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Abstract

Life science technologies generate a deluge of data that hold the keys to unlocking the secrets of important biological
functions and disease mechanisms. We present DEAP, Differential Expression Analysis for Pathways, which capitalizes on
information about biological pathways to identify important regulatory patterns from differential expression data. DEAP
makes significant improvements over existing approaches by including information about pathway structure and
discovering the most differentially expressed portion of the pathway. On simulated data, DEAP significantly outperformed
traditional methods: with high differential expression, DEAP increased power by two orders of magnitude; with very low
differential expression, DEAP doubled the power. DEAP performance was illustrated on two different gene and protein
expression studies. DEAP discovered fourteen important pathways related to chronic obstructive pulmonary disease and
interferon treatment that existing approaches omitted. On the interferon study, DEAP guided focus towards a four protein
path within the 26 protein Notch signalling pathway.
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Introduction

High throughput technologies, such as next generation

sequencing, microarrays, mass spectrometry proteomics, and

metabolomics, are capable of evaluating the expression levels of

thousands of genes, proteins, or metabolites in an individual run.

As a result, the life sciences are experiencing a massive influx of

data, exponentially increasing the size of databases [1–3].

Currently, databases contain millions of data sets from transcrip-

tomics and thousands of from proteomics [4–10]. Differential

expression analysis, the comparison of expression across condi-

tions, has become the primary tool for finding biomarkers, drug

targets, and candidates for further research. Typically, gene

expression data have been analyzed on a gene-by-gene basis,

without regard for complex interactions and association mecha-

nisms. Ignoring the underlying biological structure diminishes the

power of analysis, obscuring the presence of important biological

signals.

Biological Pathways
Genes and proteins can be grouped into different categories on

the basis of many traits: sequence, function, interactions, etc..

Grouping genes by biological pathway is often the most relevant

approach to biologists. For this study, we represent biological

pathways as directed graphs, where the nodes are biological

compounds and the edges represent their regulatory relationships,

either catalytic or inhibitory. A catalytic edge exists when

expression of the parent node increases expression of the child

node (i.e. A3 is a parent to child A4 with a catalytic edge, Figure 1).

In an inhibitory relationship, expression of the parent node

decreases expression of the child node (i.e. A1 is a parent to child

A4 with an inhibitory edge, Figure 1). Further, we define a path as a

connected subset of the pathway (i.e. A3A4A7 is a path, A1A2A3 is

not, Figure 1). We use the term path to signify either a simple path

or a simple cycle, where the term simple implies no repeated

nodes.

While biological pathways have long been known, recent

experimental data and computational advances have elucidated

many previously uncharacterized mechanisms. Repositories con-

tain information about thousands of biological pathways, with

each pathway containing up to several hundred proteins [11–14].

Identifying the handful of pathways most relevant to a particular

data set is an important challenge. The primary assumption of this

paper is that biologically relevant pathways are characterized by

co-regulated differential expression of their paths.

Gene Set Analysis
Currently, the most popular approach to connect expression

data to pathways is through gene set analysis. Gene set analysis

methods consider sets of genes simultaneously as opposed to the

gene-by-gene basis commonly used in differential expression

analysis. One of the most prominent set-based methods is Gene

Set Enrichment Analysis (GSEA), where the identified genes are

ranked based on expression values [15,16]. Significance of
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enriched gene sets is determined from a maximum running sum,

which is calculated for each gene set by simultaneously walking

down the ranked gene list and incrementing or decrementing the

score on the basis of set membership. Other approaches calculate

set based scores through different metrics and distributions [17–

21]. Some of these methods compare gene sets relative to others

(known as enrichment analysis or competitive approaches) while

others compare individual gene sets across conditions without

regard for other sets (known as self -contained approaches) [22].

The major limitation of set-based approaches in their applica-

tion to pathway datasets is that they neglect the graph structure of

the pathway. For example, in Figure 1, sporadic patterns of

expression in nodes A1..A8 would prevent identification of

significant differential expression by set analysis. Considering the

additional information contained in the edges, it becomes clear

that A3A4A7 represents a path with similar differential expression

from reactants to products. Consequently, A3A4A7 represents a

differentially expressed path and may possess biological signifi-

cance, but is unlikely to be identified as such by set based

approaches.

Pathway Analysis
We define pathway analysis as any approach which identifies

patterns of differential expression in a data set by considering

pathway structure. In pathway analysis, researchers are generally

interested in identifying pathways associated with a biological

condition and determining the components of those pathways

that explain the association. Thus, hypothesis testing can be

viewed as a two-step procedure: first, test an entire pathway for

differential expression; second, identify the path providing the

greatest contribution to that differential expression. Recent

approaches to pathway analysis test the generic hypothesis of a

pathway differential expression without identifying specific paths

[23–31].

One of the most popular methods for pathway analysis,

signalling pathway impact analysis (SPIA, Table 1) combines a

set analysis score with a cumulative pathway score [23,24]. The

pathway score is calculated by summing all edges in the graph.

