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Abstract. Breast cancer metastasis is a demanding problem 
in clinical treatment of patients with breast cancer. It is neces-
sary to examine the mechanisms of metastasis for developing 
therapies. Classification of the aggressiveness of breast cancer 
is an important issue in biological study and for clinical deci-
sions. Although aggressive and non-aggressive breast cancer 
cells can be easily distinguished among different cell lines, it 
is very difficult to distinguish in clinical practice. The aim of 
the current study was to use the gene expression analysis from 
breast cancer cell lines to predict clinical outcomes of patients 
with breast cancer. Weighted gene co-expression network 
analysis (WGCNA) is a powerful method to account for corre-
lations between genes and extract co-expressed modules of 
genes from large expression datasets. Therefore, WGCNA was 
applied to explore the differences in sub-networks between 
aggressive and non-aggressive breast cancer cell lines. The 
greatest difference topological overlap networks in both groups 
include potential information to understand the mechanisms of 
aggressiveness. The results show that the blue and red modules 
were significantly associated with the biological processes 
of aggressiveness. The sub-network, which consisted of 
TMEM47, GJC1, ANXA3, TWIST1 and C19orf33 in the blue 
module, was associated with an aggressive phenotype. The 
sub-network of LOC100653217, CXCL12, SULF1, DOK5 and 
DKK3 in the red module was associated with a non-aggressive 
phenotype. In order to validate the hazard ratio of these genes, 
the prognostic index was constructed to integrate them and 
examined using data from the Cancer Genomic Atlas (TCGA) 

and Gene Expression Omnibus (GEO) databases. Patients with 
breast cancer from TCGA in the high‑risk group had a signifi-
cantly shorter overall survival time compared with patients 
in the low‑risk group (hazard ratio=1.231, 95% confidence 
interval=1.058-1.433, P=0.0071, by the Wald test). A similar 
result was produced from the GEO database. The findings may 
provide a novel strategy for measuring cancer aggressiveness 
in patients with breast cancer.

Introduction

Breast cancer is the most commonly diagnosed malignant 
cancer in women. Generally, adjuvant therapy is an effective 
way to improve patient survival and affect patient quality 
of life (1). However, drug resistance and metastasis are still 
important problems during breast cancer therapy. Therefore, 
uncovering the metastatic molecular mechanisms of breast 
cancer cells may be useful for breast cancer therapy and is 
urgently required.

Many successful efforts have investigated the metastatic 
nature of breast cancer through basic research (molecular and 
genetic analyses), and various novel genes that are involved 
breast cancer cell metastasis have been identified (2-4). 
Although individual a gene or protein alone can have an 
important role in the metastasis of breast cancer cell, deter-
mining individual gene expression levels does not facilitate a 
comprehensive understanding of cancer cell metastasis (5).

Weighted gene co-expression network analysis 
(WGCNA) (6) is a powerful tool to examine the potential gene 
correlation structures within the gene expression data. The 
weighted gene co-expression network is an intuitive network 
concept in which ‘nodes’ represent gene expression vectors 
over tissues/conditions and ‘edges’ are weighted by correla-
tions (typically the Pearson correlation coefficient) between 
the connected nodes. WGCNA can be used for identifying 
modules of highly correlated genes without pre-assigning 
a ‘hard’ threshold to decide whether an edge should be 
drawn between two nodes, for summarizing the identified 
modules by the module eigengene, for relating eigengene 
network to one another and to external sample traits, and for 
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calculating module membership measures (7). WGCNA has 
been successfully applied in various types of cancer, including 
glioblastoma (8), breast cancer (9), prostate cancer (10) and 
lung cancer (11). In breast cancer, Presson et al (9) applied 
WGCNA to investigate the relationship between tissue 
microarray data and clinic traits in 2011. The study identified 
a rule for predicting survival outcome of patients with breast 
cancer (9). Clarke et al (12) utilized WGCNA to identify 
11 coregulated gene clusters across 2,342 breast cancer 
samples in 2013. In addition, the study found several upregu-
lated genes; for example, the potassium channel subfamily K 
member 5 was correlated with a poor outcome for patients 
with breast cancer. In the same study, an online database was 
developed to allow users to retrieve co-expression patterns 
and the survival analysis (12). Hua et al (13) used WGCNA to 
identify specialized microRNA-microRNA networks for two 
breast cancer subtypes in 2013. However, to the best of our 
knowledge, no study has previous compared the co-expression 
network of aggressive breast cancer cells with those of nonag-
gressive breast cancer cells.

