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Biomolecular cooperativity is of great scientific interest due to its role in biological processes. Two transcription factors (TFs),
Oct-4 and Sox-2, are crucial in transcriptional regulation of embryonic stem cells. In this paper, we analyze how Oct-1 (a similar
POU factor) and Sox-2, interact cooperatively at their enhancer binding sites in collective motions. Normal mode analysis (NMA) is
implemented to study the collective motions of two complexes with each involving these TFs and an enhancer. The special structure
of Oct proteins is analyzed comprehensively, after which each Oct/Sox group is reassembled into two protein pairs. We subsequently
propose a segmentation idea to extract the most correlated segments in each pair, using correlations of motion magnitude curves.
The median analysis on these correlation values shows the intimacy of subunit POUS (Oct-1) and Sox-2. Using those larger-than-
median correlation values, we conduct statistical studies and propose several protein-protein cooperative modes (S and D) coupled
with their subtypes. Additional filters are applied and similar results are obtained. A supplementary study on the rotation angle
curves reaches an agreement with these modes. Overall, these proposed cooperative modes provide useful information for us to

understand the complicated interaction mechanism in the POU/HMG/DNA complexes.

1. Introduction

Embryonic stem cells (ES cells) possess the pluripotency
of differentiating into all the three germ layers (endoderm,
mesoderm, and ectoderm), which correspond to hundreds of
cell types. These pluripotent stem cells are transcriptionally
regulated by a number of transcription factors (TFs) [1]. A
specific TF called Oct-4, belonging to the POU class of home-
odomain proteins, is regarded as a necessity for maintaining
the undifferentiated state of embryonic ES cells. Generally,
Oct-4 interacts with other TFs as a group to affect the gene
expression of mouse ES cells in early embryo development
[2], and Oct-4 coupled with its cofactor Sox-2 (HMG-box
domain) is at the center of this group. Botquin and Nishimoto
have both proven the cooperative effects of Oct-4 and Sox-2
on the expression of several genes in mouse embryonic ES
cells [3, 4]. Dailey and Basilico further bring forward the idea
that the interaction within the POU/HMG group, especially
for groups composed of Oct and Sox proteins, at DNA
binding sites is a fundamental mechanism for transcriptional
regulation in early embryo development [5].

At the early stage of transcription, TFs bind to specific
regulatory DNA regions to cooperatively affect the transcrip-
tion sites. Enhancers, which act as activators or stimulators
for transcription [6], are a major type of regulatory DNA
regions. Unlike promoters, enhancers may be located kilo-
bases away from their target genes, but geometrically they
are most probably close to the genes due to the supercoil
structure of DNA molecules, and thus there can be direct con-
tacts between the enhancer-TF complexes and the transcrip-
tion sites. Studies on the enhancer-TF complexes are very
important for understanding the complicated mechanism of
transcriptional regulation.

On the other hand, molecular dynamics are involved in
many biological processes [7, 8], such as reproduction, reg-
ulation of gene expression, and protein interaction. As an
indispensable component of gene expression, transcription
must undergo a series of dynamical changes of biomolecules.
Therefore, studies on dynamics of the aforementioned
enhancer-TF complexes would provide a deep insight into
their properties and functions in the transcriptional regu-
lation. Specifically, deciphering the roles of Oct and Sox in
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the interaction mechanism of their enhancer-bounded com-
plexes in the collective dynamics is of great scientific interest.
Further, the cooperativity of the two proteins is a major
research topic in these studies.

In our work, the dynamics of the POU/HMG group at
its enhancer binding sites, referred to as POU/HMG/DNA
complexes, are surveyed. Two POU/HMG/DNA complexes,
which are DNA-binding portions of a POU factor Oct-1 and
an HMG factor Sox-2 bound to an enhancer, are specifically
studied from a structural and molecular dynamic view. Nor-
mal mode analysis (NMA) is implemented to study the col-
lective or cooperative motions of these POU/HMG/DNA
ternary complexes, after which the interaction of the POU
and HMG factors at their DNA binding sites in these collec-
tive motions is explored. We propose a segmentation idea for
the proteins to construct an equal-length-chain comparison
and measure the correlation of each protein segment pair
using the linear correlation. A statistical analysis on the sig-
nificantly correlated pairs provides useful information on
how these TFs have a synergistic control on enhancer DNAs
in transcriptional regulation.

