (Kucab
et al., 2012). As 3-NBA is predominantly activated by NQO1 (Arlt
et al., 2005), the expression of Nqo1 was studied in ES cells and
MEFs by RT-PCR and revealed that Nqo1 mRNA expression
increased in both cell types up to �60-fold; the induction was
higher in MEFs than in ES cells (Fig. 6C and D). This is in line with
a previous study showing that Nqo1 protein levels were inducible
in primary and immortal HUFs upon treatment with nitro-PAHs
such as 1,8-dinitropyrene and 3-NBA (Kucab et al., 2012). However,
that study also showed that there was not a clear relationship
between nitro-PAH-induced DNA adduct formation and the
expression of Nqo1, suggesting that other cytosolic nitroreductases
such as xanthine oxidase might also contribute to the activation of
nitro-PAHs like 3-NBA in HUFs (Kucab et al., 2012). As shown in
Fig. 5C and D, 3-NBA also induced Cyp1a1 mRNA expression, the
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induction in MEFs being manifoldly higher than in ES cells. Other
studies have demonstrated the induction of Cyp1a1 protein levels
in mouse Hepa1c1c7 cells after exposure to 3-NBA treatment
(Landvik et al., 2010) and in vivo in rats treated with 3-NBA
(Mizerovska et al., 2011; Stiborova et al., 2006, 2008).

3.3. Metabolic activation and DNA damage induced by AAI in ES cells
and MEFs

The major activation pathway of AAI is nitroreduction, cytosolic
NQO1 being the most efficient activating enzyme while CYP1A-med-
iated demethylation contributes to AAI detoxification (Fig. 1C)
(Stiborova et al., 2014a, 2013). Exposure to AAI resulted in loss of cell
viability of both ES cells and MEFs (Fig. 2E and F). However, in con-
trast to 3-NBA which showed strong cytotoxicity in ES cells, AAI
cytotoxicity was higher in MEFs. We therefore chose 20 lM and
50 lM AAI in MEFs while ES cells were treated with up to 100 lM
for DNA adduct analysis by 32P-postlabelling (Fig. 3E and F). The
AAI-induced adduct patterns in ES cells and MEFs were the same
and identical to the patterns observed in kidney and ureter tissue
of AAN patients (Gokmen et al., 2013; Nortier et al., 2000). These
adducts have previously been identified as 7-(deoxyadenosine-N6-
yl)aristololactam I (dA-AAI; spot A1), 7-(deoxyguanosin-N2-yl)aris-
tolactam I (dG-AAI; spot A2) and 7-(deoxyadenosin-N6-yl)aristolac-
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tam II (dA-AAII; spot A3) (Bieler et al., 1997; Schmeiser et al., 2014).
DNA adduct formation by AAI was time- and concentration-depen-
dent in ES cells with adduct levels being highest at 100 lM after
48 h (54 ± 27 adducts per 108 nucleotides). In MEFs adduct forma-
tion increased with time at 20 lM but at 50 lM after 48 h resulted
in lower adduct levels (compare Fig. 2F). As indicated above, it
may be possible that the increased cytotoxicity at this condition
may have impacted metabolic activation of the compound and/or
DNA adduct formation. Highest DNA binding in MEFs was observed
at 50 lM after 24 h with 2810 ± 1048 adducts per 108 nucleotides
which was 468-fold higher than the adduct levels observed under
the same experimental conditions in ES cells (6 ± 3 adducts per 108

nucleotides). AAI-induced DNA damage in MEFs was associated with
a strong induction of the DNA damage response proteins p53 and
p21 (Fig. 4B). Interestingly, AAI exposure also led to a strong p53
induction in ES cells and also subsequently its downstream target
p21 but at considerably lower DNA adduct levels than in MEFs.

