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Background: Studies have shown that hepatocellular carcinoma (HCC)

heterogeneity is a main cause leading to failure of treatment. Technology of

single-cell sequencing (scRNA) could more accurately reveal the essential

characteristics of tumor genetics.

Methods: From the Gene Expression Omnibus (GEO) database, HCC scRNA-

seq data were extracted. The FindCluster function was applied to analyze cell

clusters. Autophagy-related genes were acquired from the MSigDB database.

The ConsensusClusterPlus package was used to identify molecular subtypes. A

prognostic risk model was built with the Least Absolute Shrinkage and Selection

Operator (LASSO)–Cox algorithm. A nomogram including a prognostic risk

model and multiple clinicopathological factors was constructed.

Results: Eleven cell clusters labeled as various cell types by immune cell

markers were obtained from the combined scRNA-seq GSE149614 dataset.

ssGSEA revealed that autophagy-related pathways were more enriched in

malignant tumors. Two autophagy-related clusters (C1 and C2) were

identified, in which C1 predicted a better survival, enhanced immune

infiltration, and a higher immunotherapy response. LASSO–Cox regression

established an eight-gene signature. Next, the HCCDB18, GSA14520, and

GSE76427 datasets confirmed a strong risk prediction ability of the signature.

Moreover, the low-risk group had enhanced immune infiltration and higher

immunotherapy response. A nomogram which consisted of RiskScore and

clinical features had better prediction ability.

Conclusion: To precisely assess the prognostic risk, an eight-gene prognostic

stratification signature was developed based on the heterogeneity of HCC

immune cells.
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Introduction

Primary liver cancer is a malignancy with a high degree of

histological and biological heterogeneity and has therefore

become a major public health problem (1). According to the

Global Cancer Statistics Report, liver hepatocellular carcinoma

(LIHC) was the sixth highest cancer worldwide in 2020, and its

mortality rose to the third highest, accounting for 4.7% of all

cancer cases and 830,000 deaths and 8.3% of all cancer deaths in

the same period (2). In China, primary LIHC is the fourth most

common malignant tumor and its mortality rate ranks the

second in China due to historical factors, population region,

and health conditions (3). Therefore, there is a strong clinical

need for more effective strategies such as developing new

therapeutic targets, biomarkers, and therapies for treating

HCC, which remain key unmet needs for the treatment of

hepatocellular cell carcinoma (HCC).

Tumor heterogeneity can be manifested as different

pathological types, tumor stages, and differentiation degrees in

clinical practice as well as different genomes and transcriptomes

at the molecular level, which eventually lead to different sensitivities

to chemotherapy and therapeutic drugs, thereby bringing great

difficulties to cancer treatment (4, 5). In 2011, Navin et al. used

mononuclear whole-genome amplification technology to amplify

and sequence a total of 200 single nuclei in two cases of breast

cancer in situ tissues and one case of liver metastasis tissues and

analyzed their copy number changes to explain the population

structure and evolution process of tumor cells (6). Patel et al.

isolated 430 single cells from five brain tumor patients, conducted

transcriptome analysis, and found that the internal changes in gene

expression during different transcription processes were related to

oncogene signaling, proliferation, immune response, and hypoxia

(7). Dalerba et al. analyzed the gene expression of single cells in

colonic epithelial carcinoma in situ tissues and normal colon tissues

and observed that colon cancer tissues contained different subsets of

cells and their transcripts were different from those in normal colon

tissues (8).

Autophagy is a conserved lysosome-dependent pathway that

degrades organelles, macromolecules, and cytoplasmic proteins in a

dynamic, multistep process. Evidence suggests that autophagy has a

role in tumor suppression in HCC (9, 10). For example, systemic

Atg5-null mice and liver-specific Atg7−/− mice would develop

benign hepatic adenomas (11), but Beclin-1 haploid deficiency

could induce spontaneous HCC formation (12).

Based on the above analyses, we identified the immune

heterogeneity of HCC from public databases applying

bioinformatics methods and screened autophagy-related genes

associated with the prognosis of HCC. Furthermore, the

classification and prognostic signature of the autophagy-

related genes in HCC samples were analyzed to further

supplement the prognostic markers of HCC and provide new

insights for clinical targeted drug therapy.
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Material and methods

HCC data of public databases

A sum of 360 HCCs in TCGA dataset (TCGA-LIHC), 242

samples in the GSE14520 dataset, 10 HCCs in the single-cell

sequencing database (GSE149614), and 389 samples in the

HCCDB18 dataset were acquired from The Cancer Genome

Atlas (TCGA) (13), Gene Expression Omnibus (GEO) (14), and

Hepatocellular Carcinoma Database (HCCDB) (15).