2. Materials and Method

2.1. Normal Mode Analysis (NMA)

2.1.1. Introduction. NMA is an eflicient method to detect the
most cooperative or collective motions (essential modes) of
large harmonic oscillating systems. With the constraint that
the studied conformations are in the vicinity of the systematic
equilibrium, which exists in most harmonic oscillating sys-
tems [9], NMA is useful for studying large structural defor-
mations or motions of these systems. The idea is to use har-
monic potentials to approximate a multidimensional energy
landscape around an energy minimum for a system and to
detect the most easily accessible modes on this energy land-
scape. NMA is broadly used to analyze the structural dynam-
ics of biomolecules.

Specifically, if we describe an N-site-system with a posi-
tion vector g, in which the three-dimensional coordinates of
each site (x;, ¥1,2), (X3, ¥3,25) .- .» (Xn» Yn» Zn) are used,
we can mathematically expand the potential energy V in a
second-order Taylor series around the equilibrium confor-
mation q° [9]. Finally, we obtain a quadratic approximation
as follows:

v\’
V(q) = %Z(@q-;;) (a-47)(a,-4}) = %AqTHAq-
i,j 1
)]

Here Aq stands for the systematic structural changes relative
to q°, and H is a 3N x 3N Hessian matrix, whose elements
have the following form:

oV
aqiaqj‘

2)

H;;

Subsequently, the kinetic energy is brought in to slightly
modify the Hessian to a mass-weighted one. These Hessian
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matrices contain key structural information for our observed
systems.

One broadly used construction method for the Hessian
matrices is the elastic network models (ENMs) [9-12], which
include the Gaussian network models (GNMs) [11] and
anisotropic network models (ANMs) [12] as representatives.
When ENM is applied, the equilibrium exploration can be
skipped since the starting state is designed for this equilib-
rium. When constructing the ENM structure, the original
system can be transformed into a network with nodes (CG-
sites) and connecting springs, and a cutoft distance vy, is used
to define all the connecting springs y;; [9, 10]. Gaussian net-
work model (GNM) selects representatives for substructures
in the system, such as using C,-atoms for amino acids [9,
11], to further lower the computational cost, leading to the
potential form shown as (3) (R; or R j represents a CG-site):

1
Vonum = EZVU (ARi - AR]‘)2~ (3)
ij

Similarly, ANM proposes the potential form in (4) and
ignores some influences caused by the distance vectors:

Vi = S (1R + k- - o - [0~ K)o
L]

Each eigenvalue of an above-constructed Hessian matrix
denotes the associated systematic energy for the observed sys-
tem, and its corresponding eigenvector represents the direc-
tion of a specific normal mode motion. Among the obtained
3N normal mode directions, the first six are trivial since they
all correspond to zero eigenvalues, which means these struc-
tural changes have no effect on the systematic potential
energy. For the remaining 3N — 6 eigenvectors, we will select
a small set that corresponds to small eigenvalues (essential
modes) for analysis [9]. In previous research, the first 10~15
essential modes are chosen by many researchers for their
work [13-15], and the first 10 are analyzed in our work.

2.1.2. Computational Platform. Several online tools are avail-
able for normal mode calculations. An online server called
NOMAD-Ref at http://lorentz.immstr.pasteur.fr/nomad-ref
.php [16] is utilized in our experiments. It is an ENM model-
based method. The implementation of a rotation-translation
block approach [16] and an ARPACK library for the sparse
matrix data storage and decomposition [17] in the compu-
tations of Hessian matrices makes it possible to retain up to
100,000 atoms for each structure. In our work, when calcu-
lating the motions using NOMAD-Ref, all atoms in POU/
HMG/DNA ternary complexes are used, while only motions
of the POU and HMG proteins are analyzed since only pro-
tein-protein interactions in POU/HMG complexes at the
DNA binding sites are of interest here.