Catalytic and inhibitory relationships are considered by using a

multiplier on the expression values. While this score takes into

consideration the graph structure of pathways, it includes all

possible paths, rather than just differentially expressed paths. For

example, in Figure 1, the SPIA score would be based on the

combination of path scores for A3A4A7, A1A4A7, A2A5A7, A3A6A8,

and A3A6A7 and the set score for A1..A8.

Figure 1. Set vs. pathway. Coloration from green to red represent differential expression levels, where dark green corresponds to high over
expression and dark red indicates severe under expression. Edges with arrows and bars represent catalytic and inhibitory relationships, respectively.
Considering A1..A8 as one set results in inconclusive patterns of gene expression. By considering pathway relationships, A3A4A7 is recognized as a path
of differentially expressed genes.
doi:10.1371/journal.pcbi.1002967.g001

Author Summary

The data deluge represents a growing challenge for life
sciences. Within this sea of data surely lie many secrets to
understanding important biological and medical systems.
To quantify important patterns in this data, we present
DEAP (Differential Expression Analysis for Pathways). DEAP
amalgamates information about biological pathway struc-
ture and differential expression to identify important
patterns of regulation. On both simulated and biological
data, we show that DEAP is able to identify key
mechanisms while making significant improvements over
existing methodologies. For example, on the interferon
study, DEAP uniquely identified both the interferon
gamma signalling pathway and the JAK STAT signalling
pathway.

Differential Expression Analysis for Pathways
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Protein interaction permutation analysis, designed for siRNA

experiments, calculates the significance of the number of

interactions in a network for which both genes are ‘‘hits’’ [25].

Recently, Zhao et al. introduced an approach that includes pathway

structure in the analysis of genome wide association studies [26].

However, neither of these methods are directly applicable to

expression data. Other pathway analysis approaches calculate set

enrichment scores, but weight gene products based on their

correlation with neighboring genes in the pathway [27,28].

Alternatively, other approaches integrate omics data over path-

ways, but encode all expression data as 21, 0, or 1, limiting the

information utilized from experimentation [29]. A mixed linear

model presents an advanced approach to the hypothesis test, but is

limited to acyclic models and implementation remains complex

[30]. Like SPIA, all of these approaches account for the pathway

structure as a whole, rather than identifying differentially

expressed paths. To our knowledge, popular commercial pathway

tools (i.e. Ingenuity Pathway Analysis, BioBase, GeneGo, Meta-

core, Ariadne) currently offer no methods that directly incorporate

pathway analysis.

Significance Testing
High-throughput data analysis typically falls into the category of

p..n problems, where the number of genes or proteins, p, is

considerably larger than the number of samples, n. Pathway and

gene set analysis methods have the added complexity that gene

expression within pathways is often highly correlated. Therefore,

the statistical analysis approaches described above typically rely on

random permutations of biological replicates in order to preserve

expression correlation structure. However, the small sample size

limits the number of possible permutations and, hence, the

precision of p-value estimates. In addition, permutation tests are

only applicable to simple experimental designs. Utilizing a random

rotation approach circumvents these issues [32–34].

Proposed Solution: DEAP
In this study, we present a new pathway analysis method,

Differential Expression Analysis for Pathways (DEAP). The

primary assumption of DEAP is that patterns of differential

expression in paths within a pathway are biologically meaningful.

DEAP calculates the path within each pathway with the maximum

absolute running sum score where catalytic/inhibitory edges are

taken as positive/negative summands. To assess the statistical

significance, we use a random rotation. Similar to other pathway

analysis methods, DEAP tests a generic hypothesis of overall

pathway differential expression. Contrary to current methods,

DEAP identifies the most differentially expressed path to provide a

refined focus for further biological exploration.

Results

DEAP Algorithm
As illustrated in Figure 2, the DEAP algorithm begins by

overlaying expression data onto the pathway graph (Figure 2.1).

Every possible path from the graph is independently examined

(Figure 2.2). A recursive function calculates the differential expression

for each path by adding or subtracting all downstream nodes with

catalytic or inhibitory relationships, respectively (Figure 2.3).

As an example, the score for the path containing all nodes in the

inhibitory string in Figure 3 (left), where green = +1 and red = 21, is

calculated as:

B1{ B2{ B3{ B4{ B5{B6ð Þð Þð Þð Þ

~1{ {1{ 1{ {1{ 1{{1ð Þð Þð Þð Þ

~1{ {1{ 1{ {1{ 2ð Þð Þð Þð Þ~ . . . ~6

ð1Þ

The absolute value of the expression level is utilized as the DEAP

score (Figure 2.4) to determine the path with maximal differential

Table 1. Term definitions.

Term Definition

COPD Chronic obstructive pulmonary disease

DEAP Differential expression analysis for pathways. The approach presented in this paper.

False discovery rate A statistical measure in multiple hypothesis testing which controls for the number of falsely rejected null hypothesis.

False positive rate See Type I error rate.