In the present study, a WGCNA was used to reveal shared 
and unique properties of aggressive and non-aggressive breast 
cancer groups by comparing the co-expression networks of 
these two groups. Modules within the gene expression data of 
aggressive and non‑aggressive breast cancer were identified. 
The aggressive group had six modules and the non-aggressive 
group had three modules. Gene Ontology (GO) enrichment 
demonstrated that blue and red modules in the metastatic 
breast cancer group were closely associated with tumor 
aggressive. To analyze the signature co-expression network 
in aggressive group, the genes of blue and red modules in 
aggressive group were selected to identify the corresponding 
genes in co-expression network in the non-aggressive group. 
Additionally, the hub genes (the nodes that had five strongest 
connections with other nodes) were filtered to analyze the 
difference between the aggressive and non-aggressive cell 
lines. It was aimed to identify the most significantly different 
networks between two groups. The results demonstrated that 
certain genes in the blue module were associated with metas-
tasis, including gap junction γ-1 protein (GJC1), Annexin A3 
(ANXA3) and Twist-related protein 1 (TWIST1), which were 
present in the aggressive group and absent in the non-aggressive 
group. In the red module, the aggressive suppressor gene, 
Dickkopf-related protein 3 (DKK3), had a weak connec-
tion in the aggressive group and a strong connection in the 
non-aggressive group. Therefore, this study provides a new 
insight into understanding the differences in the co-expression 
networks between aggressive and non-aggressive breast 
cancer. Furthermore, the genes obtained from WGCNA are 
validated by data from breast cancer patients in The Cancer 
Genomic Atlas (TCGA) and Gene Expression Omnibus (GEO) 
databases.

Materials and methods

Sample collection. Generally, lymph-node metastasis and 
distant metastasis is considered as marker for aggressive and 
non-aggressive. Other studies considered the relapse of tumor 
as a marker of metastasis and non-metastasis (5). In fact, 
patient tissues are so complex that it is difficult to distinguish 

metastatic and non-metastatic cancer. Thus, breast cancer cell 
lines that are easily separated into aggressive and non-aggres-
sive groups were used in the current study. We divided the 
breast cancer cell lines into an aggressive group (HCC202, 
Hs578T, MDA-MB-453, BT549 and MDA-MB-231) and 
non-aggressive group (BT474, MCF7, MDA-MB-435, 
SUM225 and SKBR3) by SATB1 expression (14). The raw 
expression data of breast cancer cell lines were obtained from 
the GEO database (www.ncbi.nlm.nih.gov/geo) under the 
Affymetrix Human Genome U133 Plus 2.0 Array (HG-U133_
Plus_2) platform (15). In summary, we found 27 aggressive 
breast cancer cell line samples and 38 non-aggressive breast 
cancer cell line samples. The list of all samples is presented 
in Table I.

Data pre‑processing. The software Affymetrix Expression 
Console was applied to normalize the raw data with the 
approach of Robust Multi-array Average algorithm. For 
computational reasons, network analysis was limited to the 
most varying 4,000 gene sets. Although some genes are 
represented in multiple gene sets and other gene sets are not 
fully annotated, for consistency, gene sets as are referred 
to as ‘genes’ throughout the study, unless otherwise noted. 
Although the validation data was performed on Affymetrix 
Human Genome U133 Plus 2.0 Array (HG-U133_Plus_2), the 
pre-processing method was the same as the cell line samples.

Construction of WGCNA. The WGCNA implemented in the 
R software package (http://www.r-project.org/) is employed 
to construct the gene co-expression network and identify the 
co-expression modules (6,16,17). Highly connective module 
genes are represented and summarized by their first principal 
component, and it has been called the module eigengene (7). 
The data sets used for gene co-expression network construc-
tion consisted of 27 aggressive and 38 non-aggressive samples, 
respectively. The network analysis is applied to breast cancer 
data set, a signed weighted network adjacency matrix id 
defined as:

xi and xj represent the expression value of gene expressions that 
are numeric vector whose entries report the β values across 
the individuals. To construct sample networks, a measure of 
connection strength, or adjacency, is defined for each pair of 
genes i and j and denoted by aij. A mathematical constraint on 
aij is that its values must be between 0 and 1. The power βT is 
a soft-thresholding parameter that can be used to emphasize 
high positive correlations at the expense of low correlations. 
The β is a parameter of adjacency function. The function of 
β is to construct a weighted network. In fact, β is a threshold 
parameter that needs to be determined. In WGCNA theory 
(only consider the parameter values that lead to a network 
satisfying scale-free topology at least approximately), the scale 
free topology fitting index (R2) depends on thresholds (β). A 
major advantage of weighted correlation networks is that they 
are highly robust with regard to the choice of β (16).