2.2. Experimental Data and the Analysis on Their NMA Results

2.2.1. Experimental Data. Two POU/HMG/DNA ternary
complexes, IGT0 and 104X, are downloaded from the Pro-
tein Data Bank (PDB) [18] for analysis. Each structure is
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FIGURE I: (a) The 3D structure of the POU/HMG/DNA ternary complex 1GT0. The gray protein represents an HMG factor Sox-2, and the
red one is a POU factor Oct-1, which is composed of two subunits POUS and POUHD. (b) The two reassembled protein pairs, originated

from (a), for our subsequent studies.
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FIGURE 2: (a) The protein pair containing Sox-2 (gray) and POUS (red) in IGTO. (b) The refined structure of the protein pair, where nodes
represent residues. In each mode, a refined protein structure in the pair corresponds to a motion magnitude curve. (c) The searching process
for the most cooperative segments of length A in the protein pair in a specific mode.

composed of a POU factor Oct-1 (very similar to Oct-4),
an HMG factor Sox-2 and an enhancer element. Figure 1(a)
displays the 3D structure of complex 1GTO and the dia-
gram is produced using UCSF Chimera [19]. In 1GTO, the
bounded DNA piece is a fibroblast growth factor 4 enhancer
(FGF4) [20]; in 104X, the homeobox Bl (Hoxbl) enhancer is
bounded by the two TFs [21].

Furthermore, each Oct protein contains two subunits
(POUS and POUHD) that are connected by a flexible linker
and control DNAs in a bipartite manner [21]. Based on the
special structure of Oct proteins, we regard Oct-1 and Sox-2
in each complex as the two protein pairs for further investi-
gation, namely, POUHD and Sox-2 as pair 1 and POUS and
Sox-2 as pair 2, both of which are shown in Figure 1(b).

2.2.2. Analysis of Correlative Motions. After generating the
motions of the two POU/HMG/DNA ternary complexes
using NMA, we observe how the two protein pairs behave at
the enhancer binding sites in these most collective or coop-
erative motions.

For each protein pair in each ternary complex, we analyze
the first 10 obtained essential modes. In each mode, we firstly

refine an observed pair at the residue level from a view of
motion magnitude. This can be achieved by calculating the
motion magnitudes for all the atoms in each protein and sub-
sequently computing the motion magnitude of each residue
in this protein by averaging the motion magnitudes of all
component atoms (see (5)):

LN
MR; = = MA,

j=1
(5)

j

1 & 02 0\2 0\2

= NZ\/(’CU —xp) (v = o5) + (= - 25)
=1

Here atoms j = 1 ~ N; comprise the residue i; (x%, y?j,x?j)
and (x;;, y;j, x;;) represent the positions of atom j in its equi-
librium position and in a specific mode, respectively. There-
fore, for each mode, we will obtain a motion magnitude curve
for each protein in an observed pair, and each curve point
corresponds to a residue along the protein sequence (Figures

2(a) and 2(b)).



Next, in each protein pair we observe the potential pro-
tein-protein cooperativity in these motions based on the cor-
relations of motion magnitude functions. An effective
method to measure the dependence between two quantities
is the Pearson product-moment correlation coefficient [22-
24] also is usually called the correlation coefficient. This
coeflicient is calculated based on the expected values (¢) and
standard deviations (o) of the two variables (X and Y), as
shown in (6):

corr (X,Y) = Coz(i‘(, Y) - E[(X- ZXZ;(Y - P‘Y)].
XYY xOy

(6)

We adopt this correlation coefficient in our studies. How-
ever, since each protein has a different length, we investi-
gate the most cooperative/correlated segments among each
protein pair in each mode. We introduce a segment length
parameter A here. For an observed pair of proteins that have
different lengths of x and y, with a specific A(A < x < y)
defined in a mode, we shift one motion magnitude function
along the other to find the A-length-segments which share
the largest absolute correlation value (Figure 2(c)). We could
further describe the process as follows:

maxC (i, j) = |corr (Seg;» Segj)|
ij
Seg, € F, 7)

Seg; € F,
[Segl = [Seg,] = 2.