GSEA Gene set enrichment analysis [16]

High differential expression In text, low differential expression refers specifically to simulations with m = 1

KEGG Kyoto Encyclopedia of Genes and Genomes [13]. A pathways database.

Low differential expression In text, low differential expression refers specifically to simulations with m = 0.25

MOPED Model organism protein expression database [10] http://moped.proteinspire.org

p-value Probability of obtaining the test statistic by random chance.

PANTHER Protein analysis through evolutionary relationships [11]. A pathways database.

Path A subset of a pathway which is connected by biochemical interactions.

Pathway A series of biochemical interactions used in biological systems to perform biological functions.

Power The frequency of occurrence of true positives. Equivalent to one minus the type II error rate (false negative rate).

Reactome A pathways database [14]

SPIA Signaling pathway impact analysis [24]

SPIRE Systematic proteomics investigative research environment [40] http://www.proteinspire.org

Type I error rate The frequency of occurrence of type I errors, false positives.

m Pathway effect. The average of ‘on’ genes within a pathway.

doi:10.1371/journal.pcbi.1002967.t001

Differential Expression Analysis for Pathways
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Figure 2. DEAP algorithm workflow. A visual representation of the DEAP algorithm workflow described in Methods.
doi:10.1371/journal.pcbi.1002967.g002

Differential Expression Analysis for Pathways
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expression (Figure 2.5). The DEAP algorithm returns both the

maximum absolute value and the path associated with that

maximum value. The algorithm is formalized in Methods: DEAP

Algorithm.

DEAP scores for different pathways are not directly comparable

due to size and structure differences among pathways. Thus, we

employ a self-contained approach which individually assesses the

significance of each pathway. Generating a null distribution is

complicated by the low number of samples relative to gene

identifications and the correlation of gene expression within

pathways. Most existing approaches use permutation tests to

preserve the correlation between genes; however, small sample size

limits their effectiveness. We use random rotation to circumvent

these issues [32–34]. Our random rotation implementation is

applicable to a wide range of complex experimental designs with

multiple conditions and replicates. The significance levels are

adjusted for multiple comparisons using the false discovery rate

method of Storey and Tibshirani [35].

For each pathway in the analysis, DEAP outputs its score, the

corresponding p-value, and the path with the maximum absolute

score (see examples in Files S1, S2). The open source implemen-

tation (licensed under the GNU Lesser General Public License

v3.0) of this algorithm is available in Supplemental Materials (File

S3).

DEAP Validation 1: Simulated Data on Simulated
Pathways

Data from the five pathways illustrated in Figure 3 were

simulated as described in Methods. Algorithmic performance was

measured in terms of power, the percentage of times each

differentially expressed pathway was identified as significant

(p,0.05), which is equivalent to one minus the type II error rate.

The power of DEAP was compared to GSEA and SPIA, the two

most popular gene set and pathway analysis methods, respectively.

Comparative analysis of these methods included four key

parameters: the overall effect (mean of ‘on’ genes, m), variation

in individual gene effects (s2
g), sample size (n), and type I error

rate.

Regardless of the level of differential expression, DEAP was

consistently more powerful than were other approaches (Figure 4).

For small m values (low differential expression), the power of DEAP

was approximately twice that of GSEA and SPIA, demonstrating

improved sensitivity. For m = 1 (high differential expression),

DEAP had an increase in power over both GSEA and SPIA of

two orders of magnitude. At m = 1.25, the performance of SPIA

improved substantially, approaching that of DEAP on all

pathways except the long alternate route where SPIA was

confounded by noise (Figure S1). Across the board, GSEA

performed poorly because GSEA did not consider pathway

structure and is dependent on comparisons to other pathways.

Sample size and within-gene variance also have significant

effects on the performance of the algorithms. As sample size (n)

grew, the power of DEAP relative to other approaches increased,

particularly in pathways containing inhibitory edges (Figure 5). As

variance (s2
g) increased, DEAP exhibited minor increases in power

(Figure 6). Further, DEAP consistently outperformed GSEA and

SPIA as variance increased.

To estimate the type I error rate, we simulated random data

under the null hypothesis (m = 0, s2
g = 0, n = 10). The plots in

Figure 7 displays type I error rates with respect to the nominal

values. SPIA was notably more conservative for every pathway

structure. The performance of both GSEA and DEAP was on

target; however, DEAP was more conservative on pathways with

inhibitory edges (Figure S4).

Figure 3. Simulated pathways. Five pathways designed to test analysis approaches are illustrated. Nodes labelled in green and red were built
around distributions with m of +X and 2X, respectively, where X represents a numerical value. Gray nodes represent data sampled from the standard
normal distribution. Edges with arrows and bars represent catalytic and inhibitory relationships, respectively.
doi:10.1371/journal.pcbi.1002967.g003

Differential Expression Analysis for Pathways
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An additional advantage of DEAP is the ability to identify the

maximally differentially expressed path of the pathway. For the

simulated data with m = 1 and m = 2, DEAP identified the entire

differentially expressed path 99% and 100% of the time,

respectively. For example, the long alternate route contains 14

proteins, but DEAP identified the differentially expressed region

that contains only four, substantially reducing the search space.

