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Abstract

Gene expression divergence and chromosomal rearrangements have been put forward as major contributors to phenotypic

differences between closely related species. It has also been established that duplicated genes show enhanced rates of

positive selection in their amino acid sequences. If functional divergence is largely due to changes in gene expression, it

follows that regulatory sequences in duplicated loci should also evolve rapidly. To investigate this hypothesis, we performed

likelihood ratio tests (LRTs) on all noncoding loci within 5 kb of every transcript in the human genome and identified

sequences with increased substitution rates in the human lineage since divergence from Old World Monkeys. The fraction of
rapidly evolving loci is significantly higher nearby genes that duplicated in the common ancestor of humans and chimps

compared with nonduplicated genes. We also conducted a genome-wide scan for nucleotide substitutions predicted to

affect transcription factor binding. Rates of binding site divergence are elevated in noncoding sequences of duplicated loci

with accelerated substitution rates. Many of the genes associated with these fast-evolving genomic elements belong to

functional categories identified in previous studies of positive selection on amino acid sequences. In addition, we find

enrichment for accelerated evolution nearby genes involved in establishment and maintenance of pregnancy, processes that

differ significantly between humans and monkeys. Our findings support the hypothesis that adaptive evolution of the

regulation of duplicated genes has played a significant role in human evolution.
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Introduction

The genetic basis for human-specific traits is of great inter-
est. Despite striking phenotypic divergence in the Hominini

(members the of human–chimp lineage), genome sequence

data suggest a slowdown in the rate of nucleotide substitu-

tions in humans and our primate relatives (Wu and Li 1985;

Huttley et al. 2007). Furthermore, orthologous human and

chimpanzee proteins differ by only two amino acid substi-

tutions on average, and nearly a third of proteins are iden-

tical between the two species (The Chimpanzee Sequencing
and Analysis Consortium 2005). Low amino acid divergence

in the ‘‘hominin’’ (human–chimp) lineage lends support for

the hypothesis that divergence between closely related spe-

cies is accompanied by evolution of the gene regulatory net-

work (King and Wilson 1975; Levine and Tjian 2003; Carroll

2005).

Structural variation in the genome is another mutational

mechanism that contributes significantly to genomic diver-

gence (Wilson et al. 1974; Kent et al. 2003). An increased

rate of structural genomic rearrangements (such as gene du-

plications) has been observed in primates (Cheng et al.

2005; She et al. 2006; Hahn et al. 2007; Marques-Bonet

et al. 2009). Structural variation has been recognized as

a major contributor to genomic diversity, with gene duplica-

tion serving as an evolutionary mechanism for functional in-

novation (Ohno 1999; Zhang 2003). Also, gene turnover in

the form of rapid expansion or contraction of gene families

has been put forward as a possible explanation of pheno-

typic divergence (Fortna et al. 2004; Marques et al. 2005;

Demuth et al. 2006; Dumas et al. 2007; Zhu et al. 2007;

Perry et al. 2008). Additionally, evidence for excess positive

selection on the coding sequences of genes in families that
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expanded rapidly in primates corroborates the hypothesis
that gene duplication can lead to functional innovation

(Hahn et al. 2007).

The beta subunit of the glycoprotein hormone chorionic

gonadatropin (CGB), for example, is believed to have arisen

by duplication of luteinizing hormone beta (LHB) about 35–

50 million years ago. This duplication was followed by one

deletion and two insertions in the coding sequence that lead

to the appearance of a carboxy-terminal peptide in CGB.
Additional mutations in the promoter induced an expression

shift from pituitary gland to placenta (Maston and Ruvolo

2002; Henke and Gromoll 2008). The evolution of CGB il-

lustrates the process of gene duplication followed by neo-

functionalization. Notably, the emergence of new function

involved changes in both the coding sequence and nearby

noncoding sequence, which provided a new regulatory con-

text. This example highlights a particular type of gene evo-
lution whereby adaptation occurs in regulatory noncoding

sequences after a duplication event. We hypothesize that

this form of divergence played a significant role in human

evolution.

The ever-increasing richness of genomic sequence and

functional data provides a foundation for empirical studies

of duplication-mediated divergence. Although there have

been some large-scale studies on the evolution of dupli-
cated loci in human (Lynch and Conery 2000; Kondrashov

et al. 2002; Lynch and Conery 2003; Zhang et al. 2003; Shiu

et al. 2006; Hahn et al. 2007; Marques-Bonet et al. 2008;

De et al. 2009), these analyses have typically focused on

coding rather than noncoding sequences. Bioinformatic

challenges related to sequence assembly and alignment,

as well as interpretation of evolutionary analyses, are largely

responsible for the paucity of genome-wide studies of non-
coding sequences to date. In light of the mounting evidence

that regulatory divergence has played a major role in

hominin evolution, however, it is desirable to understand

how noncoding sequences in and near duplicated loci

evolve.

These considerations motivated us to perform a system-

atic genome-wide search for signatures of accelerated se-

quence evolution and functional innovation in noncoding
sequences associated with duplicated genes. We focus on

the hominin lineage since divergence from the common an-

cestor with Old World Monkeys (represented by the ma-

caque genome). The hominin lineage is very relevant to

our understanding of human evolution, and statistical tests

on this lineage have greater power than tests on the much

shorter human lineage since divergence from the chimp–

human ancestor. For this analysis, we identified all noncoding
sequences within 5 kb of a human Ensembl transcript. We

then performed molecular evolutionary tests to highlight re-

gions of unusually high substitution rates in the Hominini.

Next, we assessed the likely impact of human–macaque se-

quence differences on transcription factor (TF) binding,

thereby identifying noncoding regions likely to have af-
fected transcriptional regulation. Finally, we asked whether

noncoding sequences associated with genes that duplicated

in the hominin lineage show stronger evidence of diver-

gence than noncoding sequences nearby nonduplicated

genes. We find strong enrichment for accelerated substitu-

tion rates and transcription factor–binding site (TFBS) diver-

gence in noncoding sequences associated with duplicated

genes.

Materials and Methods

Sequence Data and Orthologous Sequence Blocks

We downloaded 28-way alignments in multiple alignment

format (MAF) from the genome browser maintained by
the University of California–Santa Cruz (UCSC) (hg18,

NCBI assembly version 36). MAF-formatted alignments

are partitioned into consecutively aligned sequence blocks

(Blanchette et al. 2004) that can be viewed as orthologous

units. A MAF sequence block is a local alignment where

each row represents consecutive (though potentially gap-

ped) sequence from one species, and there are no gap-only

columns. Moving along the human chromosomes, a new
block starts when there is a change in orthology (e.g., a spe-

cies drops in or out of the alignment). We used this ‘‘natural’’

partition of whole-genome multiple sequence alignments in

our analyses. In cases of duplications, both of the duplicated

sequences in the Hominini are considered orthologous to

single-copy regions in the outgroups. Thus, the orthologous

outgroup sequences may appear in more than one MAF

block. We included only the genomes with data-use policies
allowing genome-wide analysis (human, chimp, macaque,

mouse, rat, dog, opossum, platypus, chicken, zebrafish,

fugu, and medaka) in our analyses. Not all species are present

in all MAF blocks.

We delineated all noncoding MAF blocks that are located

within 5 kb of a human Ensembl transcript (version 41)

(Flicek et al. 2008), that is, a region spanned by the transcrip-

tional unit plus 5 kb of upstream and downstream flanking
sequence. We trimmed off coding sequence from any block

overlapping a coding exon.

Block Delineation

We functionally annotated each block’s ‘‘genic location’’

based on Ensembl gene models with the following catego-

ries:

- Flanking region (5#, 3#, or ambiguous, see below)
- Exonic 5# untranslated regions (UTR)
- Intronic 5# UTR
- First intron, early (�500 bp 3# from intron start)
- First intron, late (.500 bp 3# from intron start)
- Intron (all other intronic sequence)
- Intronic 3# UTR
- Exonic 3# UTR.
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We defined exonic 5# UTRs as the sequences between
the transcription start site (TSS) and the coding start site

(CSS) that are annotated as exons; intronic 5# UTRs contain

all other sequence between the TSS and CSS. Analogously,

we defined exonic 3# UTRs as sequences between coding

stop and transcription stop that are annotated as exons.