Generally, the topology of the weighted gene co-expressing 
network is constructed based on the hypothesis of scale-free 
network. In the present study, when the thresholds of power 
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in gene expression of aggressive and non-aggressive breast 
cancer lines were 12 and 6, the topology of the two weighted 
gene co-expression networks were consistent with the topo-
logical structure of scale-free networks. Thus, power=12 and 
power=6 were selected as the final parameter for two groups 
of breast cancer lines.

In the co-expression network, the genes represent the nodes 
and the aij represent the edges. The value of aij represents the 
strength connectivity of the edges. The overall connectivity 
for each gene (k) is the sum of the connection strengths 
(|correlation|β) between that gene and all other 1,810 genes 
in the network, scaled between 0 and 1. The intramodular 
connectivity for each gene (kin) is the sum of the connection 
strengths between that gene and all genes in its module, scale 
to between 0 and 1.

Gene Ontology (GO) enrichment. The annotations and 
functions of proteins were obtained from the Database for 
Annotation, Visualization and Integrated Discovery (DAVID) 
Bioinformatics Resources 6.7 (http://david.abcc.ncifcrf.gov/ 
home.jsp) (18,19). GO terms assigned a Benjamini-Hochberg 
adjusted P<0.05 by DAVID were deemed to be enriched over 
the background gene set. In this study, each module of the 
aggressive group was submitted into DAVID for GO enrich-
ment.

Specific network analysis and visualization. To identify pairs 
of genes with high ‘topological overlap’ (TO) in aggressive 
breast cancer (agg) and low TO in non-aggressive breast 
cancer (nonagg) in given modules, for each pair of genes 

Table I. All samples of aggressive and non-aggressive breast 
cancer cell lines.

A, Non-aggressive

GEO no. Cell line name

GSM1067677 MCF7
GSM1230317 MCF7
GSM1230347 BT474
GSM1273928 MCF7
GSM1273929 MCF7
GSM1298685 MCF7
GSM1298686 MCF7
GSM1298687 MCF7
GSM1374661 MDA-MB-453
GSM156771 MCF10A
GSM212661 MCF7
GSM286756 MCF7
GSM286757 MCF7
GSM286758 MCF7
GSM286762 MCF7
GSM286763 MCF7
GSM286764 MCF7
GSM286768 MCF7
GSM286769 MCF7
GSM286770 MCF7
GSM297803 MCF7
GSM436499 MCF7
GSM436500 MCF7
GSM436501 MCF7
GSM678802 MCF7
GSM678803 MCF7
GSM678804 MCF7
GSM699776 MCF7
GSM699777 MCF7
GSM803623 MCF7
GSM803682 MCF7
GSM803741 MCF7
GSM820808 HMEC
GSM820809 HMEC
GSM820810 HMEC
GSM984494 BT474
GSM984498 MCF7
GSM984499 SKBR3

B, Aggressive

GEO no. Cell line name

GSM1374510 HCC202
GSM1374550 Hs578T
GSM573291 MDA-MB-231
GSM573292 MDA-MB-231
GSM573293 MDA-MB-231
GSM596523 MDA-MB-231
GSM596524 MDA-MB-231

Table I. Continued.

GEO no. Cell line name

GSM596525 MDA-MB-231
GSM803625 MDA-MB-231
GSM803626 MDA-MB-435
GSM803684 MDA-MB-231
GSM803685 MDA-MB-435
GSM803744 MDA-MB-435
GSM820814 MDA-MB-231
GSM820815 MDA-MB-231
GSM820816 MDA-MB-231
GSM839353 MDA-MB-231
GSM839354 MDA-MB-231
GSM839355 MDA-MB-231
GSM843477 BT549
GSM843478 BT549
GSM843479 BT549
GSM870207 MDA-MB-231
GSM870208 MDA-MB-231
GSM870209 MDA-MB-231
GSM870210 MDA-MB-231
GSM984501 Hs578T

GEO, gene expression omnibus.
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i and j we defined the aggressive group specificity measure 
(ASij) as follows:

where mean (TO) represents the mean pairwise TO value in a 
given module for aggressive breast cancer or non-aggressive 
breast cancer. Connections for which the value of this ratio 
exceeded 0.8 were deemed present in aggressive group and 
absent in non-aggressive group.

Filter and restrict co‑expression network. For further 
improving the identification of strength connection in given 
modules, the analysis was restricted by retaining only those 
genes for which k was >0.5. Furthermore, for the network 
in given modules the top 20% weight of pairs of genes were 
selected.

Hub genes validation in clinical data. Breast cancer gene 
expression and clinical data were downloaded from The 
Cancer Genome Atlas (TCGA; https://cancergenome.nih.gov/) 
on April 2, 2016. Each sample represents a case in the TCGA 
data set. The three criteria used to select desired samples 
were as follows: i) Patients both with clinical data and gene 
expression were selected; ii) survival time of patients was 
more than 30 days; iii) all gene expressions were assayed by 
next-generation sequencing technologies. The three criteria 
resulted in 1,132 samples.