In addition to comparing DEAP to GSEA and SPIA, we

compared DEAP to several modifications of the DEAP algorithm,

which were altered as follows: scores normalized by pathway

length; all weights set to +1; and sum taken across the entire

pathway. We also compared DEAP to a set-based implementation

with rotation. DEAP had substantially higher power than all four

approaches (Table S1 and Figures S1, S2, S3, S4).

DEAP Validation 2: Simulated Data on Biological
Pathways

While simulated pathways provide easily controllable examples

to validate DEAP as an appropriate test of the hypothesis,

biological pathways bring increased complexity from which the

signal must be detected. To validate DEAP on more realistic

pathway structures, we simulated activity on biological pathways

from the KEGG and Reactome databases [13,14].

In the case of KEGG [13], we simulated data on the TGF-ß

signaling pathway to indicate activity in the TGF- ß receptors

leading to cell cycle arrest (Figure 8). In terms of sensitivity to the

pathway effect (m), variance (s2
g), and sample size, DEAP

outperformed both GSEA and SPIA on the TGF-ß signaling

pathway (Figure 8). Notably, increased variance diminishes the

Figure 4. Power curve, variable pathway effect. Performance of GSEA, SPIA, and DEAP are compared as pathway effect (m) changes. Specific
values are indicated at m = 1. Power (y-axis) is the ratio of simulations, out of 5000 (5 pathways, 1000 simulations each), which were identified as
significant (p,0.05). Constants were s2

g = 0 and sample size = 10.
doi:10.1371/journal.pcbi.1002967.g004

Differential Expression Analysis for Pathways
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power of SPIA, but does not affect DEAP, reflecting its ability to

identify signal in the noisy environments common in biological

experimentation.

In the case of Reactome [14], we simulated data on the post-

transcriptional silencing by small RNAs pathway from to indicate

RNA cleavage (Figure 9). DEAP had superior performance over

GSEA and SPIA in terms of all tested variables: pathway effect (m),

variance (s2
g), and sample size (Figure 9).

In both sets of simulated data on real biological pathways, the

type I error estimate was conservative for DEAP, GSEA, and

SPIA (Figure S5). In addition to DEAP, GSEA, and SPIA, we

applied the four alternative formulations of DEAP to both sets of

biological pathways and noted the consistently strong performance

of DEAP (Figures S6, S7).

DEAP Validation 3: Biological Data on Biological
Pathways

To verify that the simulated data effects are biologically

relevant, we also applied DEAP to two sets of biological data on

biological pathways. The experimental data are from a transcrip-

tomic study of interferon [36,37] and a proteomic study of chronic

obstructive pulmonary disease (COPD). We applied DEAP,

GSEA, and SPIA to identify differentially expressed pathways

from the PANTHER database [11]. Pathway associations with the

phenotypes were determined based on a literature review using

Google Scholar (details in Methods: Biological Data Validation).

We analyzed a microarray expression data of cells of radio-

insensitive tumors that had been treated with interferon [36,37].

DEAP identified six pathways with known literature associations

Figure 5. Power curve, variable gene variance. Performance of GSEA, SPIA, and DEAP are compared as gene variance (s2
g) changes. Power (y-

axis) is the ratio of simulations, out of 5000 (5 pathways, 1000 simulations each), which were identified as significant (p,0.05). Constants were m = 0.5
and sample size = 10.
doi:10.1371/journal.pcbi.1002967.g005

Differential Expression Analysis for Pathways
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with interferon while GSEA identified five and SPIA identified

none (Table 2). The two most clearly relevant pathways for this

transcriptomics data set were interferon gamma signalling, as the

cells had been stimulated with interferon; and JAK STAT

signalling, the pathway being studied by the authors of the

microarray study [36,37]. Unlike GSEA and SPIA, DEAP

identified these pathways as significantly differentially expressed.

The lack of overlap between the pathways identified by GSEA and

DEAP is indicative of the different hypotheses being tested by

these two approaches, with GSEA focusing on non-specific

differential expression among pathway genes and DEAP focusing

on differential expression among pathway connected genes. As

such, these two approaches should be viewed as complementary

approaches that can be simultaneously utilized to augment

biological discovery.

Additionally, DEAP analysis of the interferon transcriptomics

data uses path identification to reduce the search space for future

experimentation. Consider the Notch signalling pathway, which

contains 26 proteins and is known to be activated by interferon

treatment [38]. GSEA and SPIA both did not identify Notch

signalling as significantly differentially expressed due to generally

sporadic expression patterns. However, DEAP analysis focused on

consistent differential expression of 4 connected nodes and labelled

Notch signalling as significantly differentially expressed (Figure 10).

Without identifying the maximally differentially expressed path,

the Notch signalling pathway would have been overlooked.

Further, future experimentation can now focus on those four

proteins exhibiting the most significant differential expression.