In ES cells neither Nqo1 nor Cyp1a1 mRNA expression was sig-
nificantly altered after AAI treatment (Figs. 5E and 6E). In contrast,
we found a significant induction of Nqo1 and Cyp1a1 in MEFs
(Figs. 5F and 6F) but the levels of transcriptional alterations in
MEFs are very small, and thus do not explain the differences of
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AAI–DNA adduct formation observed in the two cell types. Further,
as the basal Cyp1a1 and Nqo1 mRNA expression levels in untreated
ES cells and MEFs were only marginally different, if at all (see leg-
ends to Figs. 5 and 6), this also did not provide an explanation for
the huge differences in AAI–DNA adduct formation between cell
types. Therefore we investigated whether the observed alterations
in AAI-induced DNA damage are linked to epigenetic changes.

3.4. Potential impact of global DNA methylation on DNA damage
induced by AAI in ES cells and MEFs

Tumours are characterized by a global reduction in DNA meth-
ylation (hypomethylation) and/or a locus-specific increase in DNA
methylation (hypermethylation) (Esteller, 2008). DNA methylation
can regulate gene expression and it has been shown in cancer cells
that DNA hypermethylation of CpG islands near tumour suppressor
genes switches off the expression of these genes (Tommasi et al.,
2014). Further, it has been suggested that epigenetic mechanisms
may function as an interface between environmental factors and
the genome and that aberrant epigenetic changes associated with
environmental exposures might deregulate not only key cellular
processes such as DNA damage response and DNA repair but also
carcinogen metabolism (Herceg and Vaissiere, 2011). Several envi-
ronmental pollutants have been shown to affect DNA methylation
in mammalian cells in vitro. Tabish et al. (2012) demonstrated for
example that benzene, hydroquinone, styrene, carbon tetrachlo-
ride and trichloroethylene induced global DNA hypomethylation
in human TK6 cells. However, little is known about equivalent
mechanisms in embryonic stem cells or MEFs.

We assessed global DNA methylation in ES cells and MEFs
derived from the PLF mouse after AAI exposure using capillary
electrophoresis with laser induced fluorescence (Krais et al.,
2011). It has been reported that global DNA methylation decreases
as embryonic stem cells undergo differentiation (Smith and
Meissner, 2013). Indeed, we found that global DNA methylation
of the ES cells was 4.08 ± 0.05% 5-methylcytosine while in MEFs
it was 3.31 ± 0.18% 5-methylcytosine (Fig. 7). However, AAI treat-
ment did not alter global methylation. Nevertheless, covalent mod-
ification of DNA and histone proteins, the core components of
chromatin, provide a mechanisms for heritable regulating gene
expression by changing the accessibility of DNA to interacting pro-
teins (Jin et al., 2011). We thus hypothesize that the higher meth-
ylation levels in ES cells might lead to a better protection of the
genome due to higher chromatin density and lesser accessibility
of the DNA. However, differences in DNA damage between ES
and MEF cells could be due to other underlying mechanisms, such
as DNA repair and/or apoptosis (Roos et al., 2007; Tichy and
Stambrook, 2008).

4. Conclusions

In this study we showed that ES cells and MEFs derived from
mice on a C57Bl/6 genetic background carrying wild-type Trp53
have the metabolic competence to activate a number of environ-
mental carcinogens. Our results clearly indicate that MEFs not only
have a higher metabolic capacity than ES cells but also that the
metabolic capacity depends on the carcinogen studied. Thus, the
generation of sets of ES cells and MEFs derived from the PLF mouse
(on the same genetic background) harbouring point mutations in
TP53 will allow comparative functional analyses of p53 in cells
with a matched genetic background. Recently PLF-derived MEFs
carrying common tumour mutants R248W and R273C were com-
pared with MEFs carrying TP53 mutants associated with AA expo-
sure, namely N131Y, R249W and Q104L (Odell et al., 2013). Based
on a number of biological endpoints tested including cell
proliferation, migration, growth in soft agar, apoptosis, senescence
and gene expression it was demonstrated that the N131Y mutant
had a phenotype more related to the common tumour mutants
R248W and R273C, whereas behaviour of clone Q104L resembled
more the phenotype of a cell with wild-type p53 (Odell et al.,
2013). Taken together, these and our studies show that the cellular
behaviour of these novel mutants can be studied after carcinogen
exposure but that carcinogen treatment conditions must be opti-
mised prior to initiating any assay to study p53 function and that
carcinogen metabolism depends on the cell type studied.
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