The validation data set was obtained from GEO (GSE3494) 
that contains 262 tissue samples of patients with breast 
cancer. The validation data set was divided into metastatic 
and non-metastatic groups by the clinical traits of positive 
and negative lymph node metastasis. The groups contained 
84 metastatic samples and 178 non-metastatic samples.

Survival analysis of hub genes. The univariate Cox propor-
tional hazard regression as used to compute the hazard ratio 
(HR) and P-value for each hub gene obtained from co-expres-
sion network analysis. P≤0.05 was considered to indicate 
significant association with survival. Genes that had a HR>1 
were considered to be high-risk genes, while a HR<1 were 
defined as risk‑reducing genes. The Wald test was employed to 
assess the difference between two groups associated with time 
to an event endpoint (20).

Prognosis index (PI) is an integrated indicator of hub genes 
for each breast cancer patient in the TCGA or GEO database. 
The value of PI is a linear combination of coefficient and gene 
expression. The PI was calculated from linear combination 
of the expression value of the gene expressions multiply by 
univariate Cox regression coefficients. For integrating indica-
tors of genes for each patient, a weighted prognostic index 
(WPI) was defined as follows (21):

Where Coefi represents the Cox regression coefficient of the 
ith gene and Xi represents the value of the ith gene expression. 

Mean (PI) and standard deviation (PI) represent the mean 
value and standard deviation of the PI, respectively. Where Xi 
is the log2-transformed expression value of each gene and is 
Coefi the univariate Cox proportional hazards regression coef-
ficient of the ith gene.

Results

Co‑expression network of aggressive group and non‑aggres‑
sive group. The gene co-expression networks are constructed 
from microarray data consisting of 27 aggressive cell lines 
and 38 non-aggressive cell lines (Table I). For examining 
the difference of the two groups of breast cancer, the overlap 
between two groups was determined. A total of 1,811 genes 
were derived from the 4,000 genes with the most variance. 
All possible pairwise correlations were calculated for 
1,811 genes in aggressive and non-aggressive cell line in 
parallel and converted into measures of connection strength by 
taking their absolute values and raising them to a power, β (16). 
Summing the connection strengths for each gene with all other 
genes resulted in a number that termed network connectivity 
(k). The connectivity represents how strongly that gene is 
connected to all other genes in the network. For identifying 
the modules of co-expression genes, the genes with similar 
patterns of connection strengths to other genes or high TO 
was calculated (22). WGCNA is employed to calculate TO and 
clustered genes on the basis for aggressive and non-aggressive 
groups, identifying six distinct gene co-expression modules 
in aggressive samples and three co-expression modules in 
non-aggressive samples (Fig. 1).

As presented in Fig. 1, there were 1,811 overlapping genes 
in the different clusters in aggressive and non-aggressive 
groups. In the present study, the size was restricted to a 
minimum of 30 genes in one module. The aggressive group 
contained six modules (excluding the grey color module) and 
non-aggressive group contained three modules (excluding 
grey color module). For investigation of the topology of the 
co-expression network difference between aggressive and 
non-aggressive cell lines, the connectivity of both groups was 
calculated using the R and WGCNA package (Fig. 2).

As shown in Fig. 2, rho=0.16 and P=5.133x10-12, which 
represent a significant linear correlation between the two 
types of cell lines. This association was examined further 
using Pearson correlation. The analysis produced a correlation 
coefficient of 0.060 and P=0.010. Although, P<0.05, the corre-
lation coefficient demonstrated that they have a weak positive 
correlation. The results indicated that two types of cell lines 
have specific co‑expression networks.

GO enrichment for both groups. For investigating the biolog-
ical process of each module in aggressive and non-aggressive 
cell lines, DAVID was used for analysis. Table II presents 
the top five GO terms in each module. The six modules were 
distributed in different biological processes.

From Table II, the GO enrichment demonstrated that biolog-
ical process of distribution of modules in the aggressive and 
non-aggressive group. The results demonstrated the difference 
in biological processes in both groups. Previous publications 
have reported that tumor metastasis is closely associated with 
cell adhesions (23,24), cytoskeletal development (25), cell 
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Figure 1. Network analysis of gene expression in aggressive and non-aggressive. Bistinct modules of co-expressed genes in (A) aggressive and (B) non- 
aggressive breast cancer cell lines. Dendrograms produced by average linkage hierarchical clustering of 1,811 genes bases on topological overlap. Modules 
were assigned colors as an indicator in the horizontal bar beneath the aggressive dendrogram. The bottom color bar represents the module after merging 
modules. Classical multidimensional scaling plots in three dimensions depict the relative size and cohesion of modules in aggressive and non-aggressive group.