So that

Here F, and F, represent motion magnitude functions of the
two proteins in an observed pair, in a specific essential mode;
Seg; and Seg; denote A-length-segments of F| and F,, respec-
tively.

In each modes with a list of A values defined for each
protein pair, we obtain a series of most cooperative segment
pairs having correlation values ¢,,,,, where m denotes different
A values and n (1~10) represents different modes. Here we
replace A by p = A/x for easier illustration and x is the shorter
length in the observed pair. Since larger absolute value of cor-
relation demonstrates more correlated segments (positively
or negatively), we investigate how |c,,,,| distribute for the two
protein pairs in each complex. For each p in an observed pair,
the median value (8) is extracted and explored. Furthermore,
the performances (based on ¢,) of the two pairs in each
complex are compared:

G, = MEDLY {|6ml} = MED {|c,u | [6mal >+ - -5 |Gmao]} >
m=1,...,6.

(8)

Now, we use medians in (8) as a filter and investigate
how those [c,,,| larger than ¢,, (supposed to be significant)
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FIGURE 3: This diagram shows all the possibilities of the length
pair (p', p*). Specifically, for an observed complex, the significantly
correlated segment pair (with a length parameter of p') in protein
pair 1and that (with a length parameter of p?) in protein pair 2 are
comparably investigated, with p' and p” taking all possible values
(m =1 ~6) as previously stated.

distribute. For each protein in an observed pair, we can obtain
a logic matrix L that reflects this process:

L= [l = ([l6ml] > [G4]2)

¢ G
5 G, 2}
= ([Cu] > [Gu]7) = S R
. . 9
Cs G ©
Cm = (lcmll’ |Cm2| Y |Cm10|)
Sothaty m=1,...,6
n=1,...,10.

Here [x] gives the matrix that is composed of x.

We subsequently examine the relationship between the
two protein pairs in each complex based on these logic
matrices. The idea is to explore that in a single essential mode
whether only one significantly correlated segment pair (either
in protein pair 1 or pair 2) is involved or both pairs are
involved. To balance the segment lengths (p) used by the two
pairs, we take into consideration all the length pairs (p', p*)
between the two pairs, as presented in Figure 3. Here we use
superscripts to distinguish pairs 1 and 2.

To fulfill the aforementioned operation, we conduct sev-
eral iterations for all the p' values and combine the results of
these iterations. We now take rows in L' (denoting a specific
p' value) and show how the whole procedure is accom-
plished. In each iteration, we firstly expand the involved row
(identified with a subscript ) into a matrix in (10) and then
carry out statistics on the cases where three situations occur:
(a) S, (index s;)—only the significantly correlated segment
pair in pair 1 is detected in a single essential mode with a
length pair ( pl, pz), (b) S, (index s,)—only the significantly
correlated segment pair in pair 2 is detected, and (c) D (index
d)—both pairs 1 and 2 are detected. The statistical analysis is
based on logic operations, as shown in (11), which combines
all the iterations to derive the final indexes for the two pairs:

1 71 1T
Ll,m: (Lm’Lm”"’Lm) , (10)
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6
§ = Zsum (Ll’m - X (—|L2)) ,
m=1
6
S, = Zsum ((—|L1””) . ><L2),

m=1
6
d= Z sum (Ll’m . ><L2) )
m=1

(1)

Here “x” means a batch of multiplications of the corre-
sponding elements in two matrices, and sum(X) counts the
number of ones (a logic “true” value) in a logic matrix X.
Indexes s,, s,, and d separately show three cooperative modes
(corresponding to the aforementioned three cases) between
the two protein pairs in a POU/HMG/DNA complex. We
exhibit some representative cooperative modes in Section 3,
where we also list the above-mentioned indexes for the two
complexes. Furthermore, to take the signs of the correlations
G,y into consideration, we introduce another logic matrix Z
that describes the signs of ¢,,,,, as stated in (12). Through com-
bining logic operations of L' and Z’ (13), we can divide the sit-
uations (S, S,, and D) into subtypes (positive and negative),
and all these subtypes are analyzed in Section 3:

_ _ 2 m=1,...,6
2= [z = (6] > 101) Sotha{7 710 o)
im_ Zoy o Zh)
- ,

M

sum (Ll"" - X (—|L2) . ><Zl’"’)

Sl,positive
1

3
I

Sl,negative = isum (Ll’m - X (—|L2) X (_|Zlvm)) ,
m=1
6
$2,positive = Zsum ((ﬂLl’m) . XLZ . XZZ) ,
m=1

[
e = S5 ((2L7) (7)),

m=1

d

positive

Mm

sum (Ll’”’ oxL? - x [Zl”” xZt+ (—|Z1””)] X (—|Zz)),

1

3
il

QU

negative

6
= Zsum (L”" oxL? e x [Zl”" - (—|Zz) + (—|Z1’”‘) . sz]) )
" (13)

To compare the scenarios where different filters are
applied, we, respectively, apply the first tertile, the first quar-
tile, and the mean value as filters to investigate the corre-
sponding results. The mean filter can be described as (14), and
the quantile filter as (15), where Pr represents probability.

Specifically, the tertile and quartile filters correspond to
situations where p = 1/3 and p = 1/4, respectively. A series of
operations are then carried out based on these filters, to reveal
how the observed complexes behave in these situations:

z Z}fil {|Cmn|}

m= T m=Lo6, (14)
G (p) = inf {|c,u| | F (|6n]) 2 P}

F ([emnl) = Pr(Cp < |G » (15)
m=1,...,6.

Finally, to gain a deep insight into the motions of these
two complexes, we have also observed the rotation angles of
the corresponding protein chains. In the above discussion, we
regard residues as basic units in protein sequences, and here
we consider the links between each consecutive two residues
(Figure 2(b)). The angles between each pair of corresponding
links in the original structure and in deformed structures
(modes) are studied. We obtain a rotation angle function for
each protein of a protein pair in each essential mode. After-
wards, we conduct a similar analysis as aforementioned on
these rotation angle functions as a supplementary study. Prin-
cipal component analysis (PCA) is implemented to reduce the
effect of noisy rotation angles. We also investigate the suita-
bility of the Fourier transform for data analysis.

3. Results and Discussion

3.1. Motion Magnitude Functions. For each protein in an
observed pair of a ternary complex, we calculate the motion
magnitude functions (5) for the first 10 essential modes.
Figure 4 shows the motion magnitude curves for the two
observed protein pairs in 1GTO for the first essential mode.

After defining a list of p values, we calculate the most
cooperative/correlated segment pairs among each protein
pair in a complex for the 10 essential modes, using the mech-
anism discussed in Section 2.2.2. Since small p values cor-
respond to shorter segment matching, whose results may be
trivial due to the high correlation possibilities, we use a set of
p values starting at 0.5 to 1.0 at a step of 0.1. Table 1 shows the
results of correlations c,,, for the most cooperative segment
pairs among protein pair 1 of IGTO.

The larger the absolute value of correlation is, the more
the two compared segments correlate with each other, either
positively or negatively. Now we examine how the absolute
correlation values |c,,, | distribute, for the two protein pairs in
each complex. The values are presented in Figure 5, where
parts (a) and (b), respectively, show the values for the two
pairs in 1GTO0, and parts (d) and (e) show those for 104X. We
can see from these diagrams that |c,,,| becomes larger when
p gets smaller, and this can also be detected from the median
value ¢, shown with a pink circle in each box (denoting a
specific p). To give a comparison between the performances
of the two pairs in each complex, we extract the above-men-
tioned median values ¢, for each pair and present them in
parts (c) (1GT0) and (f) (104X). In diagrams (c) and (f),
especially (f), pair 2 presents a higher ¢, than pair 1, which
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TABLE 1: Motion correlations between POUHD and Sox-2 in protein pair 1 of 1GTO.