Intronic 3# UTRs are all other sequences between coding

stop and transcription stop. We clustered overlapping tran-

scripts and annotated each sequence block with a unique
genic location category using the following hierarchy: ex-

onic UTR . intronic UTR . 5# . 3# . first intron early .

first intron late . intron . flanking sequence. For example,

if a block overlaps both exonic 5# UTR and first early intron

sequence (due to overlapping transcripts), we annotated it

as exonic 5# UTR. Flanking regions were annotated as 5#
(upstream of TSS), 3# (downstream of transcription stop

site), or ambiguous (if not uniquely 5# or 3# due to over-
lapping or nearby transcripts). We refer to contiguously

transcribed genomic regions on either strand as ‘‘transcript

clusters.’’

Alignment Quality Filters

To produce a data set with high-quality syntenic alignments,

we used the following filtering criteria to exclude certain

alignment blocks from further analysis:

- Blocks not containing chimp and macaque plus at
least one other placental mammal with no more than
50% nongap characters were excluded.

- Blocks with more than 1/3 of bases (chimp or
macaque) inserted or deleted with respect to human
were excluded.

- Blocks with more than 1/2 gap characters in human,
chimp, and macaque were excluded.

- Blocks with more than 25% of all nongap bases
differing between human and chimp (or 35%
between human and macaque) were excluded.

- Blocks were masked if more than 1/2 of their bases
were repeat masked in human.

- Blocks with more than 1/2 of their bases overlapping
annotated pseudogenes (Ensembl version 54) were
excluded.

- Blocks that were not syntenic between human and
chimp were excluded.

Additionally, quality scores for chimp and macaque were

taken from the UCSC genome browser databases rheMac2

and panTro2 (table ‘‘quality’’) and bases with a score less

than 40 were masked in both species. Synteny was derived

from human–chimp alignments: Syntenic net alignment files

were downloaded from UCSC, and syntenic regions were
defined as top-level chain alignments of at least 5-Mb

length; gaps in this chain were filled with syntenically

aligned chains from lower levels. Repeat masking was per-

formed on the basis of the rmskRM327 track downloaded

from UCSC.

This quality filtering produced a data set of 4,699,477
high-quality MAF blocks with median length of 64 bp

(range 10–2,580 bp). These blocks cover 410,274,564

bp of the human genome. Alignment filtering might intro-

duce various biases in patterns of sequence composition

and conservation, such as biased retention of more con-

served blocks over less conserved blocks. We addressed

this issue by using calibrated chromosome-specific models

for unconstrained sequence in our LRTs, which were then
rescaled using the data from each block to produce a local

null model (see below). We believe that the benefits of

more trustworthy alignments outweigh the potential

drawbacks of a higher false-negative rate (i.e., filtered-

out blocks that are not tested) and a bias toward analysis

of more conserved blocks.

Likelihood Ratio Test for Accelerated Substitution
Rates

To test for acceleration in the rate of nucleotide substitutions

in the Hominini, we subjected each alignment block to

a one-sided LRT using phylogenetic models (Yang et al.

1994). Phylogenetic continuous time Markov models are pa-

rameterized by a tree T (topology and branch lengths), a rate

matrix Q, and equilibrium base frequencies p. The tree Tcan
be viewed as consisting of a tree T�, spanning the hominin

lineage, and a tree Tþ, spanning the other species: T5 (Tþ,

T�). We used a general time-reversible parameterization

(REV) of the rate matrix Q. All model fitting was performed

using maximum likelihood estimation with the ‘‘phyloFit’’

program from the PHAST package (http://compgen.bscb.-

cornell.edu/phast/). To assess the robustness of our results,

we also calculated test statistics after deleting chimp from T,
so that T� consisted of the human lineage alone (from the

macaque–human ancestor to modern humans). To keep the

two analyses comparable, we performed this analysis on

the same set of filtered MAF blocks as before. Leaving chimp

in the filtering rules creates a bias toward well-aligned

blocks (conservative with respect to identifying accelerated

substitution rates), whereas excluding chimp from the LRT

analysis guards for false positives presumably due to mis-
alignment and/or erroneous assembly of the low-coverage

shotgun sequenced chimp genome.

Test Statistics. The LRTstatistic for an alignment block B is

based on the ratio of the likelihood of the sequence align-
ment under two different models: 1) a null model and 2) an

alternative model with acceleration in the hominin lineage

that allows a faster rate of substitutions on the human and

chimp branches, as described in Pollard et al. (2009). In more

detail, the null and the alternative models were estimated

starting from a chromosome-specific model M 5 (Q, T, p)

for unconstrained sequence. The null model was then ob-

tained by rescaling T by a constant c to allow for a faster
or slower overall rate of substitutions across the whole tree
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(i.e., in all species), thereby maintaining the same relative
branch lengths (i.e., substitution rates) across lineages. This

rescaling step accounts for local substitution rate variation.

The alternative model also adjusts for local rate variation but

includes an additional parameter q . 1, which allows the

hominin lineage to have a faster rate of substitutions relative

to the rest of the tree. Thus, the rate of substitutions in the

hominin lineage compared with the rest of the tree is in-

creased, whereas relative rates of substitutions across line-
ages in the rest of the tree are maintained. The models can

be represented as follows:

Null model ðM0Þ : T 5 cðTþ ; T�Þ

Alternative model ðMþÞ: T#5 cðTþ ; q�T�Þ; q.1

The LRT statistic for block B is

S5 log½PðBjMþÞ=PðBjM0Þ�;

where the parameters c and q are estimated for each model

by maximum likelihood, using the alignment data for block

B. The null hypothesis being tested is H0: q 5 1 (no accel-

eration in Hominini) versus the alternative hypothesis Ha:
q . 1 (acceleration in Hominini).

Chromosome-Specific Initial Models. We detected

lineage-specific increases in substitution rates by compar-

ing an alternative model Mþ with a null model M0 (see

previous paragraph). Because both of these models are re-

scaled versions of a model M for unconstrained sequence,
it is important to pick M such that rescaling its tree T pro-

vides a reasonable estimate of the local substitution pro-

cess at block B. On the one hand, it is desirable that the

base frequencies p and relative rates of various types of

substitutions in the rate matrix of M are as appropriate

for B as possible. On the other hand, the better the initial

model M fits the data in block B, the more difficult it is to

reject the null hypothesis. This provides a dilemma as to
how ‘‘local’’ (with respect to B) the initial model should

be. We examined a range of choices, from a single genome-

wide model to a rescaled local model fit on several mega-

bases of nearby sequence. Based on this analysis, we chose

to estimate separate initial models for each chromosome (see

supplementary section SR3, Supplementary Material online).

In this way, we attempt to accommodate chromosome-

specific biases (e.g., sequence composition and substitution
patterns) and condition on the fact that chromosomes, as

a whole, are not accelerated. Scaling the null model M0

by c ensures that more local rate variation is also accounted

for in the test.

To estimate chromosome-wide models, we performed

maximum likelihood estimation with starting values for pa-

rameter optimization obtained from a genome-wide REV

model fit to 4-fold degenerate sites from 28-way alignments

(obtained from UCSC). We estimated c and q, as well as
equilibrium frequencies, using all blocks on a given chromo-

some, by maximum likelihood. These chromosome-specific

models were then subsequently used as the initial models

(M) for the LRT analysis described above.

Statistical Significance. To determine significantly accel-

erated blocks, we calculated P values for the observed LRT

scores using the asymptotic distribution of a 50:50 mixture

of a point mass at zero and a v2 distribution (Self and Liang
1987). As our data contain LRT scores from blocks of differ-

ent lengths, we checked the correlation between block

length and LRT score. We found only a minimal association

(r5 0.051). From the P values, we derived an LRT score cut-

off controlling the false discovery rate (FDR) at 10% using

the Benjamini-Hochberg procedure (R package multtest;

http://www.bioconductor.org). Blocks with an LRT score

larger than the cutoff were termed as ‘‘accelerated.’’