Figure 2. Connectivity of aggressive and non-aggressive breast cancer comparison. (A) The slope of the curve changes greatly at 12 in aggressive breast cancer 
cells. Power=12 led to the aggressive network satisfying scale-free topology. (B) The slope of the curve changes greatly at 6 in non-aggressive breast cancer 
cells. Power=6 led to non-aggressive network satisfying scale-free topology. (C) Power=12 was used for the aggressive group and depicted the scale-free 
topology and (D) power=6 was used for the non-aggressive group and depicted the scale-free topology. The black curve corresponds to scale-free topology and 
the red curve corresponds to truncated scale-free topology. (E) Spearman's rank correlation was used for comparing network connectivity between aggressive 
and non-aggressive. The value of Spearman's rank correlation (rho) is 0.16 and P=5.133x10-12.
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Table II. List of the top GO terms in the most significant the Database for Annotation, Visualization and Integrated Discovery 
functional clusters for each network module.

A, Aggressive breast cancer cell lines

Top five terms No. of genes in ME P‑value FDR

Blue module 363
  GO:0001501:skeletal system development  1.05x10-8 1.83x10-5

  GO:0007155:cell adhesion  7.15x10-8 1.25x10-4

  GO:0022610:biological adhesion  7.39x10-7 1.29x10-3

  GO:0001568:blood vessel development  3.27x10-6 5.70x10-3

  GO:0001944:vasculature development  3.73x10-6 6.50x10-3

Brown module 359
  GO:0048545:response to steroid hormone stimulus  5.91x10-9 9.53x10-6

  GO:0008285:negative regulation of cell proliferation  6.08x10-9 9.82x10-6

  GO:0009725:response to hormone stimulus  1.27x10-6 2.04x10-3

  GO:0042127:regulation of cell proliferation  6.36x10-6 1.02x10-2

  GO:0009719:response to endogenous stimulus  8.54x10-5 1.39x10-1

Green module 183
  GO:0007167:enzyme linked receptor protein  4.76x10-4 7.57x10-1

  signaling pathway
  GO:0001525:angiogenesis  6.42x10-4 1.02
  GO:0009611:response to wounding  7.10x10-4 1.13
  GO:0048514:blood vessel morphogenesis  1.04x10-3 1.64
  GO:0001568:blood vessel development  1.8x10-3 2.85
Red module   74
  GO:0030030:cell projection organization  4.04x10-5 6.34x10-2

  GO:0034329:cell junction assembly  1.37x10-4 2.14x10-1

  GO:0006928:cell motion  2.24x10-4 3.50x10-1

  GO:0034330:cell junction organization  2.30x10-3 3.54
  GO:0000904:cell morphogenesis involved  2.49x10-3 3.83
  in differentiation
Turquoise module 196
  GO:0046907:intracellular transport  2.89x10-5 5.04x10-2

  GO:0016192:vesicle-mediated transport  1.72x10-4 2.99x10-1

  GO:0051270:regulation of cell motion  3.15x10-4 5.46x10-1

  GO:0001701:in utero embryonic development  4.69x10-4 8.14x10-1

  GO:0010033:response to organic substance  4.69x10-4 8.14x10-1

Yellow module 191
  GO:0048732:gland development  1.61x10-5 2.61x10-2

  GO:0042981:regulation of apoptosis  1.83x10-5 2.97x10-2

  GO:0043067:regulation of programmed cell death  1.92x10-5 3.11x10-2

  GO:0010941:regulation of cell death  2.61x10-4 4.21x10-1

  GO:0009611:response to wounding  5.23x10-4 8.43x10-1

B, Non-aggressive breast cancer cell lines

Top five terms No. of genes in ME P‑value FDR

Blue module 374
  GO:0006796:phosphate metabolic process  2.79x10-4 4.80x10-1

  GO:0006793:phosphorus metabolic process  2.79x10-4 4.80x10-1

  GO:0000075:cell cycle checkpoint  2.91x10-4 4.99x10-1

  GO:0010033:response to organic substance  4.34x10-4 7.43x10-1

  GO:0046907:intracellular transport  5.63x10-4 9.65x10-1
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growth (26) and the glycolysis pathway (5). Therefore, the 
modules of blue and red in the aggressive group were consid-
ered to be associated with metastasis.

Visualization of intramodular network construction for 
identification of hub genes and specific network connec‑
tions of breast cancer metastasis. To identify the metastasis 
specific network, the greatest TO in metastatic breast 
cancer was depicted in the blue and red modules by using 
Cytoscape 3.01 (27). The specific network of metastatic breast 
cancer (ASij>0.8) was obtained using the previously described 
equation (2). Subsequently, the hub genes (strongest connec-
tions with other genes) generally represent the important 
function in biological networks (28,29). Fig. 3 presents the 
specific co‑expression network in the blue and red modules.