Mode
P Mode 7 Mode 8 Mode 9 Mode 10 Mode 11 Mode 12 Mode 13 Mode 14 Mode 15 Mode 16
1 -0.696 0.606 -0.477 0.324 —0.265 0.383 0.202 -0.326 -0.382 -0.520
09 -0.738 0.711 0.697 0.340 -0.419 0.772 0.454 —0.429 -0.420 0.739
0.8 —0.853 0.797 0.819 0.342 0.651 0.838 -0.607 —0.463 0.569 0.730
0.7 -0.859 0.836 0.820 —0.445 0.639 0.820 -0.621 —-0.562 -0.716 0.769
0.6 —0.856 0.851 0.850 0.537 0.814 0.849 -0.699 —0.684 0.762 0.806
0.5 -0.865 -0.862 0.856 -0.757 0.858 -0.901 -0.733 —0.761 0.806 0.819
0.05 0.05 — T
0.045 0.045
0.04 0.04
Q:\ 0.035 | g 0.035
L)
T 003} T 003
é“ 0.025 g 0025
g 5
2 002 £ 002
S =
0.015 H 0.015
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Amino acid position

—— Oct-1/POUHD domain
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()
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—— Oct-1/POUS domain
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(b)

FIGURE 4: (a) The motion magnitude curves in mode 7 for proteins POUHD (red) and Sox-2 (purple) in pair 1 of 1IGT0. (b) The motion
magnitude curves in mode 7 for proteins POUS (blue) and Sox-2 (purple) in pair 2 of 1GTO.

to some extent implies that pair 2 may behave as a leading
role in the Oct/Sox interactions.

Next, we use the above-mentioned medians as a filter and
investigate how those |c,,,| larger than ¢, (supposed to be
significant) distribute. For each protein in an observed pair,
we calculate its logic matrices L and Z (Section 2.2.2), which
correspond to (9) and (12), respectively. We subsequently
study the logic matrices of the two protein pairs (L' and Z',
L? and Z?) in each complex, after which we propose several
cooperative modes between the two pairs and conduct
statistical analysis according to (10) and (11). In detail, these
modes include (a) mode S, (index s;)—only the significantly
correlated segment pair in pair 1 is detected in a single
essential mode with a length pair ( p1 , pz), (b) mode S, (index
s,)—only the significantly correlated segment pair in pair 2 is
detected, and (c) mode D (index d)—both pairs 1 and 2 are
detected. To visually show the cooperative modes S and D,
we select parts of the results of 1IGTO for p' = p* = 0.5 as
a display in Figure 6, in which S, S,, and D modes are,

respectively, presented with the significantly correlated seg-
ment pairs colored.

Mode S denotes that only one protein pair, either pair
1 (S,) or pair 2 (S,), is significantly involved in a specific
collective motion. This indicates that only one subunit, either
POUHD or POUS, is significantly involved in the cooper-
ativity with Sox-2 in an essential mode. Mode D implies
that both subunits are involved in the interactions with
Sox-2. Detailed statistical results are reported in Table 2. In
this table, cooperative mode D occurs more frequently than
modes S; and S, in the two complexes, which have the
tuples of (82, 82, 98) and (85, 85, 95) for the indexes (s;, s,,
d), respectively. This implies that, compared with mode S,
or S,, both subunits of Oct-1 frequently participate in the
interactions with Sox-2 at the same time, as mode D.

Furthermore, we divide the modes S and D into subtypes,
positive subtype and negative subtype, and their statistics
are evaluated using (13) and listed in Table 2. In modes S,
and S,, the positive subtype (s; positive a0 53 positive) ShOWs
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FIGURE 5: (a) and (b) show the distributions of absolute correlation values |c,,,| for the two protein pairs in complex 1GTO0, respectively. In
(¢), the median absolute correlation value ¢, for each p is extracted for the two pairs from (a) and (b). Similarly, (d), (e), and (f) are the plots
for complex 104X.