Autophagy-related genes were obtained from the MSigDB

(https://www.gsea-msigdb.org/gsea/index.jsp) database.
Data control

The Seurat package (16) was used to set the expression of

each gene in at least three cells (each cell expressing at least 250

genes) to filter a single cell. The proportion of rRNA and

mitochondria was further calculated by PercentageFeatureSet

function, and genes expressed in each cell were more than 200

but fewer than 6,000, the percentage of mitochondria was fewer

than 25%, and the UMI of each cell was at least greater than

1,000. To screen highly variable genes, the FindVariableFeatures

function was used, followed by scaling and PCA dimensionality

reduction for all genes using the ScaleData function.
Cell type annotation

The cells were clustered using FindNeighbor and

FindCluster (Dim = 20, Resolution = 0.1). The FindAllMarker

function was conducted to select marker genes. Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway

annotation was performed using R Package ClusterProfiler (17).
Analysis of autophagy-related pathways

Autophagy-related pathways were obtained from GSEA

(http://www.gsea-msigdb.org/gsea/index.jsp) and analyzed

using the ssGSEA of GSVA package (18).
Clustering

According to the standard of p< 0.05, oxidative stress-related

genes with prognosis of HCC were filtered via univariate Cox

survival analysis using coxph function of the R package. Then,

molecular subtypes were performed on each TCGA-LIHC dataset

sample via the ConsensusClusterPlus 1.52.0 (19). Pam arithmetic

and “spearman” distance were utilized to complete 500 bootstraps
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with every bootstrap containing ≥80% of TCGA-LIHC dataset

specimens. Cluster number k was between 2 and 10, and the

optimum k was identified as per cumulative distribution function

(CDF) and AUC. Survival curves (K–M curves) between molecular

subtypes were then analyzed for difference. In addition, differences

in the distribution of clinical characteristics between molecular

subtypes were compared and the chi-square test was conducted,

and p<0.05 indicated statistical significance.
Mutation analysis

A waterfall plot was generated to explore the detailed single-

nucleotide variant (SNV) characteristics between molecular

subtypes via the “mutect2” (20) function in R software.
Construction and evaluation of a
prognostic risk model for HCC

LASSO–Cox regression was conducted in the glmnet

package in R language to select prognostic genes (21). By

penalized maximum likelihood, glmnet fits generalized linear

and similarity models. The regularization path is the calculation

of the LASSO or elastic net penalty on the value (on a

logarithmic scale) of the regularization parameter lambda (22).

The genes included in the model and the optimal value of the

penalty coefficient l were determined through running a 1,000-

time 10-fold cross-validation probability. Subsequently,

coefficients of prognostic genes were extracted by Cox

multivariate regression analysis, and the gene expression levels

were used to calculate the risk score as the survival risk score of

each patient by the following formula:

RiskScore =on
k=0bi� Expi

where bi is the Cox hazard ratio coefficient of mRNA and

Expi represents the gene expression level. TCGA-LIHC samples

were divided into high-risk and low-risk groups according to the

risk score, with the median risk score as the threshold. At the

same time, GSE14520 and HCCDB18 were used to analyze the

robustness and effectiveness of the prognostic risk model.

Kaplan–Meier (K–M) curves combined with the log-rank test

were applied to analyze survival differences among different risk

groups. The timeROC package was employed to determine the

area under the receiver operating characteristic curve (AUC) to

predict the 5-, 4-, 3-, 2-, and 1-year survival rates, respectively.
Nomogram

To further evaluate the predictive efficacy of the risk score

model, a nomogram was constructed by combining other
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clinicopathological characteristics of HCC patients (including

family history, TNM stage, age, histological grade, gender, etc.)

using the RMS R package (23). The predictive accuracy of the

nomogram was assessed by calculating the C-index, which

quantifies the degree of agreement between the actual and

predicted survival rates. The abscissa was the 1-, 3-, and 5-year

survival probability of each patient predicted according to the

nomogram, and the ordinate was the actual 1-, 3-, and 5-year

survival probability of each patient, with the 45° line

representing the optimal prediction.
Cell-type identification using estimating
relative subsets of RNA transcripts

Cell-type Identification using Estimating Relative Subsets of

RNA Transcripts (CIBERSORT) analyses were utilized to

compare diversities in different immunocytes in molecular

subtypes. Wilcox test analyses were completed to identify the

difference of 22 kinds of infiltrating immunocyte score among

molecular subtypes. The “ggplot2” package (24) was used to

visualize the distributional status of the diversities in 22 kinds of

infiltration immunocytes.
Estimate

The R software Estimation of Stromal and Immune cells in

Malignant Tumors using Expression data (ESTIMATE)

arithmetic (25) was utilized to compute overall stroma level

(StromalScore), immunocyte infiltration (ImmuneScore), and

combination (ESTIMATEScore) of samples in the TCGA-LIHC

cohort using Wilcox test analysis for analyzing the differences

between molecular subtypes.
Tumor immune dysfunction
and exclusion

The Tumor Immune Dysfunction and Exclusion (TIDE)

(26, 27) algorithm (http://tide.dfci.harvard.edu) evaluated three

cell types that limit T-cell invasion into tumors, including IFNG,

myeloid suppressor cells (MDSC), and M2 subtypes of tumor-

associated macrophages (TAM.M2), dysfunction of tumor

infiltration cytotoxic T lymphocytes (CTL) (Dysfunction), and

exclusion of CTL by immunosuppressive factors (Exclusion).
Drug sensitivity analysis

pRRophetic (28) was used to predict the sensitivity of

erlotinib, sunitinib, paclitaxel, VX-680, TAE684, and crizotinib

to IC50. We used Sangerbox for assisting data analysis (29).
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Results

Definition of cell clusters and
dimensionality reduction

The flowchart of this work is shown in Figure S1. The

“Seurat” function and PercentageFeatureSet function were

performed to screen 33,117 cells from the scRNA-seq dataset.