Fig. 3A and B presents the comparison of the specific 
co-expression network of the blue module in aggressive breast 
cancer and non‑aggressive breast cancer. These were filtered 
to obtain the top 20% greatest TO of aggressive breast cancer 
and non-aggressive cancer. The overlapping nodes (dark blue 
nodes) were arranged into similar locations in the network 
and the nodes demonstrated the difference in connectivity 
between the aggressive group and non-aggressive group in the 
blue module. The aggressive group had the sparse connectivity 
and the non-aggressive group had the dense connectivity. 
In Fig. 3C and D, the red module network also demonstrated 
the difference in network topology between aggressive group 
and non-aggressive group. For further investigation of the 
difference of the modules networks, hub genes were selected 
for analysis. Table III presents the top five genes with high 
intramodule connectivity (kin) as hub genes in the aggressive 
group.

The greatest kin values in the aggressive group are presented 
in Table III. The hub genes in the blue module of aggressive 
group were all absent in the non-aggressive group. The hub 

genes included stromal cell-derived factor 1 (CXCL12) and 
docking protein 5 (DOK5) in the aggressive group red module 
were present in the non-aggressive group. The genes GJC1, 
ANXA3 and TWIST1 have been previously reported to be 
associated with metastatic tumor (30-32). GJC1 is associated 
with breast cancer, which was associated with amplification 
of ERBB2 receptor tyrosine kinase 2 (ERBB2) that is an 
important breast cancer marker (33). ANXA3 was previously 
reported as a novel biomarker for lymph node metastasis and 
prognosis in lung cancer (31). TWIST1 is an extensively studied 
regulator associated with breast cancer metastasis. TWIST1 is 
considered to be a master regulator of embryonic morpho-
genesis and has an essential role in metastasis (32,34,35). 
Transmembrane protein 47 (TMEM47) and immortalization 
upregulated protein (C19orf33) are not reported to be involved 
in breast cancer metastasis, to the best of our knowledge. In the 
red module, CXCL12, sulfatase 1 (SULF1), DOK5 and DKK3 
are all reported to be closely associated with breast cancer 
metastasis. CXCL12 possesses angiogenic properties and 
is involved in the outgrowth and metastasis of C-X-C motif 
chemokine receptor 4‑expressing tumors and certain inflam-
matory autoimmune disorders (36). SULF1 overexpression is 
considered as a prognostic and metastasis predictive marker 
in human gastric cancer (37). DOK5 expression is indicated to 
cause a significant enhancement in the metastatic potential of 
the B16F10 cell line (38). DKK3 expression increased cell-cell 
adhesion and decreased cell migration (39). The function of 
neurotrimin-like (LOC100653217) is currently unclear.

For validation of the hub genes using clinical data, invasive 
breast carcinoma data was retrieved from the TCGA and GEO 
databases. HR and P-value from Cox regression analysis were 
calculated and presented in Table IV.

Table IV demonstrates that C19orf33, SULF1 and DOK5 
had P>0.05. Other genes were significantly associated with 
the survival time of patients with breast cancer and they are 

Table II. Continued.

B, Non-aggressive breast cancer cell lines

Top five terms No. of genes in ME P‑value FDR

Brown module     90
  GO:0007178:transmembrane receptor protein  6.48x10-3 9.26
  serine/threonine kinase signaling pathway
  GO:0051789:response to protein stimulus  7.02x10-3 10.24
  GO:0009615:response to virus  7.58x10-3 10.75
  GO:0030509:BMP signaling pathway  1.11x10-2 15.84
  GO:0006955:immune response  1.29x10-2 17.61
Turquoise module 1,345
  GO:0007155:cell adhesion  8.22x10-12 1.49x10-8

  GO:0022610:biological adhesion  8.85x10-12 1.61x10-8

  GO:0009611:response to wounding  1.83x10-11 3.32x10-8

  GO:0048732:gland development  3.85x10-11 6.98x10-8

  GO:0001568:blood vessel development  4.20x10-11 7.63x10-8

GO, gene ontology; FDR, false discovery rate; ME, module eigengene.
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high-risk genes (HR>1). Of these genes, TMEM47, CXCL12 
and TWIST1 have been demonstrated to be closely associated 
with breast cancer aggression in previous studies (40-42). 
Other genes with P<0.05 may also be promising biomarkers 
for the prediction of survival in patients with breast cancer, in 
which further study is required.