(b) (©

FIGURE 6: Parts of the results of cooperative modes S and D in complex 1GTO0, with TFs Oct-1and Sox-2 colored red and gray, for p' = p* = 0.5
in the first 10 essential modes. (a) displays mode S; in normal mode 13, with the significantly correlated segments in protein pair 1 colored
purple; (b) displays mode S, in normal mode 12 and the correlated segments are colored blue in protein pair 2; (c) presents mode D in normal
mode 16 with the correlated segment pairs colored purple and blue, respectively, in both protein pairs.
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FIGURE 7: (a) displays the rotation angle curves for proteins POUHD (red) and Sox-2 (purple) in pair 1 of 1IGT0 in mode 7; (b) shows the
rotation angle curves for proteins POUS (blue) and Sox-2 (purple) in pair 2 of IGT0 in mode 7.

a positive sign of ¢, for the significantly correlated segment
pair in protein pair 1 or 2, and the negative one (s, yegaive and
$3,negative) indicates a negative sign. In mode D, the positive
subtype (dpiiive) denotes a scenario where both significantly
correlated segment pairs in the two protein pairs share the
same sign of ¢, (+/+ or —/-), and the negative one (d,,cgative)
represents two different signs (+/— or —/+). From Table 2 we
notice that, for mode S, in both complexes 1GT0 and 104X,
the positive subtype has a lead; for modes S, and D, the
negative subtype is in the lead for IGT0 while the positive one
is in a dominant position for 104X.

We have also applied the first tertile, the first quartile
and the mean value as filters and similarly conducted the
statistical analysis as illustrated above. Tables 3, 4, and 5
present the results for these three scenarios, respectively.
As shown in these tables, the gap between the occurrence
frequencies of mode D and mode S, (or S,) becomes larger,
and the dominant occurrences of mode D are demonstrated.
Besides, for modes S, and D, complexes 1GT0 and 104X
have the opposite subtype distributions, while for mode S,,
they present a similar distribution. Overall, these additional

results are consistent with the previous one (the median
filter).

3.2. Rotation Angle Functions. Subsequently, we calculate
the rotation angle functions for each protein in each com-
plex in the first 10 essential normal modes (described in
Section 2.2.2). Figure 7 shows the rotation angle curves of
proteins in the two protein pairs of 1GTO0 in the first essential
mode.

TABLE 2: Statistics on the occurrences of the cooperative modes S
and D, and their subtypes, in the 10 essential modes for all the pairs
(p', p*), using the median filter for motion correlations.

1GTO
s, s, d
82 S1, positive S1, negative 82 S2, positive S2, negative 98 dpositive dnegative
36 46 49 33 35 63
104X
s s, d
85 Sy, positive Sy, negative 85 S, positive S, negative 95 dpositive dnegative
62 23 75 10 68 27

TABLE 3: Statistics on the occurrences of the cooperative modes S
and D, and their subtypes, in the 10 essential modes for all the pairs
(p', p*), using the first tertile as a filter for motion correlations.

1GTO
s, S, d
71 Sl, positive Sl, negative 71 52, positive 52, negative 145 dpositive dnegative
28 43 47 24 70 75
104X
s, S, d
77 Sl,positive sl,negative 71 Sz,positive SZ,negative 139 dpositive dnegative
57 20 62 9 98 41

Since the rotation angle functions contain a lot of noise,
we apply the principal component analysis (PCA) to the 10
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TABLE 4: Statistics on the occurrences of the cooperative modes S
and D, and their subtypes, in the 10 essential modes for all the pairs
(p', p*), using the first quartile as a filter for motion correlations.

1GTO
s S, d
62 Sl,positive Sl, negative 62 52, positive 52, negative 190 dpositive dnegative
26 36 33 29 85 105
104X
s S, d
70 Sl,positive 51, negative 64 SZ,positive 52, negative 182 dpositive dnegative
47 23 52 12 119 63

TABLE 5: Statistics on the occurrences of the cooperative modes S
and D, and their subtypes, in the 10 essential modes for all the pairs
(p', p*), using the mean value as a filter for motion correlations.