Duplication Data

Duplicated Genes. We used gene tree reconciliation to

determine a set of Ensembl (version 41) peptides that under-

went duplication on the lineage between the macaque–

hominin ancestor (common ancestor of human, chimp,

and macaque) and the chimp–human ancestor. We con-
structed neighbor-joining trees for each family defined by

Ensembl using the peptide sequences from human, chim-

panzee, macaque, rat, mouse, and dog. We reconciled

the resulting gene trees with the species tree of the six spe-

cies using NOTUNG (Durand et al. 2006). Duplications that

occurred on the lineage leading to Hominini after the split

with macaque but before the human–chimpanzee split

were identified as Hominini specific. These duplicated genes
were required to have synonymous divergence less than

0.064 (twice the average distance back to the human–

macaque ancestor). This approach yielded 716 unique

Hominini-specific Ensembl (version 41) peptides. We refer

to these as duplication peptides. After alignment filtering

(see above), we retain noncoding blocks in 5-kb neighbor-

hoods of 449 duplication peptides. We call these as dupli-

cation-associated blocks or ‘‘DA blocks.’’
Duplicated sequences are often located a long distance

from the locus they are copied from, especially in mammals

(She et al. 2006; McGrath et al. 2009). When paralogous

genes are located far apart, we can define one as the ‘‘par-

ent’’ and one as the ‘‘daughter’’; these correspond to the

paralog in the original location and the paralog in a new lo-

cation, respectively (Han and Hahn 2009). We used the like-

lihood method of Han and Hahn (2009) to define parent and
daughter duplicates (when possible) based on the length of

shared synteny between the human copies of the hominin-

specific duplicates and the single-copy genes in macaque. In

total, we were able to uniquely polarize 95 peptides. These
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correspond to 56 parents and 39 daughters (multiple pa-

rents may exist when the original locus is duplicated both

in tandem and to a distant location).

Duplication Status of DA Blocks. Not all DA blocks are

themselves duplicated (fig. 1). To delineate the duplication

status of noncoding blocks, we used human–macaque
alignment nets (UCSC hg18.netRheMac2). We annotated

noncoding blocks based on the alignment chain they re-

side on compared with the exons of duplication peptides

within 5 kb. We find that the majority of transcripts of du-

plication peptides have exons that align to a single unique

macaque alignment net (66%). DA blocks within 5 kb of

those peptides and on the same chain as the exons were

annotated as ‘‘chained.’’ Specifically, a ‘‘chained DA block’’
is (A) a DA block that is part of a multiple sequence align-

ment (MAF block) that meets our quality filters and is lo-

cated within 5 kb of a recently duplicated peptide (human

coordinates and annotation), and (B) in the syntenic

net alignment files, it is on the same chain as the duplicated

peptide. DA blocks that are not chained are called non-

chained. We refer to other noncoding blocks within

5 kb of duplication peptides as nonchained DA blocks (see,
e.g., fig. 1). This annotation does not directly reflect the du-

plication status of noncoding blocks, but chained blocks are

much more likely to share the evolutionary history of the

exons of a nearby transcript compared with nonchained

blocks. Chained DA blocks near daughter peptides are likely

to have been duplicated along with the duplicated coding

sequence, whereas nonchained DA blocks are more likely to

be nonduplicated or to have duplicated separately from the

nearby duplicated peptide. This approach enables us to
roughly estimate the duplication status of noncoding blocks,

even though reliable phylogeny-based duplication informa-

tion is currently only available on genome-wide scale for

coding sequences.

Because parent loci are less likely than daughter loci to

have been affected by genomic rearrangements, we expect

to see an enrichment of chained blocks near parent peptides

compared with daughter peptides. This is indeed the case:
49 of the 56 parent peptides (88%) have chained noncoding

blocks nearby, whereas this is only the case for 6 of the 39

daughter peptides (15%).

Genes Near Accelerated DA Blocks. To determine

genes nearby DA blocks, we mapped the Ensembl version

41 peptides near each accelerated (i.e., with a significant

LRT; see above) DA block to Ensembl version 56 using the
BioMart data management system (http://www.ensembl

.org/biomart).

FIG. 1.—Examples of two types of alignment blocks. Panel (A) shows a non-DA noncoding block (red) that is associated with a nonduplicated

peptide (blue). Panel (B) shows examples of two different types of DA noncoding blocks (red and green). The peptide (blue) is duplicated in the

Hominini, and paralogous copies are present at two loci. The two red noncoding blocks and the peptide align to the same genomic regions in macaque

(chained blocks, see Materials and Methods for definition). In contrast, the green noncoding block aligns to a different region in macaque compared

with the peptide (nonchained block, see Materials and Methods). There are other scenarios that generate both types of DA blocks, but these are

common examples. Panel (B) depicts the presence of both types of DA blocks (chained and nonchained) nearby a single peptide. This is the case in 17%

of the 459 duplicated genes (transcript clusters, see Materials and Methods) in our study; 49% have exclusively chained blocks nearby, whereas 34%

have only nonchained blocks in their proximity. Note that panel (A) depicts a chained non-DA block. This is for illustration purposes, and nonchained

non-DA blocks are also possible, although they do not play an explicit role in our analysis.
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Testing for Association with the Fisher’s Exact Test

From our analyses, we have a variety of block-level annota-

tions (accelerated, duplication status, genic location, etc.).

We test for association between pairs of annotations by cal-

culating the corresponding contingency table (either on all

or on a subset of blocks) and applying the Fisher’s exact test
(FET) for independence. The FET is significant if there is ev-

idence that an annotation is enriched within one category of

another annotation, for example, acceleration is more com-

mon among duplicated versus nonduplicated loci. We also

compute the corresponding odds ratio (OR), which meas-

ures the direction and magnitude of the association. An

OR greater than 1 reflects a positive correlation, whereas

an OR less than 1 indicates a negative association.

Transcription Factor–Binding Site Turnover

We developed a method to estimate the number of TFBS

lost and gained on the hominin lineage since the hominin–

macaque ancestor. Our approach scores human and ma-

caque sequence variants in an MAF block for TF-binding

potential and compares predicted binding sites between

the two species (Kostka D, Holloway AK, Pollard KS, man-

uscript in preparation).
Briefly, we downloaded binding motifs and annotation

for 11 TF families from the JASPAR FAM database (Sandelin

and Wasserman 2004; Wasserman and Sandelin 2004) and

regularized their weight matrices by adding 0.01 to each en-

try. These matrices can be used to scan genome sequences

for matches to the TF-binding motif. For each family, a sig-

nificance threshold for matches (i.e., predicted TFBS) was

computed using a method that balances Type I and Type II
errors (Rahmann et al. 2003).

For each alignment block and TF family, we predicted TFBS

in the human and macaque sequences, after removing gaps

from the alignment. We then calculated P values for the dif-

ference in binding site predictions in the two species under

a model of two correlated Bernoulli processes. Specifically,

for each block and TF, we model the prediction of TFBS in a sin-

gle sequence as a Bernoulli trial. These trials are correlated be-
tween human and macaque because their sequences are

related through homology. The table below presents the prob-

abilities for the different outcomes. The probability of a predic-

tion in one species but not the other, denoted c, is constrained

to be smaller than min(p, 1 � p), where p is the probability of

a match (i.e., TFBS prediction for that TF). The number of trials

is the average gap-free sequence length of human and ma-

caque minus the length of the TF motif plus 1.

We estimate p for each TF from genome-wide data. It is
the fraction of all predictions divided by the total number of

trials. Conditional on this estimate, we obtain the maximum

likelihood estimate for c, which is based on the observed

number of differences between human and macaque in

TFBS predictions per block. Then, for each block and TF,

we calculate a P value based on the estimates of p and c.
More details can be found in (Kostka D, Holloway AK,

Pollard KS, in preparation). Finally, we correct the P values
for multiple testing using the FDR controlling procedure of

Benjamini and Hochberg (1995).

This method allowed us to identify alignment blocks with

TFBS turnover (gain or loss) while controlling the FDR at

10%. Our approach naturally takes the different block

lengths into account, which allows for a meaningful com-

parison between different alignment blocks. We expect that

two facts help to mitigate common problems (like high
false-positive rates) generally encountered in single species

TFBS prediction: 1) JASPAR FAM family motifs are of high

quality and 2) we focus on differential predictions between

human and macaque.

