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ABSTRACT

Computational prediction of microRNA targets
remains a challenging problem. The existing rule-
based, data-driven and expression profiling
approaches to target prediction are mostly ap-
proached from the gene-level. The increasing avail-
ability of RNA-seq data provides a new perspective
for microRNA target prediction on the isoform-level.
We hypothesize that the splicing isoform is the
ultimate effector in microRNA targeting and that
the proposed isoform-level approach is capable of
predicting non-dominant isoform targets as well as
their targeting regions that are otherwise invisible to
many existing approaches. To test the hypothesis,
we used an iterative expectation maximization
(EM) algorithm to quantify transcriptomes at the
isoform-level. The performance of the EM algorithm
in transcriptome quantification was examined in
simulation studies using FluxSimulator. We used
joint evidence from isoform-level down-regulation
and seed enrichment to predict microRNA-155
targets. We validated our computational approach
using results from 149 in-house performed in vitro
30-UTR assays. We also augmented the splicing
database using exon–exon junction evidence, and
applied the EM algorithm to predict and quantify
1572 cell line specific novel isoforms. Combined
with seed enrichment analysis, we predicted 51
novel microRNA-155 isoform targets. Our work is
among the first computational studies advocating
the isoform-level microRNA target prediction.

INTRODUCTION

The regulation of gene expression by microRNAs is a fun-
damental mechanism for controlling many biological
processes. Thus far, more than 1000 microRNA’s have
been discovered in human cells using either computa-
tional or experimental approaches [miRBase (1), release
16 September 2010]. The gene encoding the microRNA,
microRNA-155, was classified as an oncogene many years
before it was identified as a microRNA and is now among
the most highly implicated microRNAs in cancer. Despite
its link to hematologic and other cancers, there is currently
little information regarding direct isoform targets or
pathways through which microRNA-155 signals to
promote the tumor phenotype.
Over the years, an array of computational approaches

have been developed to predict microRNA target sites
and these methods have been useful for guiding investi-
gations towards the function of microRNAs (2). These
approaches are roughly divided into rule-based and
data-driven approaches (3). Earlier methods are largely
rule-based, predicting microRNA targets as a function
of simple discriminative rules derived from features of
experimentally validated targets. For example, miRanda
(4), DIANA-microT (5), TargetScan (6) and PicTar (7) are
mainly based on scanning for conserved 7-/8-mer seeds
combined with free energy calculations of the RNA–
RNA duplex. Latter methods were developed which are
more data-driven, such as miTarget (8) and NBmiRTar
(9), where machine learning-based approaches were
applied to train a classifier that is able to discriminate
true microRNA targets from false targets using sequence
features.
An alternative data-driven approach is to use

30-expression microarrays to quantify transcriptomes. In
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this approach, microRNA targets are predicted by calling
significantly down-regulated genes between microRNA
over-expressing cell lines and the respective isogenic
wild-type cell lines (10–12). Gene expression-based target
prediction approaches [e.g. GenMiR++(13)], were found
to outperform many rule-based approaches, such as
TargetScan (3). More importantly, the gene expression-
based approach allows for the discovery of context
specific (cell type specific) microRNA target repertoires
and this context specific targetome can be related back
to the biological processes implicated by the global ana-
lysis of the respective microarray experiments. Despite this
advantage over purely computational approaches, the in-
trinsic limitations of the 30-expression microarrays (such
as non-specific hybridization, signal saturation and exces-
sive noise) significantly compromise the performance of
microarray-based microRNA target prediction.
The advent of next-generation sequencing (NGS)

technologies provides new opportunities to profile tran-
scriptomes and microRNA targetomes at base-wise reso-
lution. In our recent work (14), we sequenced the
transcriptome of microRNA-155 expressing cells using
an Illumina Genome Analyzer II. Our RNA-seq data
contains more than 100-million single-ended 50-mer short
reads generated from both wild-type Mutu I cells (control)
and Mutu I cells expressing microRNA-155 (case). We
then developed a computational pipeline to analyze
microRNA-155 transcriptome and targetome regulation
by performing gene-level down-regulation analysis
combined with 7-/8-mer seed evidence in 30-UTR regions.
Our analysis yielded a much larger targetome than was
previously described using microarray experiments;
many predicted microRNA-155 targets were verified by
in vitro 30-UTR reporter assays. Although this analysis
was among the first to use RNA-seq data for microRNA
target prediction, this approach did not sufficiently exploit
the full value that RNA-seq data has to offer—that is, using
gene-structure information derived from the RNA-seq
data to assess isoform specific microRNA regulation.
Based on the isoform-level analysis described here, we
propose that microRNA targets are more appropriately
predicted and characterized at the isoform-level.
On a more general level, we believe that the term,

‘isoform’ may be a more appropriate concept than ‘gene’
in transcriptome studies since the isoform is the ultimate
effecter of microRNA responses (as well as many other
biological processes). Further, recent studies have shown
that microRNA targeting is not limited to the 30-UTR
(15), further emphasizing the need for microRNA target
prediction based on the isoform-level.
Genome-wide analysis of transcriptomes and target-

omes at the isoform-level is needed, not only for
microRNA target prediction but also for many other gen-
omics research areas, such as biomarker discovery, cancer
classification, biological pathway analysis and network re-
construction. The problem itself can be quite challenging
since the base-wise gene expression signal from RNA-seq
data is often accumulated from a mixture of coexisting
isoforms in the living cell. The development of computa-
tional algorithms to deconvolve the gene expression signal
emitted from each splicing isoform is not a trivial task.