Generally, breast cancer aggressiveness is closely associ-
ated with overall survival or disease relapse (43). Thus, the 
highest kin hubs in two modules were tested by survival analysis 
according to their expression. LOC100653217 was not found 
in the TCGA database. Therefore, Cox regression and survival 
analysis was used to determine the prognostic index of nine 
genes. The WPI obtained from nine genes and 1,132 samples 
from the TCGA as applied to classify low-risk and high-risk 
groups (Fig. 4A). Log-rank test (Fig. 4B) demonstrated that the 
two groups classified by hub genes have significantly signifi-
cant difference (log-rank test, P<0.05, hazard ratio=1.231, 
95% confidence interval=1.058‑1.433; Wald test, P=0.0071). 
Additionally, the recurrence of cancer is another impor-
tant indicator for estimating the aggressiveness. Thus, the 
GSE3494 dataset that includes cancer relapse data of patients 
with breast cancer was used to validate the hub genes. The 
results of log-rank testing demonstrated that high-risk group 

patients had a significantly shorter relapse time compared with 
patients in the low-risk group (log-rank test, P<0.05). The area 
under the curve of the receiver operating characteristic was 
0.697, which suggests that the integrative hub genes are good 
predictors of breast cancer relapse (Fig. 5).

Discussion

The current study used WGCNA to explore gene co-expression 
between aggressive breast cancer and non-aggressive breast 
cancer cell lines. Network depictions can provide imme-
diate functional insights by revealing associations between 
genes and biological processes. Comparative network analysis 
can also prioritize genes for further investigation on the basis 
of different connectivity, with previous studies supporting that 
gene connectivity is a measure of functional relevance (44,45).

The current study is based on previous reports of classifica-
tion in aggressive and non-aggressive breast cell lines. However, 
whether the MDA-MB-435 cell line is a breast cancer cell line 
or a melanoma cell line has raised some controversy (46-48). 
Rae et al (46) and Capes-Davis et al (47) reported that the 
cell line was a melanoma cell line, due to karyotype and gene 
expression pattern similarity to melanoma cells. Whereas, 

Figure 3. Visualization of specific network of blue and red modules in metastasis and non‑metastasis breast cancer. (A) The light blue nodes represent specific 
nodes and linkage in blue module network of aggressive breast cancer. The dark blue nodes represent the overlap between metastasis and non-aggressive breast 
cancer. (B) The light blue nodes represent specific nodes in non‑aggressive breast cancer. The dark blue nodes represent the overlap between aggressive and 
non‑aggressive breast cancer. (C) The light red nodes represent the specific nodes and linkage in red module network of aggressive breast cancer. The dark red 
nodes represent the overlap between aggressive and non‑aggressive breast cancer. (D) The light red nodes represent the specific nodes in non‑metastasis breast 
cancer. And the dark red nodes represent the overlap between aggressive and non-aggressive breast cancer.
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Chambers (48) considered both the cell lines to be of breast 
cancer origin. According to Han et al (14), the MDA-MB-435 
cell line indeed represents a poorly differentiated, aggressive 
breast tumor line indicated by overexpression of the SATB 
homeobox 1 (STAB1) gene. The present study focused on 
the co-expression network of aggressive and non-aggressive 
breast cancer cells. Therefore, the MDA-MB-435 cell line was 
included as an aggressive breast cancer cell line.

Breast cancer is the most common malignant disease 
and the various types have been extensively investigated. 
Co-expression network analysis as a powerful tool is also 
applied to study breast cancer. In previous studies, WGCNA 
was used to analyze the association between gene expression 
in breast cancer and the clinical traits in patients (9). In this 
study, the WGCNA was applied to construct a co-expression 
network between aggressive and non-aggressive breast cancer 
lines. The blue module and red module were closely associated 
with an aggressive phonotype according to previous publica-
tions. According to the current literature regarding metastatic 

breast cancer, the biological mechanisms of aggressiveness are 
associated with cell adhesions (23,24), cytoskeletal develop-
ment (25), cell growth (26) and the glycolysis pathway (5). The 
results of the current study demonstrated that the blue module 
and red module were closely associated with above biological 
process, excluding glycolysis. Following filtering of data, 
the hub genes in the blue and red modules were identified. 
From the finding of previous studies, many of the hub genes 
have been previously demonstrated to be associated with 
metastasis. However, the association of these genes, and differ-
ence of these genes co-expression between aggressive and 
non-aggressive breast cancer are unclear. In the red module 
network, genes such as DKK3, glycosyltransferase 8 domain 
containing 2, fibronectin 1, cadherin 13 and LOC100653217 
were all present in the aggressive group and non-aggressive 
group; however, these genes had different connections in each 
group. For example, DKK3 as a hub gene is present in the 
aggressive group and non-aggressive group, but had different 
connectivity in the two groups. The connectivity of DKK3 in 

Table III. List of top five genes with high kin as hub genes in blue and red modules.