Gene Ontology Term Enrichment and Depletion
Tests

We performed gene ontology (GO) enrichment and deple-

tion analyses to determine if different block annotation
groups (e.g., duplicated, accelerated) were significantly en-

riched for any GO functional categories. GO terms were

mapped from transcripts to all blocks within 5 kb. Thus,

a block may receive multiple GO terms from each of multiple

transcripts. For each enrichment test, we first defined a ref-

erence ‘‘universe’’ of blocks from which the ‘‘target’’ anno-

tation group is drawn. For example, the target group of

syntenic blocks is drawn from the universe of all DA blocks.
The role of the universe is to provide an appropriate null dis-

tribution of GO term frequencies. Enrichment of each GO

term in the target set compared with the universe was as-

sessed using standard one-tailed hypergeometric tests. Note

that both the universe and target sets are groups of MAF

blocks, not groups of peptides. Enrichment testing on the

block level corrects for the fact that the number of MAF blocks

per transcript is variable, which can create bias in gene-level
enrichment tests (Taher and Ovcharenko 2009).

When comparing the target group of DA blocks to the

universe of all blocks, we restrict ourselves to report the

GO Slim subset (downloaded from http://www.ebi.ac.uk

/GOA) of GO terms (see tables 1 and 2).

Results

Accelerated Substitution Rates in the Hominini

To identify the fastest evolving regulatory sequences in the

Hominini, we scored all noncoding regions associated with

a human gene for evidence of accelerated substitution rates

Human

Prediction No prediction

Macaque
Prediction p � c c p

No prediction c 1 � p � c 1 � p

p 1 � p
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since divergence from the macaque–hominin ancestor.

Specifically, we used whole-genome multiple sequence

alignments of up to 12 vertebrates to identify short align-
ments of orthologous sequence within 5 kb of all human

Ensembl transcripts (Flicek et al. 2008). After strict filtering

to ensure high-quality syntenic alignments (see Materials

and Methods), we obtained a set of ;4.7 million alignments

covering ;410 Mb of the human genome (median length

64 bp). We call these regions ‘‘blocks’’ because they are de-

rived from the putatively orthologous sequence alignment

blocks in MAF files. This approach to identifying candidate
regions for evolutionary analysis allows alignability and con-

servation to define orthologous regions of variable length, in

contrast to windows of arbitrary fixed size or restriction to

a predefined set of genomic elements. Also, candidate re-

gions are not inferred to be evolutionarily conserved in (a

subset of) the species in our analysis; this is different form

previous work focusing on conserved noncoding elements

(Pollard, Salama, Lambert et al. 2006; Prabhakar et al. 2006;
Bird et al. 2007; Kim and Pritchard 2007). Next, we

performed an LRT on each block to detect lineage-specific

acceleration in substitution rate in the Hominini since the

macaque–hominin ancestor (see Materials and Methods).

Controlling the FDR at 10% (see Materials and Methods),

we found 3,805 blocks (;0.081%) with significant evi-

dence of accelerated substitution rate in the Hominini.

These accelerated blocks cover 611,318 bp of the human
genome (0.15% of the noncoding bp analyzed). Acceler-

ated blocks tend to be slightly longer than nonaccelerated

blocks, as expected because the power of our test is higher

in longer blocks. But this trend does not translate into
a strong correlation between block length and LRT statistic

(see Materials and Methods). Accelerated blocks have

roughly the same GC content as the average MAF block

(43% accelerated vs. 40% average), but they tend to be

in gene-rich regions. Although the average noncoding block

in our data set is within 100 kb of 2.4 genes (i.e., transcript

clusters; see Materials and Methods), accelerated blocks are

within 100 kb of 3.1 genes on average.

Noncoding Regions Near Duplicated Genes Evolve
Rapidly. We hypothesized that adaptive evolution favoring

gene expression divergence after duplication may have gen-

erated an excess of accelerated blocks nearby duplicated

genes. To explore this idea, we employed gene tree to spe-

cies tree reconciliation (Durand et al. 2006) based on En-
sembl peptide and gene family annotations to identify

duplication events in the mammalian phylogeny. Using

these duplication histories, we defined ‘‘expanded’’ gene

families as sets of homologs with more members in the

Hominini than in macaque (see Materials and Methods).

We refer to the noncoding regions within 5 kb of a peptide

in an expanded gene family as ‘‘DA loci’’ and we call the

26,283 blocks in these loci ‘‘DA blocks.’’ Note that proximity
to a peptide in an expanded family does not necessarily

Table 1

Significantly Enriched GO Slim Categories in Duplicated Loci

GO Slim Term P Value Term Name

Biological process

GO:0008152 0.00 Metabolism

GO:0050896 1.90 � 10�59 Response to stimulus

GO:0006118 2.49 � 10�55 Electron transport

GO:0007154 5.45 � 10�27 Cell communication

GO:0006810 3.28 � 10�07 Transport

Cellular compartment

GO:0005576 0.00 Extracellular region

GO:0005737 1.96 � 10�220 Cytoplasm

GO:0005622 6.95 � 10�71 Intracellular

GO:0005634 6.73 � 10�06 Nucleus

Molecular function

GO:0016787 0.00 Hydrolase activity

GO:0016853 9.11 � 10�141 Isomerase activity

GO:0003824 3.59 � 10�138 Catalytic activity

GO:0015075 6.01 � 10�125 Ion transporter activity

GO:0016491 2.48 � 10�108 Oxidoreductase activity

GO:0004871 4.60 � 10�106 Signal transducer activity

GO:0030188 9.41 � 10�67 Chaperone regulator activity

GO:0004872 1.19 � 10�28 Receptor activity

GO:0005488 3.39 � 10�24 Binding

GO:0005515 1.73 � 10�17 Protein binding

GO:0003774 1.25 � 10�07 Motor activity

GO:0005215 1.79 � 10�02 Transporter activity

Table 2

Significantly Depleted GO Slim Categories in Duplicated Loci

GO-Slim Term P Value Term Name

Biological process

GO:0007275 4.84 � 10�63 Development

GO:0030154 6.53 � 10�47 Cell differentiation

GO:0008219 3.36 � 10�20 Cell death

GO:0006139 2.05 � 10�18 Nucleobase, nucleoside,

nucleotide, and nucleic

acid metabolism

GO:0006944 6.33 � 10�10 Membrane fusion

GO:0007610 1.73 � 10�06 Behavior

GO:0046903 6.84 � 10�04 Secretion

Cellular compartment

GO:0005578 3.60 � 10�50 Extracellular matrix

(sensu Metazoa)

GO:0005694 1.45 � 10�24 Chromosome

GO:0009986 2.62 � 10�12 Cell surface

GO:0005615 3.02 � 10�10 Extracellular space

Molecular function

GO:0016301 1.19 � 10�92 Kinase activity

GO:0005198 1.02 � 10�50 Structural molecule

activity

GO:0016874 1.12 � 10�48 Ligase activity

GO:0030528 1.03 � 10�34 Transcription regulator

activity

GO:0004386 6.05 � 10�34 Helicase activity

GO:0003676 3.43 � 10�21 Nucleic acid binding

GO:0008565 2.01 � 10�12 Protein transporter activity
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imply the noncoding block itself was duplicated (fig. 1 and

see below).

To functionally characterize this set of DA blocks, we

conducted GO (Ashburner et al. 2000) enrichment and

depletion analyses. GO analyses were performed using a novel

method that maps GO terms to noncoding elements and

performs statistical analysis on the elements themselves,

rather than the genes (see Materials and Methods). This ap-
proach adjusts for the different distributions of noncoding

elements around different categories of genes (Taher and

Ovcharenko 2009). We found that terms related to signal

transduction, response to stimulus, and metabolic processes

are enriched among DA blocks compared with all MAF

blocks (tables 1 and 2).