In order to illustrate DEAP on a different data type, we also

analyzed a proteomics study which compared healthy smokers

Figure 6. Power curve, variable sample size. Performance of GSEA, SPIA, and DEAP are compared as sample size changes. Power (y-axis) is the
ratio of simulations, out of 5000 (5 pathways, 1000 simulations each), which were identified as significant (p,0.05). Constants were s2

g = 0 and m = 0.5.
doi:10.1371/journal.pcbi.1002967.g006

Differential Expression Analysis for Pathways
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with patients diagnosed with COPD (Methods: Biological data,

Table 3). On this data set, GSEA identified nine pathways, four of

which had apparent associations with COPD. SPIA identified only

one pathway with significant differential expression. DEAP

identified 12 pathways and eight had literature-verified implica-

tions with COPD. Of notable clinical relevance to COPD is the

inflammation mediated by chemokine and cytokine signalling

pathway, which was identified only by DEAP [39].

Discussion

DEAP takes into account the graph structure of a pathway and

determines the maximally expressed path. Pathway-centric anal-

ysis by DEAP is complementary to set-based analysis of other

functional categories, as seen in both biological examples (Tables 2–

3). Application of the random rotation approach allows for

accurate assessment of statistical significance of the DEAP scores.

On simulated data for simulated pathways, DEAP both increased

power over existing approaches and accurately controlled the false

positive rate. With high differential expression, this translated to a

two-fold increase in the power of DEAP over GSEA and SPIA.

On simulated data applied to real biological pathways, DEAP

showed the strongest performance for all levels of pathway effect,

variance, and sample size. Analysis of experimental transcriptomic

and proteomic data indicates that DEAP identified important

pathways related to a particular disease or condition where other

approaches failed, specifically identifying six pathways related to

interferon and eight related to COPD. Further, DEAP uniquely

Figure 7. Type I error. The nominal value is plotted in the x-axis and the y-axis represents the nominal value minus the actual error rate. The line at
Nominal-Actual = 0 represents cases where the the actual error rate perfectly corresponds with the nominal value. Values above and below this line
correspond with under- and over-estimations of type I error, respectively.
doi:10.1371/journal.pcbi.1002967.g007

Differential Expression Analysis for Pathways
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identified the most expressed path of the pathway with 100%

accuracy in simulated data.

Though we demonstrated DEAP on transcriptomics and

proteomics studies, DEAP is widely applicable to other omics

research areas (metabolomics, lipidomics, etc.) and expression

technologies (next generation sequencing, RNAseq, etc.). This

broad applicability extends from the flexible design of DEAP: the

only required inputs are expression levels of biomolecules and

corresponding pathways. Appropriate scaling of the expression

levels is defined by the user. For instance, RNAseq data is very

similar to spectral count proteomics data in that they are both

count-based. Thus, RNAseq read counts can be used as input for

DEAP in the same manner as peptide spectral counts. Further,

RNA transcripts can be used in place of proteins.

To identify the most important pathways for further study,

pathways can be ranked based on DEAP score significance.

Specifically, future studies can be focused on the most differentially

expressed paths within the pathways with the lowest false discovery

rate, which can be especially beneficial when studying pathways

that contain hundreds of biological compounds. Currently, DEAP

is being integrated with our proteomics analysis pipeline SPIRE

(http://proteinspire.org) and expression database MOPED

(http://moped.proteinspire.org) [10,40] (Table 1). Application of

DEAP to existing and future studies has the potential to discover

meaningful biological patterns.

Methods

Simulated Data
Expression data (presumably on a log scale) for each gene in a

pathway was simulated using a multivariate normal distribution

defined in Equation 2:

Figure 8. Simulated data on the TGFb signalling pathway, power vs. pathway effect, variance, and sample size. At the top, the KEGG
TGFb signaling pathway is illustrated, with green, red, and grey nodes representing nodes whose simulated values were +m, 2m, and 0, respectively
[13]. The nodes are colored to indicate activity leading to G1 arrest in the cell cycle. At the bottom, power for detecting significant differential
expression in this pathway is illustrated with respect to pathway effect, variance, and sample size. Figure adapted from http://www.genome.jp/kegg-
bin/show_pathway?map04350 with permission from KEGG.
doi:10.1371/journal.pcbi.1002967.g008

Differential Expression Analysis for Pathways
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E~d mzgð Þze ð2Þ

In this equation d is the indicator of whether a gene is ‘on’ or ‘off’.

The value of d is 0 if the gene is ‘off’ and +1 if the gene is up-regulated

and ‘on’ and 21 if the gene is down-regulated and ‘on’. The value of

d is determined by the predefined pathways. The variable m is the

mean of the absolute value of expression for ‘on’ genes and, therefore,

represents the ‘pathway effect’. The value of m is held constant for

each gene in the pathway and across replicate samples. The variable g

is assumed to come from a normal distribution with mean 0 and

variance s2
g. The variance s2

g measures how much individual gene

expression deviates from the overall ‘pathway effect’, m.