A, Blue module of aggressive group

Gene symbol Accession of uniprot Gene name kin (normalized)

TMEM47 Q9BQJ4 Transmembrane protein 47 1.000
GJC1 P36383 Gap junction γ-1 protein 0.929
ANXA3 P12429 Annexin A3 0.925
TWIST1 Q15672 Twist-related protein 1 0.917
C19orf33 Q9GZP8 Immortalization upregulated protein 0.905

B, Red module of non-aggressive group

Gene symbol Accession of uniprot Gene name kin (normalized)

LOC100653217  Neurotrimin-like 1.000
CXCL12 P48061 Stromal cell-derived factor 1 0.958
SULF1 Q8IWU6 Sulfatase 1 0.936
DOK5 Q9P104 Docking protein 5 0.819
DKK3 Q9UBP4 Dickkopf-related protein 3 0.782

Table IV. Nine hub genes predictive of survival in patients with breast in the Cancer Genome Atlas database.

Gene symbol Gene name Hazard ratio Cox P‑value Confidence interval (95%)

TMEM47 Transmembrane protein 47 1.161 0.004 1.049-1.286
GJC1 Gap junction γ-1 protein 1.192 0.025 1.022-1.390
ANXA3 Annexin A3 1.114 0.016 1.021-1.214
TWIST1 Twist-related protein 1 1.145 0.019 1.022-1.283
C19orf33 Immortalization upregulated protein 0.956 0.118 0.903-1.012
CXCL12 Stromal cell-derived factor 1 1.203 0.001 1.076-1.345
SULF1 Sulfatase 1 0.950 0.375 0.848-1.064
DOK5 Docking protein 5 1.045 0.395 0.944-1.158
DKK3 Dickkopf-related protein 3 1.194 0.004 1.059-1.344
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the non-aggressive group as stronger than in the aggressive 
group. According to previous publications, DKK3 expression 
can inhibit tumor metastasis (39,49). Although the P-value from 
Cox regression of DKK3 was <0.05, the stronger connection of 
DKK3 in non-aggressive cell lines and weaker connection of 
DKK3 in aggressive cell lines indicated that this gene may be 
a potential biomarker for breast cancer aggressiveness.

In the blue module network, the top five hub genes were 
all absent in the non-aggressive group. The overlapping genes 
in both groups also had a difference in connection. The 
non-aggressive group had more dense connection than the 
aggressive group. The result indicated that the most of the top 
five hub genes were associated with tumor metastasis. Although 
the function of certain genes in tumor metastasis was unclear, 
the high connectivity and HR may indicate that they have 
important roles in metastasis. Previous studies have identified 
various markers for breast cancer metastasis and prognosis. 
For example, SATB1 is considered to be an important gene 

for breast cancer metastasis and prognosis (14). ERBB2, 
plasminogen activator urokinase and plasminogen activator 
inhibitor 1 are also important markers in breast cancer prog-
nosis (1). Other research identified the p53, Na‑K ATPase‑β1 
and transforming growth factor-β receptor 2 are associated 
with survival (9). Although the individual gene function can 
reflect some issue of metastasis, the metastasis and cancer is 
a multi-step cascade (50). The gene expressions analysis may 
provide more accurate information and underlying mecha-
nisms. In the current study, the different connections may 
provide more information than individual gene expression 
differences. Different connection can reflect the difference 
cellular mechanisms between aggressive and non-aggressive 
breast cancer. The data analysis may provide a potential candi-
date biomarker for metastasis. Finally, PI was used to integrate 
these hub genes, which were then investigated in clinical data 
obtained from TCGA and GEO. The results demonstrate that 
the PI of hub genes can significantly predict clinical outcome. 

Figure 4. Kaplan‑Meier survival curves for testing hub genes in blue and red module. (A) The classification of low‑risk and high‑risk by WPI of hub genes in 
overall survival (days). (B) Kaplan‑Meier curve obtained from WPI classification by hub genes expression in breast cancer patients (P=0.0248). WPI, weighted 
prognostic index; TCGA, The Cancer Genome Atlas.

Figure 5. Kaplan-Meier survival curves and ROC curves for testing hub genes in blue and red module in GSE3439 dataset. (A) Kaplan-Meier curve obtained 
from the weighted prognostic index classification by hub gene expression in breast cancer patients (P=0.0241). (B) ROC curve had an area under the curve of 
0.697 in validation data set. GEO, Gene Expression Omnibus; ROC, receiver operating characteristic.
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In further study, other potential genes are expected to be vali-
dated. The results may provide new insight into understanding 
the potential mechanism of aggressiveness of breast cancer.
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