Using FET and ORs, we investigated evidence of acceler-

ation in DA blocks compared with non-DA blocks. Table 3
presents an overview of all the tests we conducted. Each

row corresponds to a test for association, and the columns

contain the type of blocks considered in the comparison, the

attributes compared, FET P value, and OR with a 95% con-

fidence interval (CI). Contingency tables for each compari-

son can be found in the supplement (supplementary results

SR5, Supplementary Material online). We identified 171

significantly accelerated DA blocks (see table S2 in the
supplement). Thus, acceleration is roughly ten times more

common in DA blocks compared with non-DA blocks

(171/26,283 � 0.65% compared with 0.078% in non-

DA blocks). This enrichment of accelerated blocks near du-

plicated genes is highly significant (FET: P, 1� 10�15, OR5

8.41 [95% CI, 7.18–9.82]; see row one in table 3). The 48

genes with accelerated DA blocks nearby are an interesting

set of candidates for functional divergence in Hominini
(table 4). Many of these genes are paralogous members

of the same families and/or belong to related pathways

(see below).

Performing GO enrichment tests to compare accelerated

with nonaccelerated DA blocks, we found that accelerated

DA blocks are enriched in GO terms related to transferase

activity (glycosyl and hexolyl groups), metabolism (steroid

and estrogen), G-protein–coupled receptor (GPCR) activity

(including olfactory receptors), and visual perception

(table 5). Notably, enriched terms also include female gamete

generation, whereas depleted terms include spermatogenesis

(table 6).

Noncoding Regions Near Daughter Genes Are
More Accelerated than Their Parents. Having estab-

lished a strong association between duplicated loci and ac-

celerated substitution rates, we next attempted to delineate

patterns of accelerated evolution under different duplica-
tion scenarios (fig. 2). A subset of DA blocks can be polarized

to be associated uniquely with either a daughter peptide

(new genomic location) or a parent peptide (preduplication

genomic location; see Materials and Methods). Both types

of polarized DA blocks show roughly the same length dis-

tribution (see supplementary fig. S1, Supplementary Mate-

rial online). Although the set of polarized DA blocks is not

enriched for acceleration compared with all other MAF
blocks (FET: P 5 0.29, OR 5 1.34 [95% CI, 0.67–2.39, ];

see row two in table 3), we see a clear pattern among po-

larized DA blocks themselves. DA blocks near daughters are

significantly enriched for acceleration compared with DA

blocks near parents (FET: P 5 0.001, OR 5 7.82 [95% CI,

1.98–36.43]; see row three in table 3). Thus, for the subset

of duplicated peptides where we can infer a parent–daughter

relationship, we find much faster noncoding evolution in
the regulatory regions of the newly formed daughter gene.

This asymmetry parallels the pattern seen in the protein

sequences of parent and daughter duplicates (Han et al.

2009).

To assess if acceleration of DA blocks happened before

or after the duplication of peptides on the hominin line-

age, we compared LRT statistics from polarized blocks

near parent and daughter peptides. We find minimal

Table 3

Fisher Exact Tests

No. Blocks Comparison P Value OR 95% CI

1 All DA? Accelerated ,1 � 10�15* 8.41 7.18–9.82

1a All Chained DA? Accelerated ,1 � 10�15* 4.05 3.1–5.21

2 All Polarized? Accelerated 0.29 1.34 0.67–2.39

3 DA and polarized Daughter? Accelerated 0.001* 7.82 1.98–36.43

4 DA Nonchained? Accelerated ,1 � 10�15* 4.8 3.48–6.67

5 DA and chained

and polarized

Daughter? Accelerated 0.002* 23.69 2.71–282.99

6 DA Nearby Accelerated Protein?

Accelerated

0.45 0.46 0.055–1.71

7 All Accelerated? TFBS ,1 � 10�15* 8.04 6.39–10

8 All DA? TFBS 0.03* 1.26 1.02–1.55

9 DA Accelerated? TFBS 3.12 � 10�05* 11 3.87–25.46

10 Accelerated DA? TFBS turnover 0.27 1.68 0.59–3.90

a
Significant tests.
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correlation between LRTs in parents and daughters on

average (supplementary fig. S4, Supplementary Material

online), suggesting that accelerated substitutions hap-
pened independently in one or both copies after duplica-

tion (supplementary results SR4, Supplementary Material

online).

The Fastest Evolving Noncoding Blocks Did Not
Duplicate with the Associated Gene. Based on our

finding that daughter peptides are enriched with acceler-

ated noncoding blocks, we further investigated the rela-

tionship between DA blocks and the genes with which

they are associated. Using human–macaque alignments,

we annotated each DA block as either chained (same align-

ment chain as the gene’s exons) or nonchained (all other
DA blocks; see Materials and Methods and fig. 1). Compar-

ing rates of acceleration in both sets, we found that non-

chained DA blocks are significantly enriched for

acceleration compared with chained ones (FET: P , 1 �
10�15, OR 5 4.8 [95% CI, 3.48–6.67]; see row four in

table 3). This suggests that noncoding sequences that

are close to—but not included in—duplication events

evolve more rapidly than noncoding sequences that are ei-
ther 1) far away from duplication events or 2) duplicated

alongside a gene. In light of these results, we asked

whether our previous results that acceleration is enriched

in DA blocks still holds for chained DA blocks. We find that

this is indeed the case (FET: P , 1 � 10�15, OR 5 4.05

[95% CI, 3.1–5.1]; see row two in table 3).
We note that accelerated substitutions in nonchained DA

blocks have a distinct interpretation from the same phenom-

enon in chained DA blocks. Although the latter induce

changes in duplicated sequences, the former affect ‘‘ances-

tral’’ sequences close to duplicated loci. That is, noncoding

sequence that did not previously regulate any gene has been

co-opted to (presumably) regulate a newly duplicated locus

placed nearby. This type of change has been associated with
the gain of transcriptional regulation of retrotransposed

duplicated genes, which are not copied with any flanking

noncoding sequences (Bai et al. 2008; Fablet et al. 2009;

Kaessmann et al. 2009).

The division of DA blocks into chained and nonchained

sets also allows us to explore whether the association we

observed between acceleration and daughter peptides

(see above) is driven by nonchained blocks. Focusing only
on chained DA blocks, we still find significantly faster evo-

lution in daughter compared with parent loci (FET: P 5

0.002, OR 5 23.69 [95% CI, 2.71–282.99]; see row five

in table 3). Assuming co-occurrence on an alignment chain

indicates duplication of the noncoding sequence with the

gene, this finding suggests that the derived (i.e., daughter)

noncoding sequence is more likely to diverge from the

Table 4

Genes Near Accelerated DA Blocks

Ensembl Gene ID Symbol Chromosome Ensembl Gene ID Symbol chr

ENSG00000162365 CYP4A22 1 ENSG00000187134 AKR1C1 10

ENSG00000186160 CYP4Z1 1 ENSG00000120563 LYZL1 10

ENSG00000072694 FCGR2B 1 ENSG00000086205 FOLH1 11

ENSG00000181773 GPR3 1 ENSG00000205046 OR4A47,

OR4A4P

11

ENSG00000162849 KIF26B 1 ENSG00000205496 OR51A2 11

ENSG00000204513 PRAMEF11 1 ENSG00000205497 OR51A4 11

ENSG00000204502 PRAMEF5 1 ENSG00000226288 OR52I2 11

ENSG00000232423 PRAMEF6 1 ENSG00000204450 TRIM64 11

ENSG00000187010 RHD 1 ENSG00000134551 PRH2 12

ENSG00000136682 CBWD2 2 ENSG00000132341 RAN 12

ENSG00000163040 CCDC74A 2 ENSG00000173262 SLC2A14 12

ENSG00000152076 CCDC74B 2 ENSG00000184227 ACOT1 14

ENSG00000173272 FAM128A 2 ENSG00000206149 HERC2P2,

HERC2P3

15

ENSG00000185304 RGPD2 2 ENSG00000197711 HP,HPR 16

ENSG00000232382 OR5K1 3 ENSG00000140992 PDPK1 16

ENSG00000184203 PPP1R2 3 ENSG00000204414 CSHL1 17

ENSG00000213759 UGT2B15,

UGT2B11

4 ENSG00000170832 USP32 17

ENSG00000135226 UGT2B28 4 ENSG00000189052 CGB5 19

ENSG00000122194 PLG 6 ENSG00000196337 CGB7 19

ENSG00000105835 NAMPT 7 ENSG00000174667 OR7D4 19

ENSG00000177076 ACER2 9 ENSG00000161643 SIGLECP16 19

ENSG00000230453 ANKRD18B 9 ENSG00000165583 SSX5 X

ENSG00000187559 FOXD4L3 9 ENSG00000204648 SSX9 X

ENSG00000137080 IFNA21 9 ENSG00000198205 ZXDA X
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ancestral version than the copy that remains at the parent

locus.