The UMI was obviously correlated with numbers of mRNAs

(Figure S2A). Figures S2B, C display the samples before and after

quality control. PCA revealed that most HCC patients were

distributed by cluster (Figure S2D). We conducted the

“ScaleData” function to scale all genes extracted from the

scRNA-seq dataset (GSE149614) and performed PCA

dimensionality reduction to find anchor points. Finally, 11

clusters were found based on FindNeighbors and

FindClusters functions.

Cell annotation of 11 clusters was performed in terms of

classical markers of immune cells. Macrophage (cluster 1;

markers: CD163, CD68, CD14), T cells (clusters 2, 8; markers:

CD2, CD3D, CD3E, and CD3G), B cells (cluster 9; markers:

CD19, CD79A, and MS4A1), plasma cells (cluster 4; markers:

CD79A and JSRP1), mast cells (cluster 10; markers: TPSAB1 and

CPA3), fibroblasts (cluster 7; markers: ACTA2, PDGFRB, and

NOTCH3), endothelial cells (cluster 6; markers: PECAM1), and

hepatocellular carcinomas (cluster 0, 3, 5; GPC3, CD24, and

MDK) were clustered according to immune cell markers

(Figure S3).

An overview of the single cells from 10 samples in the

GSE149614 dataset are listed in Figure 1A. All the cells were

classified into 11 clusters (Figure 1B). Eleven clusters were

labeled as eight cell types by immune cell marker genes

(Figure 1C). The top five genes with the most prominent

contributions are shown in Figure 1D. Next, the CNV of eight

cell types was predicted using the CopyCat package to identify

13,617 malignant (tumor) cells and 19,500 no_malignant

(normal) cells (Figure 1E). Moreover, we calculated the

proportion of malignant and no_malignant cells in 10

samples (Figure 1F).
Analysis of autophagy pathways

ssGSEA showed that autophagy pathways were activated in

malignant tumors (Figure 2A). Next, ssGSEA of five autophagy

pathways in TCGA-LIHC dataset showed that three autophagy

pathways scored lower in tumors compared to the normal ones

(Figure 2B), which was the opposite as shown in Figure 2A.

Thus, we further analyzed the autophagy pathway scores in

grade 1 to grade 4 (Figure S4). Here, with the increase in tumor

grade, autophagy pathway scores were continuously decreased,

indicating that the body was abnormal and the cells had
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autophagy; however, as the disease deteriorated, autophagy

was gradually weakened.
Identification of autophagy-related
clusters

Based on the results in Figure 2B, 253 genes in the intersection

of TCGA-LIHC dataset and three autophagy pathways were

analyzed by limma to obtain 38 differentially expressed genes.

Three hundred sixty samples in TCGA-LIHC were clustered

using the ConsensusClusterPlus package based on 38 genes.

According to cumulative distribution function (CDF) and delta

area (Figures 3A, B), two clusters (Clust1 and Clust2) were obtained

when k = 2 (Figure 3C). K–M analysis demonstrated that HCC

patients in Clust2 tended to have a shorter survival than those in

Clust1 in TCGA dataset (Figure 3D) and HCCDB18 dataset

(Figure 3E). Clust2 had more women, a higher T stage and

clinical stage, and a poorer tumor grade (Figure 4).
Genome analysis and functional
enrichment analysis

Molecular characteristics of TCGA-LIHC were obtained from a

previous study (30). Clust1 presented a lower aneuploidy score,

homologous recombination defects, and fraction altered

(Figure 5A). The differences in gene mutation between clusters

were analyzed; the top 10 genes are shown in Figure 5B. TP53 and

TTN had obvious differences between two clusters (Figure 5B).

GSEA showed that pathways such as cell cycle were activated in

Clust1 (Figure 6A), and five of 10 pathways associated with

tumorigenesis had higher scores in Clust2 (Figure 6B).
Analysis of the tumor immune
microenvironment

Firstly, CIBERSORT analysis indicated that seven of 22

immune cells had a significant difference between two clusters

(Figure 7A). Then, ESTIMATE analysis showed that Clust1 had

higher scores of StromalScore , ImmuneScore , and

ESTIMATEScore (Figure 7B). We then evaluated the 47

immune check gene expressions, and 18 immune checkpoint

genes had obviously high expressions in Clust2 than those in

Clust1 (Figure 7C). Next, the scores of Toll-like receptor

signaling pathway, natural killer cell-mediated cytotoxicity,

antigen processing, and presentation were calculated using

ssGSEA, and here it has been observed that the Toll-like

receptor score and NK cytotoxicity score were higher in Clust1

than those in Clust2 (Figure 7D). TIDE was lower in Clust1 than

in Clust2 (Figure 7E), suggesting that patients in Clust1 were
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more likely to benefit from immunotherapy and more patients in

Clust1 responded to immunotherapy (Figure 7F).