1GTO
s s, d
66 sl,positive sl,negative 78 SZ,positive Sl,negative 108 dpositive dnegative
33 33 43 35 44 64
104X
s s, d
73 Sl,positive Sl,negative 85 52,positive Sz,negative 107 dpositive dnegative
52 21 72 13 77 30

rotation angle curves of each protein in the two complexes
to obtain the first principal component (PC), leading the
rotation angle curves (n = 1~10) of each protein to a single
condensed PC curve. We similarly carry out the correlation
analysis of the PC curves in each pair. Table 6 shows the
statistical results for the two complexes. Intuitively, 1IGTO
presents the distinct cooperative mode of S;, where pair 1
shows more significantly correlated segment pairs (with a
positive subtype), while mode D is the dominant one in
104X, where many significantly correlated segment pairs
occur in both pairs (with a positive subtype).

Now we apply the Fourier transform to analyze these
noisy rotation angle values. Simply, the magnitudes of the
transformed signals are regarded as our new data. The seg-
mentation and correlation calculation are implemented, after
which the statistical analysis is carried out. As an example, we
use the first quartile as a filter for the correlations of rotation
angle functions. The results are listed in Table 7, where we
can see that the negative subtype of each cooperative mode
is concealed after the transform. This implies that the Fourier
transform may not be a suitable tool for handling these rota-
tion angle values. More efficient strategies should be explored
in the future to deal with these data.

4. Conclusions

In this paper, we performed NMA to study the collective
motions of two TFs, Oct-1 and Sox-2, at their enhancer bind-
ing sites, aiming to gain an insight into the cooperative man-
ner of these two TFs through the dynamics of their enhancer-
bounded complexes. Based on the special structure of Oct

TaBLE 6: Correlations between PC curves of rotation angle functions
for the two protein pairs in 1GT0 and 104X.

1GTO 104X
P Pair 1 Pair 2 Pair 1 Pair 2
1.0 0.682 -0.278 -0.875 —-0.310
0.9 0.836 -0.339 —-0.884 —-0.764
0.8 0.844 -0.354 —-0.884 —-0.821
0.7 0.854 —-0.328 —-0.884 -0.829
0.6 0.863 —0.498 -0.890 —-0.856
0.5 0.876 0.703 -0.915 -0.859

TABLE 7: Statistics on the occurrences of the cooperative modes
S and D, and their subtypes, in the 10 essential modes for all the
pairs (p', p*), using the first quartile as a filter for the correlations of
rotation angle functions.

1GTO
s s, d
108 S 1, positive Sl, negative 108 52, positive S 2, negative 144 dpositive dnegative
108 0 108 0 144 0
104X
s s, d
48 51, positive Sl, negative 48 52, positive 32, negative 204 dpositive dnegative
48 0 48 0 204 0

proteins, we treated an Oct/Sox group as two protein pairs
and comparably investigated how these two pairs behave in
the collective motions. A segmentation idea was introduced
to explore the most correlated segments in each protein pair,
according to the correlations of motion magnitude curves (or
their segments). A median analysis on these correlations was
conducted, which shows the leading role of subunit POUS
(pair 2). Furthermore, based on statistics of the correlated
segment pairs having a correlation value above the corre-
sponding median, we proposed several motion cooperative
modes (S;, S,, and D) and their subtypes (positive or nega-
tive). The first tertile, the first quartile, and the mean value
provide consistent results. Moreover, the supplementary
study on the rotation angle functions presents a consensus
about these modes. These proposed modes provide a clue
that when binding to different regulatory DNA regions or
involved in different collective motions, Oct-1has a synergis-
tic relationship with Sox-2 either with one of the components,
POUS or POUHD, or both of them, POUS and POUHD at
the same time.

Cooperativity, in protein-DNA [25] and protein-protein
[26] interactions, is an important feature in biomolecular
interactions. In our work, we carried out a series of studies
on the cooperative manner of Oct and Sox at their enhancer
binding sites, which are important elements in the transcrip-
tional regulation of embryonic stem cells. This work reveals
how the two proteins work together physically and struc-
turally at two specific DNA biding sites. The method devel-
oped here can be useful for the analysis of molecular interac-
tions in other protein-protein and protein-DNA complexes.
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