Correlating Elevated Substitution Rates of Coding
and Noncoding Sequence in Duplicated Loci. Han

et al. (2009) reported 27 duplicated peptides that exhibit

accelerated substitution rates in their coding sequence

along the hominin lineage. From our filtered set of noncod-
ing blocks, 661 blocks are within 5 kb of one of those ac-

celerated peptides (12 peptides; supplementary table S1,

Supplementary Material online). We asked whether these

blocks were evolving differently than other DA blocks. Inter-

estingly, noncoding blocks nearby duplicated peptides that

have evidence of acceleration in their coding sequences

are less likely to be accelerated than other DA blocks

(FET: P 5 0.45, OR 5 0.46 [95% CI, 0.055–1.71]; see
row six in table 3). Although the power of this test is

low, it suggests a possible negative correlation between pro-

tein evolution and regulatory evolution in duplicated loci

and hints that different categories of duplicated genes

may diverge through structural protein changes versus

regulatory mechanisms (see Discussion).

Fast-Evolving Blocks Are Enriched in Flanking
Regions and Exonic 5# UTRs. We developed a bioinfor-

matics pipeline to annotate each block with respect to hu-

man gene structure (e.g., UTRs, introns, flanking sequences;

see Materials and Methods). Using these transcript-based

annotations, we investigated whether or not acceleration

occurs uniformly across different noncoding genic location

categories. Figure 3 shows the log odds score for each an-
notation category compared with its complement together

with a 95% CI. A positive log odds score indicates an enrich-

ment of accelerated blocks in the respective category,

whereas a negative score indicates depletion. We find en-

richment for acceleration in 5#- and 3#-flanking regions,

as well as in exonic 5# UTRs. In contrast, introns are relatively

depleted of accelerated blocks. To further investigate these

results, we performed an equivalent analysis using log-linear
models. The main advantages of this approach are that 1)

we account for all pair-wise correlations between variables

Table 5

Enriched GO Terms in Accelerated DA Blocks Compared with All DA

Blocks

GO Term P Value Term Name

Biological process

GO:0006805 4.89 � 10�37 Xenobiotic metabolism

GO:0008202 2.67 � 10�26 Steroid metabolism

GO:0008152 1.16 � 10�14 Metabolism

GO:0008210 1.39 � 10�11 Estrogen metabolism

GO:0007292 3.27 � 10�11 Female gamete generation

GO:0006915 2.09 � 10�07 Apoptosis

GO:0050896 1.54 � 10�06 Response to stimulus

GO:0007608 1.81 � 10�05 Sensory perception of smell

GO:0050909 2.09 � 10�05 Sensory perception of taste

GO:0006118 6.03 � 10�05 Electron transport

GO:0007582 1.46 � 10�04 Physiological process

GO:0007267 1.78 � 10�04 Cell–cell signaling

GO:0007165 2.49 � 10�04 Signal transduction

GO:0007186 2.08 � 10�03 GPCR protein signaling

pathway

GO:0007601 3.66 � 10�02 Visual perception

Cellular compartment

GO:0005792 2.11 � 10�36 Microsome

GO:0005783 5.62 � 10�19 Endoplasmic reticulum

GO:0016020 3.02 � 10�18 Membrane

GO:0016021 8.33 � 10�12 Integral to membrane

GO:0005625 1.06 � 10�09 Soluble fraction

GO:0005576 1.12 � 10�05 Extracellular region

Molecular function

GO:0015020 4.30 � 10�41 Glucuronosyltransferase

activity

GO:0016758 1.47 � 10�35 Transferase activity,

transferring hexosyl

groups

GO:0016757 1.62 � 10�27 Transferase activity,

transferring glycosyl

groups

GO:0016740 1.23 � 10�16 Transferase activity

GO:0004497 2.61 � 10�09 Monooxygenase activity

GO:0005179 8.24 � 10�09 Hormone activity

GO:0020037 2.14 � 10�07 Heme binding

GO:0005506 5.90 � 10�06 Ironion binding

GO:0008527 2.09 � 10�05 Taste receptor activity

GO:0004984 5.76 � 10�05 Olfactory receptor activity

GO:0001584 2.42 � 10�04 Rhodopsin-like receptor

activity

GO:0016491 9.27 � 10�04 Oxidoreductase activity

GO:0004930 1.20 � 10�03 GPCR activity

GO:0004871 3.28 � 10�03 Signal transducer activity

GO:0050381 1.59 � 10�02 Unspecific monooxygenase

activity

GO:0004872 3.01 � 10�02 Receptor activity

Table 6

Depleted GO Terms in Accelerated DA Blocks Compared with All DA

Blocks

GO Term P value Term Name

Biological process

GO:0006512 3.29 � 10�03 Ubiquitin cycle

GO:0006810 6.58 � 10�03 Transport

GO:0006464 3.28 � 10�02 Protein modification

GO:0006629 4.20 � 10�02 Lipid metabolism

GO:0006350 4.32 � 10�02 Transcription

GO:0007283 4.58 � 10�02 Spermatogenesis

Cellular compartment

GO:0005622 1.77 � 10�03 Intracellular

GO:0005737 2.07 � 10�03 Cytoplasm

GO:0005634 2.72 � 10�03 Nucleus

GO:0005739 3.52 � 10�02 Mitochondrion

Molecular function

GO:0005515 1.41 � 10�05 Protein binding

GO:0016787 2.31 � 10�03 Hydrolas activity

GO:0004197 4.76 � 10�02 Cysteine-type

endopeptidase activity
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simultaneously and 2) we correct for possibly confounding
factors, such as GC content, alignment length, and align-

ment depth. This analysis yielded qualitatively similar results

to the log odds scores in figure 3 (supplementary results

SR1 and supplementary figure S3, Supplementary Material

online).

Next, we investigated whether these distributions of ac-

celerated blocks are similar in DA blocks. Although the en-

richment patterns are not as clear-cut (supplementary
fig. S2, Supplementary Material online), we do find acceler-

ation to be enriched in 3#-flanking regions and weakly in

exonic 5# UTRs but not in 5#-flanking regions.

Patterns of Acceleration Are Not Driven by
Changes on the Chimpanzee Lineage. To account

for potential false positives introduced by sequencing, as-

sembly, or alignment errors in the 6X chimp genome, we

repeated all of the above tests involving acceleration with-

out chimp sequence in the alignments. This filtering did not
qualitatively change our results (supplementary results SR2,

Supplementary Material online).

Turnover of TFBS

To provide a complementary and functionally oriented anal-

ysis of divergence, we assessed the predicted impact of sub-

stitutions on TF-binding affinity in our data set of ;4.7

million noncoding blocks within 5 kb of a human gene. Spe-

cifically, we scored human and macaque sequences using

motifs for 11 families of TFs from the JASPAR database

(Sandelin and Wasserman 2004; Wasserman and Sandelin
2004) to identify predicted binding sites in each species.

Using a novel approach (see Materials and Methods), we

assessed the statistical significance of total binding site gain

and loss (‘‘TFBS turnover’’) in each block. At an FDR of 10%,

we identified 13,067 blocks (;0.3%) with significant TFBS

turnover between human and macaque. We refer to these

as ‘‘turnover blocks.’’ Using FETs and ORs, we examined

the association between TFBS turnover and 1) accelerated
substitution rates (significant LRTs) and 2) duplication status.