Identification of hub autophagy related
genes and RiskScore

A sum of 344 differentially expressed genes were identified

between Clust1 and Clust2 (Figure 8A). Next, univariate Cox

survival analysis determined 137 genes associated with prognosis
Frontiers in Immunology 05
(Figure 8B). The LASSO–Cox regression module was used to build

a prognostic signature based on the expression matrix of the 137

genes. Subsequently, we identified an eight-gene signature module

according to the optimal l value (Figures 8C, D). RiskScore of HCC
patients based on eight genes (Figure 8E) was calculated using the

following formula:

RiskScore = 0:011*RACGAP1 − 0:024*HAO2 − 0:055*OGDHL

+ 0:122*ZWINT − 0:069*CFHR3 − 0
D

E F

A B C

FIGURE 1

Definition of cell clusters. (A) t-SNE of 10 samples in the GSE149614 dataset. (B) t-SNE of 11 cell subgroups. (C) t-SNE of eight cell types.
(D) Top five genes that made the most significant contribution. (E) t-SNE of malignant and no_maliganant. (F) The proportion of malignant and
no_maliganant in 10 samples in the GSE149614 dataset.
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B

A

FIGURE 2

Autophagy-related pathway analysis. (A) Five autophagy-related pathways were activated in malignant. (B) The difference analysis of autophagy-
related pathways scores in normal and tumor. ****p<0.0001, ns, no significance.
B C

D E

A

FIGURE 3

Identification of molecular subtypes. (A) Cumulative distribution function. (B) Delta area. (C) Heatmap of sample clustering when k = 2. (D) K–M
survival analysis of Clust1 and Clust2 in TCGA-LIHC dataset. (E) K–M survival analysis of Clust1 and Clust2 in the HCCDB18 dataset.
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044*CYP2C9 + 0:07*SFN − 0:005*SPP2
Validation of the prognostic model

The median RiskScore was the cutoff in classifying the samples

into low-risk (RiskScore< median) and high-risk (RiskScore >

median) groups. ROC and survival analyses were performed in

TCGA-LIHC (Figure 9A), HCCDB18 (Figure 9B), GSE14520

(Figure 9C), and GSE76427 datasets (Figure 9D). The results

revealed that the accuracy of the model was higher in predicting

the 1‐, 2-, 3‐, 4-, and 5‐year survival rates in the above datasets, as all

values of the area under the curve (AUC) were greater than 0.6.

Results of the Kaplan–Meier survival analysis showed an overall

survival higher in the low-risk group than the high-risk group.

Female patients, those with a clinically advanced stage, younger

samples (<=60), and clust2 showed a higher RiskScore (Figure 10).
Analysis of immune infiltration
and immunotherapy

CIBERSORT analysis indicated that 11 of 22 immune cells were

significantly higher in the low group that those in the high group
Frontiers in Immunology 07
(Figure 11A). ESTIMATE analysis showed that the low group had

higher StromalScore and ESTIMATEScore (Figure 11B). Moreover,

31 immune checkpoint genes had obviously high expressions in the

high group than in the low group (Figure 11C). Moreover, TIDE,

IFNG, MDSC, Exclusion, and TAM.M2 were lower in the low

group than in the high group, but Dysfunction was higher in the

low group (Figure 11D), suggesting that the low group was more

likely to benefit from immunotherapy. IC50 of erlotinib, sunitinib,

paclitaxel, VX-680, TAE684, and crizotinib were higher in the high

group, suggesting that patients in the high group were more

sensitive to those drugs (Figure 11E).
Nomogram

Univariate and multivariate Cox analyses indicated that

Stage and RiskScore were independent prognostic factors

(Figures 12A, B). Next, we constructed a prognostic

nomogram based on Stage and RiskScore to predict the 1-, 3-,

and 5-year overall survival of HCC patients (Figure 12C). The

calibration curve proved that the prognostic nomogram was

reliable and accurate (Figure 12D). The results of the AUC

indicated that among other clinical variables, the RiskScore and
FIGURE 4

The distribution of clinical features, including gender, T stage, stage, grade and age, in Clust1 and Clust2.
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Nomogram served as accurate prognostic indicators in clinical

decision-making process (Figure 12E).
Discussion

Although there are several methods to treat HCC, the

effectiveness of treatment is limited by a late diagnosis at an
Frontiers in Immunology 08
advanced stage, which is usually accompanied by a high rate of

disease recurrence (31). Therefore, identifying patients with high

risk is crucial for doctors to determine the use of aggressive

treatments. The TNM staging system developed by AJCC is a

standard system for evaluating the prognosis of HCC patients

(32, 33). However, clinical outcomes of patients with the same

TNM stage could be greatly different sometimes. The current

study investigated the prognostic significance of the autophagy
B

A

FIGURE 5

Genome analysis. (A) The analysis of aneuploidy score, homologous recombination defects, fraction altered, number of segments, and non-
silent mutation rate in Clust1 and Clust2. (B) Top 15 mutation genes in Clust1 and Clust2. ****p<0.0001, ns, no significance.
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BA