The value of g is randomly generated (although in many of the

simulations is set to 0) for each gene in the pathway, but the same

value is used for replicate samples. The variable e is assumed to

come from a normal distribution with mean 0 and variance 1 and

represent random variation in gene expression. The value of e is

randomly generated for each combination of gene and sample.

The simulations varied the values m, s2
g, and the sample size

(number of independent samples of pathway data). R scripts were

used to generate the simulated data [41].

Five diverse pathways were specifically created to test the

efficacy of identification by different scoring methods (Figure 3).

Gray colored nodes had unaltered values from a standard normal

distribution. Nodes labelled as green and red were sampled with m

Figure 9. Simulated data on the post-transcriptional silencing by small RNAs, power vs. pathway effect, variance, and sample size.
At the top, the Reactome post-transcriptional silencing by small RNAs pathway is illustrated, with green, red, and grey nodes representing nodes
whose simulated values were +m, 2m, and 0, respectively [14]. The nodes are colored to indicate activity leading to silencing by cleaved RNA with 59
phosphate and 39 hydroxyl. At the bottom, power for detecting significant differential expression in this pathway is illustrated with respect to
pathway effect, variance, and sample size.
doi:10.1371/journal.pcbi.1002967.g009

Differential Expression Analysis for Pathways
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values of +X and 2X, respectively, where X was a positive

number. Simulated data and pathways are available on Dryad:

doi:10.5061/dryad.qh1pg.

Biological Data
Microarray data from a study of cells treated with interferon

were acquired from the Gene Expression Omnibus (GDS3126)

[6]. The sample was taken from radio-resistant tumors following

treatment with a mixture of interferons [36,37]. It was hypoth-

esized that interferon and biochemically-related pathways would

be stimulated in this data set. The expression value was the

logarithm of the case/control ratio. Though microarrays measure

mRNA expression, the pathways represent information in terms of

proteins. Therefore, the gene identifiers in the microarray data

were mapped to UniProt protein identifiers using the UniProt

website [42]. Handling the one-to-many relationship of genes and

proteins is discussed below (see Methods: DEAP). When duplicate

probes existed for the same gene, the expression value utilized for

the gene was the arithmetic mean of these probes.

The COPD proteomics data can be found at PeptideAtlas (raw

data) [7] and MOPED (processed data) [10] (moped.proteinspir-

e.org). We analyzed data from CD4 and CD8 T-lymphocytes. The

control patients were healthy smokers, with an average FEV1/

FVC of 82.5%. Case patients had been medically diagnosed with

COPD and had an average FEV1/FVC of 42.0%. A total of 10

cases and 10 controls were utilized in this analysis. Additional

experimental details can be found associated with the PeptideAtlas

accession numbers in Table S3. On MOPED, data is stored under

the experimental name ‘‘steffan_copd.’’ The tandem mass

spectrometry data were analyzed through SPIRE with the

parameters in Table S4 [40]. Protein expression was measured

by the number of peptide spectral matches identified for each

Table 2. Results from Interferon microarray data analysis
using GSEA, SPIA, and DEAP [36,37].

Pathway GSEA SPIA DEAP

Interferon gamma signaling S

JAK STAT signaling [47] S

PDGF signalling [48] S

Notch signalling [38] S

Interleukin signalling [49] S

General transcription regulation [50] S

Beta1 adrenergic receptor signalling S

Histamine H1 receptor mediated signalling [51] S

Oxytocin receptor mediated signalling [52] S

Thyrotropin releasing hormone receptor signalling [53] S

Integrin signalling [54] S

Arginine biosynthesis [55] S

Parkinson disease S

An S indicates pathway differential expression significance of p, = 0.05. Italic
text indicates previously discovered associations between the pathway and
interferon. Non-italic text indicates no known associations between the
pathway and interferon. Specific p-values are found in Table S5.
doi:10.1371/journal.pcbi.1002967.t002

Figure 10. Maximally differentially expressed path identification. Maximally differentially expressed path identification by DEAP on the
Notch signalling pathway. Pathway image is from PANTHER [11,46]. The path shaded in purple was identified by DEAP as the most differentially
expressed. Numerical values are log-expression ratios from the Interferon microarray study [36,37].
doi:10.1371/journal.pcbi.1002967.g010
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protein normalized by the total number of spectra in the sample.

For pathway analysis, we used the difference between the log

normalized expression values.

Pathway data were downloaded from the PANTHER database

[11]. A total of 165 pathways downloaded in SBML format from

PANTHER pathway version 3.01. PANTHER pathways contain

information about proteins, biochemicals, and other substrates.

For the purposes of data interpretation, the pathways were broken

into their protein components using an internally developed

python script where connections of proteins through biochemical

substrates were maintained as protein-protein interactions PAN-

THER’s internal identifiers were mapped to UniProt identifiers.