Accelerated Blocks Exhibit High TFBS Turnover. First,

we asked whether TFBS turnover occurs at a higher rate in
blocks that show accelerated substitution rates in the Hom-

inini. We find that accelerated blocks have much higher

rates of TFBS turnover compared with nonaccelerated

blocks (FET: P , 1 � 10�15, OR 5 8.04 [95% CI, 6.39–

10]; see row seven in table 3). To some extent such a corre-

lation is expected because accelerated blocks have, on

average, higher substitution rates than nonaccelerated

blocks (supplementary fig. S5, Supplementary Material on-
line). Higher substitution rates, in turn, mean a higher prob-

ability of destroying or creating a TFBS. On the other hand,

higher substitution rates are not sufficient to explain TFBS

turnover. This is illustrated by the fact that the vast majority

of turnover blocks (12,984) are not accelerated. Neverthe-

less, associations between TFBS turnover and accelerated

blocks are to some degree inherent and FET P values have

to be taken with a large grain of salt. Keeping the above in
mind, we find that DA blocks are enriched for TFBS turnover

compared with non-DA blocks (P 5 0.03, OR 5 1.26 [95%

CI, 1.02–1.55]; see row eight in table 3) and that the asso-

ciation of acceleration and turnover remains significant if we

focus on DA blocks exclusively (FET: P5 3.12 � 10�5, OR 5

11.00 [95% CI, 3.87–25.46]; see row nine in table 3). In

fact, among accelerated blocks, DA blocks have higher odds

of TFBS turnover than non-DA blocks, although this trend is
not significant (FET: P 5 0.27, OR 5 1.68 [95% CI, 0.59–

3.90]; see row ten in table 3). We note that the reported

associations are largely descriptive. More sophisticated anal-

yses are needed to unambiguously disentangle the correla-

tion between acceleration and TFBS turnover arising purely

because of accelerated substitution rates from a biological

signal.

TFBS turnover DA blocks are enriched in many of the
same GO terms as accelerated DA blocks, but lack the GPCR

and olfactory receptor–related terms (table 7). Also, turn-

over blocks are enriched in RNA-related GO terms (binding

and transport), as well as in terms related to regulation of

development (including embryonic and mammary gland).

The only GO term we find depleted in TFBS turnover DA

blocks is signal transduction.

Overall, our results concerning TFBS turnover are in line
with our findings on accelerated substitutions. Our data

FIG. 2.—Categories of noncoding blocks. First, noncoding

blocks are divided into whether they are DA (i.e., within 5 kb of

a duplicated gene, DA blocks) or not. DA blocks are then further split

into chained and nonchained sets. Additionally, a subset of each of

these sets is said to be polarized, that is, the peptides close to the blocks

can be classified as either daughter or parent with respect to the

duplication event on the hominin lineage. The number of blocks in each

category is given in parentheses. Overall, there is an abundance of

chained compared with nonchained blocks. Polarized parent blocks

tend to be chained, whereas polarized daughter blocks tend to be

nonchained. See Materials and Methods section for details regarding

definitions.
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support the hypothesis that higher rates of substitution

result in more binding site turnover, potentially contributing

to changes in the transcriptional regulation of nearby genes.

Fast-Evolving Noncoding Sequences Are Associated
with Pregnancy-Related Genes

Because GO enrichment analysis has a known set of limita-

tions (Khatri and Drăghici 2005; Rhee et al. 2008; Taher and

Ovcharenko 2009), we manually analyzed the genes near

accelerated DA blocks (table 4) with respect to their func-

tions as annotated in public databases and the literature.

We find three PRAME genes and five olfactory receptor
genes. Both families experienced positive selection on the

protein level in the human lineage (Birtle et al. 2005; Han

et al. 2009). Additionally, table 4 contains three genes from

the UDP glycosyltransferase superfamily, which is known to

exhibit copy number variations in humans (Guillemette et al.

2010). Our results suggest that functional changes in these

families may have occurred through divergence in both pro-

tein structure and gene regulation. We also find genes re-
lated to immunity and to metabolism, both of which are

functional categories that have been identified in the con-

text of positive selection and duplicated genes (Haygood

et al. 2007; Studer et al. 2008).

Additionally, we find two chorionic gonadatropins (CGs:

CGB5 and CGB7) and a chorionic somatomammotropin

(CSHL1). Both CGs and CSHL1 are expressed in the placenta

and play a crucial role in pregnancy. Motivated by this ob-

servation, we asked whether other genes in table 4 might

also be associated with pregnancy by looking for placental

expression and/or pregnancy-related functional annotation.
CGs regulate endometrial functions by influencing pro-

gesterone (Szmidt et al. 2008), a hormone that is catalyzed

to its inactive form by another gene in table 4, AKR1C1,

which encodes an aldo–keto reductase. AKR1C1 utilizes

NAD and/or NAD(P)H as cofactors. NAMPT (also in table

4) is an NAD(P) biosynthetic enzyme (Garten et al. 2008);

NAD(P)H is active in the placenta, and there is evidence that

it is a modulator of antioxidant stress response in early preg-
nancy (Raijmakers et al. 2006). Another gene we find, CY-
P4A22, a cytochrome P450 superfamily member, is part of

the PPAR-gamma signaling pathway (Kanehisa et al. 2008).

PPAR-gamma, in turn, is essential for placental development

(Fournier et al. 2008).UGT2B15 andUGT2B28 (both in table

4) are part of the androgen and estrogen metabolism path-

way, and estrogen is prominently involved in regulation of

the menstrual cycle and pregnancy. Also, copy number var-
iations in UGT2B28 may influence fetal development and

gestation length (Guillemette et al. 2010).

In addition, there is an abundance of potentially preg-

nancy-related terms among GO terms enriched for acceler-

ated DA blocks (e.g., female gamete generation, estrogen

metabolism, hormone activity; table 5) and TFBS turnover

FIG. 3.—Enrichment and depletion for acceleration in different genic locations. The panel shows log ORs for acceleration for each genic location

category (compared with its complement). A positive log OR indicates enrichment for accelerated blocks in that category, whereas a negative log OR

indicates depletion of acceleration. Bars correspond to 95% CIs. The number of blocks in each category is given above each pair of bars. Analyses

excluding the chimp genome sequence are shown in orange. Nonambiguous 5#- and 3#-flanking regions and 5# exonic UTRs are enriched for

accelerated blocks, whereas intronic sequences are depleted for acceleration.

Noncoding Sequences Near Duplicated Genes GBE

Genome Biol. Evol. 2:518–533. doi:10.1093/gbe/evq037 Advance Access publication July 2, 2010 529



DA blocks (embryonic development, mammary develop-

ment, and cell fate determination; see table 7). Together,

these findings constitute compelling if circumstantial evi-

dence that noncoding sequence evolution near duplicated

loci played a role in the lineage-specific evolution of preg-

nancy and reproduction.

Discussion

We conducted a high-resolution genome-wide scan for ac-

celerated substitution rates in noncoding sequences within

5 kb of all human genes. Genes belonging to families that

expanded through gene duplication in the hominin lineage
show enrichment for accelerated evolution in associated

noncoding sequences. Noncoding elements that most likely

duplicated along with the coding sequence of the associ-

ated gene (i.e., chained blocks of daughter genes) are par-

ticularly enriched for acceleration. Flanking sequence and

exonic 5# UTRs are enriched for elevated substitution rates,

especially compared with introns, which are relatively de-

pleted of accelerated elements. Rapid evolution of 5# UTR
elements could affect transcription and is consistent with

a recent study that correlates changes in the TSSs of recently

duplicated genes with expression changes (Park and Makova

2009). Because 5# UTR and flanking regions are enriched for

regulatory elements, their particularly rapid divergence

suggests the possible action of positive selection to modify

the expression patterns of duplicate genes. However, we

emphasize that our analyses cannot distinguish positive
selection from neutral mutational processes that might

affect substitution rates in a lineage-specific manner.

To further pursue the link between noncoding sequence

evolution and gene expression, we investigated noncoding

elements associated with human genes for the effects of

substitutions on predicted TFBS. We found that duplicated

loci have more noncoding elements in which sequence dif-

ferences between human and macaque are predicted to af-
fect TF binding. Together, our findings are consistent with

the hypothesis that modification of the regulation of dupli-

cated genes is an important mechanism for the evolution of

hominin-specific traits.