FIGURE 6

Functional enrichment analysis. (A) GSEA demonstrated that pathways, such as cell cycle, were activated in Clust1. (B) Five of 10 pathways
associated with tumorigenesis had higher scores in Clust2. **p<0.01, ***p<0.001, ****p<0.0001, ns, no significance.
B

C

D E F

A

FIGURE 7

Analysis of immune infiltration. (A) Analysis of 22 immune cells using CIBERSORT. (B) Analysis of immune infiltration using ESTIMATE. (C) The
expression levels of 42 immune check genes between Clust1 and Clust2. (D) The differences in Toll-like receptor signaling pathway score,
natural killer cell-mediated cytotoxicity score, and antigen processing and presentation score between Clust1 and Clust2. (E) The differences in
TIDE between Clust1 and Clust2. (F) Responses to immunotherapy between Clust1 and Clust2. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001,
ns, no significance.
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B

C D

A E

FIGURE 8

Identification hub autophagy-related genes. (A) Volcano plot of differentially expressed genes identified from autophagy-related pathways
between Clust1 vs. Clust2. (B) Volcano plot of differentially expressed genes identified using univariate Cox analysis. (C) Lambda trajectory of
differentially expressed genes. (D) Confidence interval under lambda. (E) Eight hub genes, including three risk genes and five protective genes,
were obtained.
B C DA

FIGURE 9

Validation of RiskScore. (A) ROC and K–M survival analysis of RiskScore in TCGA-LIHC dataset. (B) ROC and K–M survival analysis of RiskScore
in the HCCDB18 dataset. (C) ROC and K–M survival analysis of RiskScore in the GSE14520 dataset. (D) ROC and K–M survival analysis of
RiskScore in the GSE76427 dataset.
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score and developed a new nomogram model for predicting the

OS of HCC patients. The autophagy score as an independent

prognostic factor plays a key role in HCC survival. After internal

verification, we found that nomogram prediction results were

better than the TNM staging system.

Targeting autophagy is a new strategy in cancer

immunotherapy (34). A study has shown that autophagy is

associated with adaptive and innate immune responses and that it

could be induced by immune receptors such as nucleotide

oligomerization domain-like receptors (NLRs) and Toll-like

receptors (35). Autophagy is involved in the lymphocyte

development and antigen presentation, making autophagy a

potential target in improving cancer immunotherapy (36). It has

been further demonstrated that autophagy could facilitate

cancer cells to effectively evade immune responses and

immune surveillance. Thus, to prevent immune escape of cancer

cells, targeting autophagy has gradually become a novel

immunotherapeutic strategy (34). In this study, the autophagy

score was developed to predict the response to immunotherapy,

which further suggested that the autophagy score may be used to
Frontiers in Immunology 11
differentiate clinical patients and select more suitable

treatment options.

A study reported a three-gene signature for predicting the

survival outcome of HCC using scRNA and bulk RNA (37).

Single-cell sequencing identifies three hub genes in HCC (38).

However, in this study, we combined scRNA-seq and bulk-RNA

to analyze HCC. The RiskScore model had eight genes, namely,

HAO2, RACGAP1, OGDHL, ZWINT, CFHR3, CYP2C9, SFN,

and SPP2. In human HCC tissues, several studies reported an

obviously lower HAO2 expression, which was associated with a

worse HCC prognosis (39); moreover, HAO2 was overexpressed

and HCC cell invasion, migration, and proliferation were

inhibited (40, 41). RACGAP1 is frequently overexpressed and

associated with shorter survival time of HCC patients (42, 43).

Silencing OGDHL would induce lipogenesis and affect

sorafenib’s chemosensitization effect on HCC cells (44).

ZWINT upregulation showed a significant association with

unfavorable survivals and clinicopathological features of HCC

patients (45). CFHR3 overexpression was correlated with a

favorable prognosis for HCC patients (46). CYP2C9 is
FIGURE 10

The RiskScore analysis in clinical features, including gender, T stage, stage, grade, age, and clusters. *p<0.05, **p<0.01, ****p<0.0001, ns, no
significance.
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involved in the metabolism of many carcinogens and drugs and

is downregulated in HCC (47). SFN significantly inhibited the

proliferation of HepG2 cells (48). So far, there was no study

discussing the potential functions of SPP2 in HCC, but results

indicated that SPP2 was associated with the stability of

spliceosome and chromatin (49). Hence, we speculated

that SPP2 dysregulation may lead to carcinogenesis and

disease progression.

Some limitations existed in this study. Firstly, the sample

lacked clinical follow-up information; thus, factors such as the
Frontiers in Immunology 12
presence of other health conditions were not considered during

the identification of the biomarkers. Secondly, the results

obtained by bioinformatics analysis alone were not convincing

enough, which requires further experimental verification. In

addition, the molecular processes and signaling pathways

obtained from TCGA cases alone are not sufficient and should

be confirmed by further studies.