Ultimately, parsing of the PANTHER pathway database resulted

in a graph structure in which each node represented a set of

proteins that act as a set of reactants and/or products. Inhibitory

or catalytic edges between two sets of proteins were determined as

detailed in PANTHER.

Rotation Sampling
We used random rotation approach to estimate the null

distribution of the test statistics and compute the p-values [32].

Rotation testing has been used recently in gene set analysis as an

alternative to permutation and parametric tests [33,34]. Rotation

tests have an advantage over permutation tests in that they

produce reasonable results for small sample sizes and complex

experimental designs. Rotation testing assumes that pathway and

set data come from independent random samples of a multivariate

normal distribution with mean zero under the null hypothesis. A

rotation test is carried out by multiplying the original data by a

random rotation matrix, calculating the test statistic, and repeating

the procedure to generate a null distribution. Adjustments for an

overall mean, covariates, or blocking factors are handled by

performing the rotations of an orthogonal projection of the

original data on to the residual space from a linear model and then

transforming the rotated data back. A random rotation matrix was

generated by first generating a matrix X of standard normal

random variables and then taking the rotation matrix to be the

orthogonal matrix Q from the QR decomposition of X. Scripts to

carry out rotation testing were written using the R programming

language and are available in File S3, released under the GNU

Lesser General Public License v3.0. The user is able to input a

custom design matrix which accounts for complex experimental

designs with multiple conditions and replicates.

DEAP Algorithm
Given: a current edge, all other edges in graph, expression

values for all proteins:

For single channel (unpaired) data, define E(x) to be the

difference between the logarithm of the arithmetic mean of

expression values associated with protein x in the two conditions.

For two channel (paired) data, define E(x) to be the arithmetic

mean of the log expression ratio(s) associated with protein x.

The recursive function operates as follows:

1. Recursively examine all edges in the pathway set whose

reactant node is the current edge’s product node.

a) If there are no such edges, set maxrecursive and minrecursive asP
y[products

E yð Þ where y[products refers to each protein, y,

contained in the edge’s products.

Table 3. Results from the COPD proteomics data analysis using GSEA, SPIA, and DEAP (Methods: Biological data).

Pathway GSEA SPIA DEAP

Integrin signalling [56] S S

Interleukin signalling [57] S

Inflammation mediated by chemokine and cytokine signalling [39] M

Heme biosynthesis [58] M M

Ras pathway [59] M

Plasminogen activating cascade [60] M

De novo purine biosynthesis [61] M

Ubiquitin proteasome [62] M

Heterotrimeric G protein signalling, rod outer segment M

PDGF signalling M

De novo pyrimidine ribonucleotide biosynthesis* M

De novo pyrimidine deoxyribonucleotide biosynthesis* M

Muscarinic acetylcholine receptor signalling [63] S

Nicotonic acetylcholone receptor signalling [64] S

Blood coagulation [65] M

DNA replication S

Circadian clock system S

Asparagine and aspartate biosynthesis M

Salvage pyrimidine ribonucleotides* M

Arginine biosynthesis* M

An S and M indicate pathway differential expression significance of p, = 0.05 and marginal significance of p, = 0.1, respectively. Italic text indicates previously
discovered associations between the pathway and COPD. Non-italic text indicates no known associations between the pathway and COPD.
*Arginine and pyrimidine are used therapeutically to treat COPD. Specific p-values are found in Table S6.
doi:10.1371/journal.pcbi.1002967.t003
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b) Otherwise, define maxrecursive and minrecursive as the maximum

and minimum scores, respectively, returned by the

recursive function.

2. Assign maxscore and minscore as the maximum and minimum,

respectively of:
X

z[reactants

E zð ÞzT edgeð Þ �maxrecursive and
X

z[reactants

E zð ÞzT edgeð Þ �minrecursive

where T(edge) is the multiplier associated with the edge type (21

or 1 for inhibition or catalysis, respectively) and z[reactants
refers to each protein, z, contained in the edge’s reactants.

3. Return the maximum of {maxscore, 0} and the minimum of

{minscore, 0}.

DEAP Statistics
In DEAP, the maximum order (by absolute value) path is used to

test the null hypothesis about the expression of the entire pathway.

This claim, that the expression of one path answers questions about

the expression of the pathway, is justified on two levels.

On a biological level, significant fluctuations in activity do not

require differential expression of an entire pathway. For example,

in Figure 1, A3A4A7 represents a path with similar expression levels

that proceeds all the way from reactants to products, a pattern that

seems to be significant.

From a logical perspective, consider a pathway, P, as the union

of all paths of the pathway, P1, P2, …, PK. Each path is completely

defined by its set of edges. Note that the k-paths are not entirely

disjoint in the sense that some paths might share the nodes and the

edges. However, we require each path to have a distinct set of

edges. To test the hypothesis of a differentially expressed pathway

requires testing whether any of the constituent paths is differen-

tially expressed. This corresponds to testing the family of k-null

hypothesis. To control the family wise error rate, we use a

maximum order statistic, since the probability of making at least

one incorrect decision under the null is equivalent to the

probability of the maximum order statistic exceeding the

threshold.