We took several precautions to control for false positives

and ensure the quality of our data. Because duplicated non-

coding regions are particularly difficult to align and incorrect

alignment can lead to false inference about evolutionary
events, conservative quality filtering of sequence alignments

was an essential component of our analysis. It is nonetheless

possible that alignment errors contributed to our estimates

of substitution rates in some regions. However, we do not

expect that such bias would lead to an inference of accel-

erated evolution in the Hominini in particular. For instance,

we performed our analyses twice, once with the chimp se-

quence and once without it. Although it could be hypoth-
esized that the lower coverage shotgun sequenced chimp

genome would leads to false signals of acceleration, we find

qualitative agreement between the two analyses (supple-

mentary results SR2, Supplementary Material online). Also,

although we cannot rule out that the enrichment of accel-

erated blocks in exonic 5# UTRs is due to hypervariable-

methylated CpG dinucleotides decaying to CA or TG, we

find that accelerated exonic 5# UTRs on average have
roughly the same GC content as nonaccelerated exonic

5# UTRS (58.2% accelerated vs. 58.0% nonaccelerated).

We focus on the Hominini because previous studies

found accelerated gene duplication, sometimes accompa-

nied by amino acid divergence, in the ape lineage

Table 7

GO terms Enriched in TFBS Turnover DA Blocks Compared with All DA

Blocks

GO Term P Value Term Name

Biological process

GO:0006805 2.30 � 10�04 Xenobiotic metabolism

GO:0008202 4.20 � 10�04 Steroid metabolism

GO:0006406 2.80 � 10�02 mRNA export from nucleus

GO:0050658 2.80 � 10�02 RNA transport

GO:0001569 4.62 � 10�02 Patterning of blood vessels

GO:0001709 4.62 � 10�02 Cell fate determination

GO:0001763 4.62 � 10�02 Morphogenesis of a branching

structure

GO:0007219 4.62 � 10�02 Notch signaling pathway

GO:0009790 4.62 � 10�02 Embryonic development

GO:0030097 4.62 � 10�02 Hemopoiesis

GO:0030879 4.62 � 10�02 Mammary gland development

GO:0045596 4.62 � 10�02 Negative regulation of cell

differentiation

GO:0045602 4.62 � 10�02 Negative regulation of

endothelial cell differentiation

GO:0050793 4.62 � 10�02 Regulation of development

Cellular compartment

GO:0005792 6.01 � 10�04 Microsome

GO:0016020 7.52 � 10�03 Membrane

GO:0005842 7.97 � 10�03 Cytosolic large ribosomal

subunit (sensu Eukaryota)

GO:0042272 2.80 � 10�02 Nuclear RNA export factor

complex

GO:0016021 3.28 � 10�02 Integral to membrane

GO:0005622 3.38 � 10�02 Intracellular

Molecular function

GO:0015020 4.74 � 10�05 Glucuronosyltransferase

activity

GO:0016758 4.09 � 10�04 Transferase activity,

transferring hexosyl groups

GO:0005488 2.98 � 10�03 Binding

GO:0016740 7.96 � 10�03 Transferase activity

GO:0016757 8.51 � 10�03 Transferase activity,

transferring glycosyl groups

GO:0004759 1.12 � 10�02 Serine esterase activity

GO:0016290 1.12 � 10�02 Palmitoyl-CoA hydrolase

activity

GO:0004497 1.49 � 10�02 Monooxygenase activity

GO:0019843 2.59 � 10�02 rRNA binding

GO:0005506 3.97 � 10�02 Iron ion binding
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(Hahn et al. 2007; Marques-Bonet et al. 2009). From the
point of view of understanding human evolution, many bi-

ologically important human traits are shared with chimpan-

zee and other great apes. Hence, the fast-evolving

noncoding sequences that we identified are candidates

for understanding the genetic basis of human-specific biol-

ogy. Furthermore, by studying evolution over tens of millions

of years, we have more power to detect changes in substi-

tution rates than we would if we focused on events that
took place in the ;6 million years since the human–chimp

ancestor. Our approach could of course be used to study

noncoding sequence evolution in loci that duplicated on

the human lineage or other lineages of interest. Further

studies will determine if a propensity toward accelerated

evolution in noncoding sequences is a universal character-

istic of duplicated loci.

Several previous publications have focused on predicted
functional noncoding sequences with accelerated substitu-

tion rates in the human branch (Pollard, Salama, King et al.

2006; Pollard, Salama, Lambert et al. 2006; Prabhakar et al.

2006; Bird et al. 2007; Haygood et al. 2007). In this study,

we extended that approach in two ways. First, we expanded

the set of candidate regions by considering all noncoding

sequence in the vicinity of all known genes, not just deeply

conserved elements. Noncoding sequences nearby genes
are known to harbor regulatory elements, and sequence

changes in these regions have the potential to modify the

expression of the associated gene. Second, by including in-

formation about gene duplication, our method aims to iden-

tify regions that are able to take on new functions by two

complementary evolutionary mechanisms: gene expression

divergence and protein sequence divergence. On one hand,

we find some agreement between these two levels of evo-
lution in the sense that both appear to occur more often in

the daughter copies of recently duplicated genomic loci. In-

terestingly, however, our data show a nonsignificant nega-

tive correlation between accelerated rates of protein and

regulatory sequence evolution. This observation suggests

the hypothesis that relatively disjoint subsets of proteins

have evolved at the regulatory versus protein-coding level

in the hominin lineage. But, exceptions to this rule are
known (e.g., CGB, see Introduction).

We performed GO term enrichment analysis of genes

with fast-evolving regulatory regions. We note that enrich-

ment analysis of noncoding sequences using GO is prone to

ascertainment bias (Taher and Ovcharenko 2009). In this

study, we account for ascertainment bias by performing en-

richment tests on the block level, mapping GO terms from

genes to the associated noncoding sequences and perform-
ing tests on the set of noncoding blocks. Using this

approach, we highlight functional categories, such as repro-

duction, host defense, and metabolism. Many of these

terms have been mentioned before in the context of positive

selection at the protein level, but our analysis also highlights

several processes and pathways that have not been empha-
sized in studies of single-copy genes.

For instance, some of the genes we identified with

hominin-specific acceleration in their regulatory regions

are connected to placentation. Although there are multiple

differences between human and macaque pregnancies

(de Rijk and van Esch 2008), it has been argued that some

of these differences are not very large, especially when fac-

tors such as body size are taken into account (Martin 2007).
However, one particularly notable difference between the

pregnancies of humans and other primates involves the for-

mation of the trophoblastic shell by cytotrophoblasts. In

macaques and baboons, the shell is continuous and sharply

delineated from the endometrium. In humans, on the other

hand, extravillous trophoblast cells invade the uterine

stroma (Carter 2007). CG is necessary for the invasion of

cytotrophoblasts into the endometrium during embryo im-
plantation (Henke and Gromoll 2008). Interestingly, CG

genes are highlighted by our genomic approach, making

them and other genes in our list excellent targets for func-

tional studies of human–macaque differences in pregnancy.

Unfortunately, it is challenging to contrast commonalities of

human and chimp pregnancies to those of macaques, as

placentation in chimpanzees remains poorly studied (Carter

2007).
This is the first genome-wide study to address the ques-

tion of whether genetic divergence in noncoding sequences

might contribute to functional divergence of duplicated

genes in the hominin lineage. Consistent with the hypoth-

eses that 1) divergence between closely related species oc-

curs through changes in gene regulation and 2) duplicated

regions are enriched for genetic and functional divergence,

we find a strong propensity for rapid sequence evolution in
noncoding elements near duplicated genes. We quantify

this rapid evolution in terms of substitution rates and

predicted TFBS turnover. Using both metrics, we find an ex-

cess of fast-evolving elements associated with duplicated

genes. Together with evidence of accelerated evolution in

the coding sequence of young duplicates (Han et al.

2009), our results support the view that two sources of

genetic variation—structural rearrangements and point
mutations—synergistically contribute to the evolution of

new traits.

Supplementary Material

Supplementary results SR1–SR5, figures S1–S5, and tables

S1–S3 are available at Genome Biology and Evolution online
(http://www.oxfordjournals.org/our_journals/gbe/).
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