In conclusion, we constructed a prognostic prediction model

which consisted of HAO2, RACGAP1, OGDHL, ZWINT,

CFHR3, CYP2C9, SFN, and SPP2 for HCC, which provided
B
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FIGURE 11

Analysis of immune infiltration. (A) Analysis of 22 immune cells using CIBERSORT. (B) Analysis of immune infiltration using ESTIMATE. (C) The
expression levels of 42 immune check genes between low group and high group. (D) The differences of TIDE, IFNG, MDSC, Exclusion,
Dysfunction, and TAM.M2 between low group and high group. (E) IC50 of traditional drugs in the low group and high group. *p<0.05, **p<0.01,
***p<0.001, ****p<0.0001, ns, no significance.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1012303
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2022.1012303
new ideas for the prognostic treatment of HCC patients.

However, the main limitation of our results was that our study

was conducted in a public database, and further experiments are

needed for in-depth study.
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FIGURE 12

Nomogram. (A) Univariate Cox survival analysis. (B) Multivariate Cox survival analysis. (C) Construction of nomogram based on Stage and
RiskScore. (D) The calibration curve proved that the prognostic nomogram was reliable and accurate. (E) AUC analysis of nomogram, RiskScore,
age, stage, gender, and grade. ***p<0.001.
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Moreno A, González-Rumayor V, Alarcón-Riquelme ME, et al. ImaGEO:
Integrative gene expression meta-analysis from GEO database. Bioinf (Oxford
England) (2019) 35(5):880–2. doi: 10.1093/bioinformatics/bty721

15. Lian Q, Wang S, Zhang G, Wang D, Luo G, Tang J, et al. HCCDB: A
database of hepatocellular carcinoma expression atlas. Genomics Proteomics Bioinf
(2018) 16(4):269–75. doi: 10.1016/j.gpb.2018.07.003

16. Zhai Y, Li G, Li R, Chang Y, Feng Y, Wang D, et al. Single-cell RNA-
sequencing shift in the interaction pattern between glioma stem cells and immune
cells during tumorigenesis. Front Immunol (2020) 11:581209. doi: 10.3389/
fimmu.2020.581209

17. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an r package for comparing
biological themes among gene clusters. Omics J Integr Biol (2012) 16(5):284–7. doi:
10.1089/omi.2011.0118

18. Hänzelmann S, Castelo R, Guinney J. GSVA: Gene set variation analysis for
microarray and RNA-seq data. BMC Bioinf (2013) 14:7. doi: 10.1186/1471-2105-14-7

19. Wilkerson MD, Hayes DN. ConsensusClusterPlus: A class discovery tool
with confidence assessments and item tracking. Bioinformatics (2010) 26
(12):1572–3. doi: 10.1093/bioinformatics/btq170

20. Pei S, Liu T, Ren X, Li W, Chen C, Xie Z. Benchmarking variant callers in
next-generation and third-generation sequencing analysis. Briefings Bioinf (2021)
22(3):bbaa148. doi: 10.1093/bib/bbaa148

21. Tibshirani R. The lasso method for variable selection in the cox model. Stat
Med (1997) 16(4):385–95. doi: 10.1002/(SICI)1097-0258(19970228)16:4<385::
AID-SIM380>3.0.CO;2-3

22. Goeman JJ. L1 penalized estimation in the cox proportional hazards model.
Biometrical J Biometrische Z (2010) 52(1):70–84. doi: 10.1002/bimj.200900028

23. Liu TT, Li R, Huo C, Li JP, Yao J, Ji XL, et al. Identification of CDK2-related
immune forecast model and ceRNA in lung adenocarcinoma, a pan-cancer
analysis. Front Cell Dev Biol (2021) 9:682002. doi: 10.3389/fcell.2021.682002
Frontiers in Immunology 14
24. Ito K, Murphy D. Application of ggplot2 to pharmacometric graphics. CPT:
pharmacometrics Syst Pharmacol (2013) 2(10):e79. doi: 10.1038/psp.2013.56

25. Yang P, Chen W, Xu H, Yang J, Jiang J, Jiang Y, et al. Correlation of CCL8
expression with immune cell infiltration of skin cutaneous melanoma: Potential as
a prognostic indicator and therapeutic pathway. Cancer Cell Int (2021) 21(1):635.
doi: 10.1186/s12935-021-02350-8

26. Fu J, Li K, Zhang W, Wan C, Zhang J, Jiang P, et al. Large-Scale public data
reuse to model immunotherapy response and resistance. Genome Med (2020) 12
(1):21. doi: 10.1186/s13073-020-0721-z

27. Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, et al. Signatures of T cell
dysfunction and exclusion predict cancer immunotherapy response. Nat Med
(2018) 24(10):1550–8. doi: 10.1038/s41591-018-0136-1

28. Geeleher P, Cox N, Huang RS. pRRophetic: an r package for prediction of
clinical chemotherapeutic response from tumor gene expression levels. PloS One
(2014) 9(9):e107468. doi: 10.1371/journal.pone.0107468

29. Shen W, Song Z, Xiao Z, Huang M, Shen D, Gao P, et al. Sangerbox: A
comprehensive, interaction-friendly clinical bioinformatics analysis platform.
iMeta (2022) 1(3):e36. doi: 10.1002/imt2.36