To approximate a null distribution of the test statistic, s*, we

performed n rotations of the data. For each rotation sample, we

recompute the DEAP score, si. The p-value is calculated as a

proportion of scores that are at least as extreme as the observed

score, the proportion of simulated DEAP scores whose value are

greater than or equal to the observed DEAP score:

p~
# si§s�ð Þ

n

DEAP Implementation
The DEAP algorithm was implemented to allow for efficient

computation.

By maintaining global maximum and minimum values and

updating their values as the recursive function proceeds, it is not

necessary to examine all paths of the graph independently. Rather,

we can initialize DEAP score calculations only at leaf edges, which

have no upstream edges pointing to any proteins in their reactant

set. To ensure that closed cycles are not missed, we track the edges

which have been visited and examine additional edges until the

difference of the complete edge set and the already visited edge set

is empty. This greatly reduces the number of calculations per

graph.

Once the recursive function has returned a maximum and

minimum score for a particular edge, that score will remain

constant regardless of the preceding edge except in the case of

cycles (see paragraph below). Therefore, we use a dictionary

mapping edges to maximum and minimum scores to prevent

duplicative score calculations. After this implementation, score

calculations that took several hours on particularly complex

pathway structures completed in seconds.

In the case of cycles, scores may be dependent on the node of

the cycle which is examined first. For these cycles, our current

implementation represents a heuristic estimator rather than the

exact optimal solution. Bidirectional edges are subject to this same

limitation as they are equivalent to a two node cycle. Implemen-

tations that determined the exact optimal solution were prohib-

itively slow for practical application. Except in edge cases, the

heuristic implementation will provide approximations of sufficient

quality to identify significant patterns of differential expression.

Every DEAP score calculation is independent of other DEAP

score calculations, so we set up processing for multi-threading. For

example, on a 64-bit Intel Core i7-2720QM CPU with 8GB

RAM, speed improvements of approximately 4-fold were noted

for the score calculation process. Specific running time is highly

dependent on expression data set size, experimental design,

pathway complexity, and number of rotation testing iterations.

Running DEAP on 90 simulated data files each with 10 samples,

1000 proteins, 1000 pathways, and performing 100 data rotations

took 72 minutes when multi-threaded and 260 minutes when

performed on a single thread.

The function tracks edges that have already been examined in a

particular recursive cycle to prevent entrance into infinite loops in

cyclical pathways. To control for duplicate protein identifiers,

summations over the products and reactants were performed on

the set of unique expression values rather than for every identifier.

For example, if protein A and protein B both had expression levels

of 1.743 and were both in the same protein set, then it was

assumed they were the result of data duplication and 1.743 was

only added to the score once. This duplication elimination was

implemented primarily due to issues arising from redundant

protein identifiers and potential mRNA translation into multiple

proteins. For instance, the five UniProt identifiers for variants of

Histone H3 (Q6NXT2, P68431, Q16695, Q71DI3, and P84243)

are included in the same PANTHER pathway unit and share near

identical protein sequences, so their proteomic and transcriptomic

identification will be duplicated.

The algorithm was implemented in Python and is available in

File S3, released under the GNU Lesser General Public License

v3.0.

Biological Data Validation
Accuracy of pathway associations with experimental conditions

were validated using a Google Scholar literature search. The

literature search was performed by searching Google Scholar

(http://scholar.google.com) for a combination of the pathway

name and details of the experimental condition. We continued

searching Google Scholar until satisfied that the association was

confirmed or felt reasonably certain that there was not yet a

literature confirmed association. Once a literature association was

confirmed, the most pertinent reference was retained and cited in

this manuscript.

Assumptions
The DEAP approach is based on the following fundamental

assumptions:
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1. The user provides expression values using an appropriately

scaled metric that represent meaningful information. DEAP is

independent from the calculation of individual gene expression

values, with the stipulation that data be numeric, where

positive values represent over-expression and negative values

represent under-expression. For example, microarray expres-

sion data have been shown to be scale free in nature, so a

logarithm scaled expression ratio was input to the DEAP

algorithm.

2. Existing pathway knowledge is sufficient to make meaningful

statements. Though pathways currently contain only a fraction

of all proteins, this approach makes no attempt to expand that

coverage [43].

Existing Approaches
The GSEAlm package for the R Project, available through

BioConductor, was utilized to perform GSEA analysis [44].

Pathways were transformed into a gene set matrix and multi-

sample expression data were loaded appropriately. Since GSEA

performs test for up- and down-regulation independently, the

minimum of these two values was taken and multiplied by two to

adjust for a two-tail test.

SPIA analysis was performed using the SPIA package for the R

Project, available through BioConductor [45]. To convert the

pathways into the SPIA format, inhibitory and catalytic relation-

ships were formatted into the inhibition and activation matrices,

respectively. Since the SPIA implementation only allowed input of

single expression ratios, the arithmetic mean of expression values

for each protein was input into SPIA.
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