30. Jager LE. Hazards in the plating industry. Occup Health Rev (1966) 18(2):3–
10.

31. Camp RL, Dolled-Filhart M, Rimm DL. X-Tile: A new bio-informatics tool
for biomarker assessment and outcome-based cut-point optimization. Clin Cancer
Res an Off J Am Assoc Cancer Res (2004) 10(21):7252–9. doi: 10.1158/1078-
0432.CCR-04-0713

32. Kamarajah SK, Frankel TL, Sonnenday C, Cho CS, Nathan H. Critical
evaluation of the American joint commission on cancer (AJCC) 8th edition staging
system for patients with hepatocellular carcinoma (HCC): A surveillance,
epidemiology, end results (SEER) analysis. J Surg Oncol (2018) 117(4):644–50.
doi: 10.1002/jso.24908

33. Abdel-Rahman O. Assessment of the discriminating value of the 8th AJCC
stage grouping for hepatocellular carcinoma. HPB Off J Int Hepato Pancreato
Biliary Assoc (2018) 20(1):41–8. doi: 10.1016/j.hpb.2017.08.017

34. Yao C, Ni Z, Gong C, Zhu X, Wang L, Xu Z, et al. Rocaglamide enhances NK
cell-mediated killing of non-small cell lung cancer cells by inhibiting autophagy.
Autophagy (2018) 14(10):1831–44. doi: 10.1080/15548627.2018.1489946

35. Liu G, Pei F, Yang F, Li L, Amin AD, Liu S, et al. Role of autophagy and
apoptosis in non-Small-Cell lung cancer. Int J Mol Sci (2017) 18(2):367. doi:
10.3390/ijms18020367

36. Zhu J, Wang M, Hu D. Development of an autophagy-related gene
prognostic signature in lung adenocarcinoma and lung squamous cell
carcinoma. PeerJ (2020) 8:e8288. doi: 10.7717/peerj.8288

37. Lu J, Chen Y, Zhang X, Guo J, Xu K, Li L. A novel prognostic model based
on single-cell RNA sequencing data for hepatocellular carcinoma. Cancer Cell Int
(2022) 22(1):38. doi: 10.1186/s12935-022-02469-2

38. Wang H, Fu Y, Da BB, Xiong G. Single-cell sequencing identifies the
heterogeneity of CD8+ T cells and novel biomarker genes in hepatocellular
carcinoma. J healthcare Eng (2022) 2022:8256314. doi: 10.1155/2022/8256314

39. Mattu S, Fornari F, Quagliata L, Perra A, Angioni MM, Petrelli A, et al. The
metabolic gene HAO2 is downregulated in hepatocellular carcinoma and predicts
metastasis and poor survival. J Hepatol (2016) 64(4):891–8. doi: 10.1016/
j.jhep.2015.11.029

40. Li Y, Zhang M, Li X, Wang Y, Wang Y, Li Y, et al. Hydroxyacid oxidase 2
(HAO2) inhibits the tumorigenicity of hepatocellular carcinoma and is negatively
regulated by miR-615-5p. J Immunol Res (2022) 2022:5003930. doi: 10.1155/2022/
5003930

41. Zhuo H, Xia J, Zhang J, Tang J, Han S, Zheng Q, et al. CircASPH promotes
hepatocellular carcinoma progression through methylation and expression of
HAO2. Front Oncol (2022) 12:911715. doi: 10.3389/fonc.2022.911715

42. Yang XM, Cao XY, He P, Li J, Feng MX, Zhang YL, et al. Overexpression of
rac GTPase activating protein 1 contributes to proliferation of cancer cells by
reducing hippo signaling to promote cytokinesis. Gastroenterology (2018) 155
(4):1233–49.e22. doi: 10.1053/j.gastro.2018.07.010

43. Wang SM, Ooi LL, Hui KM. Upregulation of rac GTPase-activating protein
1 is significantly associated with the early recurrence of human hepatocellular
carcinoma. Clin Cancer Res an Off J Am Assoc Cancer Res (2011) 17(18):6040–51.
doi: 10.1158/1078-0432.CCR-11-0557

44. Dai W, Xu L, Yu X, Zhang G, Guo H, Liu H, et al. OGDHL silencing
promotes hepatocellular carcinoma by reprogramming glutamine metabolism.
J Hepatol (2020) 72(5):909–23. doi: 10.1016/j.jhep.2019.12.015
frontiersin.org

https://doi.org/10.1016/j.xinn.2020.100032
https://doi.org/10.3322/caac.21660
https://doi.org/10.1016/S0140-6736(19)30427-1
https://doi.org/10.1016/j.celrep.2014.01.035
https://doi.org/10.1038/ng.2891
https://doi.org/10.1038/nature09807
https://doi.org/10.1126/science.1254257
https://doi.org/10.1038/nbt.2038
https://doi.org/10.3390/cells8020091
https://doi.org/10.3390/cells8020091
https://doi.org/10.5152/tjg.2018.150318
https://doi.org/10.1101/gad.2016211
https://doi.org/10.1073/pnas.2436255100
https://doi.org/10.1073/pnas.2436255100
https://doi.org/10.1016/j.cell.2018.03.042
https://doi.org/10.1093/bioinformatics/bty721
https://doi.org/10.1016/j.gpb.2018.07.003
https://doi.org/10.3389/fimmu.2020.581209
https://doi.org/10.3389/fimmu.2020.581209
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1093/bioinformatics/btq170
https://doi.org/10.1093/bib/bbaa148
https://doi.org/10.1002/(SICI)1097-0258(19970228)16:4%3C385::AID-SIM380%3E3.0.CO;2-3
https://doi.org/10.1002/(SICI)1097-0258(19970228)16:4%3C385::AID-SIM380%3E3.0.CO;2-3
https://doi.org/10.1002/bimj.200900028
https://doi.org/10.3389/fcell.2021.682002
https://doi.org/10.1038/psp.2013.56
https://doi.org/10.1186/s12935-021-02350-8
https://doi.org/10.1186/s13073-020-0721-z
https://doi.org/10.1038/s41591-018-0136-1
https://doi.org/10.1371/journal.pone.0107468
https://doi.org/10.1002/imt2.36
https://doi.org/10.1158/1078-0432.CCR-04-0713
https://doi.org/10.1158/1078-0432.CCR-04-0713
https://doi.org/10.1002/jso.24908
https://doi.org/10.1016/j.hpb.2017.08.017
https://doi.org/10.1080/15548627.2018.1489946
https://doi.org/10.3390/ijms18020367
https://doi.org/10.7717/peerj.8288
https://doi.org/10.1186/s12935-022-02469-2
https://doi.org/10.1155/2022/8256314
https://doi.org/10.1016/j.jhep.2015.11.029
https://doi.org/10.1016/j.jhep.2015.11.029
https://doi.org/10.1155/2022/5003930
https://doi.org/10.1155/2022/5003930
https://doi.org/10.3389/fonc.2022.911715
https://doi.org/10.1053/j.gastro.2018.07.010
https://doi.org/10.1158/1078-0432.CCR-11-0557
https://doi.org/10.1016/j.jhep.2019.12.015
https://doi.org/10.3389/fimmu.2022.1012303
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2022.1012303
45. Lin T, Zhang Y, Lin Z, Peng L. ZWINT is a promising therapeutic
biomarker associated with the immune microenvironment of hepatocellular
carcinoma. Int J Gen Med (2021) 14:7487–501. doi: 10.2147/IJGM.S340057

46. Liu J, Li W, Zhao H. CFHR3 is a potential novel biomarker for hepatocellular
carcinoma. J Cell Biochem (2020) 121(4):2970–80. doi: 10.1002/jcb.29551

47. Yu D, Green B, Marrone A, Guo Y, Kadlubar S, Lin D, et al. Suppression of
CYP2C9 by microRNA hsa-miR-128-3p in human liver cells and association with
hepatocellular carcinoma. Sci Rep (2015) 5:8534. doi: 10.1038/srep08534
Frontiers in Immunology 15
48. Zou X, Qu Z, Fang Y, Shi X, Ji Y. Endoplasmic reticulum stress mediates
sulforaphane-induced apoptosis of HepG2 human hepatocellular carcinoma cells.
Mol Med Rep (2017) 15(1):331–8. doi: 10.3892/mmr.2016.6016

49. Warkocki Z, Schneider C, Mozaffari-Jovin S, Schmitzová J, Höbartner
C, Fabrizio P, et al. The G-patch protein Spp2 couples the spliceosome-
stimulated ATPase activity of the DEAH-box protein Prp2 to catalytic
activation of the spliceosome. Genes Dev (2015) 29(1):94–107. doi: 10.1101/
gad.253070.114
frontiersin.org

https://doi.org/10.2147/IJGM.S340057
https://doi.org/10.1002/jcb.29551
https://doi.org/10.1038/srep08534
https://doi.org/10.3892/mmr.2016.6016
https://doi.org/10.1101/gad.253070.114
https://doi.org/10.1101/gad.253070.114
https://doi.org/10.3389/fimmu.2022.1012303
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Analysis on heterogeneity of hepatocellular carcinoma immune cells and a molecular risk model by integration of scRNA-seq and bulk RNA-seq
	Introduction
	Material and methods
	HCC data of public databases
	Data control
	Cell type annotation
	Analysis of autophagy-related pathways
	Clustering
	Mutation analysis
	Construction and evaluation of a prognostic risk model for HCC
	Nomogram
	Cell-type identification using estimating relative subsets of RNA transcripts
	Estimate
	Tumor immune dysfunction and exclusion
	Drug sensitivity analysis

	Results
	Definition of cell clusters and dimensionality reduction
	Analysis of autophagy pathways
	Identification of autophagy-related clusters
	Genome analysis and functional enrichment analysis
	Analysis of the tumor immune microenvironment
	Identification of hub autophagy related genes and RiskScore
	Validation of the prognostic model
	Analysis of immune infiltration and immunotherapy
	Nomogram

	Discussion
	Data availability statement
	Author contributions
	Funding
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