A number of computational approaches have recently
been developed to characterize and quantify transcrip-
tomes at the isoform-level [e.g. (5,16–21)]. These
approaches quantify isoform levels of transcripts either
annotated in the alternative splicing databases such as
those from the UCSC (University of California, Santa
Cruz) and alternative splicing and transcript discovery
(ASTD) resources or predicted by short-read assembly.
However, to the best of our knowledge, no computational
approach has been developed to predict microRNA
targets at the isoform-level. With this type of approach,
we will be able to answer the following interconnected and
relevant research questions that could not be fully
answered previously: (i) Which set of genes are
microRNA-155 targets? (ii) For each target gene, which
annotated or novel (not annotated) isoform is the true
microRNA-155 target? (iii) What is the targeting region
and the mechanism? E.g. does the microRNA bind to the
30-UTR, to exons and/or to the 50-UTR?

Here we present an expectation maximization (EM)
type of algorithm that can be generally used for charact-
erizing and quantifying transcriptomes at the isoform-
level. Applying this algorithm, we also present a compre-
hensive isoform-level analysis of the microRNA-155
targetome and an isoform-level analysis of microRNA-
155 mediated transcriptome changes. Combining this
isoform specific expression analysis with 7-/8-mer seed en-
richment analysis, we attempt to answer the above-
mentioned questions. Using both a simulation system
that in silico emulates the experimental pipeline for
RNA-Seq technology (the flux simulator, http://flux
.sammeth.net/index.html), and a real-world in vitro valid-
ation system of 149 30-UTR reporters that we have
assayed (14), we are able to show that the isoform-level
approach (this work) significantly outperforms the
recently published gene-level approach (14). Extending
the analysis to the whole transcriptome, our target pre-
diction results identify a larger targetome at a base-wise
resolution and indicate novel microRNA-155 targeting
mechanisms. Through an exon–exon junction analysis,
we discovered many cell type specific isoform transcripts
that were not previously annotated in the Ensembl
database. Many of these are likely to be novel
microRNA-155 targets.

MATERIALS AND METHODS

In Figure 1a, we summarize the workflow of our transcrip-
tome and targetome quantification pipeline. It begins with
short-read alignment, followed by transcript prediction
and quantification. An isoform is predicted as a
microRNA target by joint evidence from differential ex-
pression/splicing analysis and seed enrichment analysis.

Short-read alignment

The Burkitt’s lymphoma cell line, Mutu I, was retrovirally
transduced in duplicate with either a control or a
microRNA-155 expressing retrovirus. microRNA-155
real time RT–PCR analysis showed at least 100 000-fold
higher expression in microRNA-155 transduced pools
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relative to control transduced pools (14). Despite these
elevated levels, microRNA-155 expression in transduced
Mutu I cells was slightly less than that observed in several
activated B-cell lines that naturally express microRNA-
155 (14); arguing against supra-physiological expression
of microRNA-155 in transduced Mutu I cells. The tran-
scriptomes of the wild-type Mutu I cell line and
the microRNA-155 expressing Mutu I cell line were deep
sequenced using Illumina Genome Analyzer II with a
read length of 50 (NCBI Short Read Archive, Accession
Number SRA011001) (14). For each biological or
technical replicate, around 10-million single-ended
short reads were generated. Short reads were initially
aligned to the reference genome (hg19/GRCh37) using
Novoalign (http://www.novocraft.com). We used standard
parameter settings to build an index (novoindex) and to
run Novoalign. The alignment results were saved in the
SAM format and parsed using SAMMate (http://
sammate.sourceforge.net/) (22) to calculate gene-level
abundance.

Annotation table augmentation via splicing
junction analysis

Splicing isoform annotation databases are often incom-
plete and not cell type/condition-specific. The 100 000
some annotated isoforms in the ASTD database is not

adequate to characterize the vast diversity of the human
transcriptome. We augmented the ASTD annotation
table using the cell type-specific exon–exon junction
evidence, i.e. specific to the microRNA-155 targeting
event (Figure 1b). In particular, we performed junction
analysis using Tophat (23), a widely used junction
mapper, and augmented the ASTD annotation table by
adding novel isoform transcripts that are supported by cell
line specific junctions (18).

EM algorithm to quantify transcriptomes at the
isoform-level

For each gene, our algorithm infers an unobserved
cDNA fragment-originating matrix (Z and Z0) from the
observed cDNA fragment-compatible matrix (Y and Y0)
(Figure 2a). For each matrix, a row represents cDNA
fragments where (single- or paired-end) short reads were
generated using the novel ‘sequence by synthesis’ technol-
ogy from Illumina Inc. Columns represent sets of possible
splicing isoforms either annotated in ASTD Ensembl
database (Homo Sapiens.GRCh37.57) or supported by
exon–exon junction analysis (23). Based on short-read
alignment to the reference genome and the annotated or
inferred isoform structures, the matrix Y or Y0 is directly
observed but not of direct interest to us since each cDNA
fragment can be compatible with multiple isoforms.

Figure 1. (a) The workflow of our transcriptome and targetome analysis pipeline. Solid arrows represent annotated transcript quantification and
dotted arrows represent novel transcript quantification. (b) Novel transcript discovery illustrated using splicing graph. One source of exon–exon
junctions (solid lines) is available from alternative splicing database, and another source (dotted lines) of junctions is available from computational
prediction using TopHat.
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For example, a mapped cDNA fragment spanning an
exon–exon junction is compatible or possibly derived
from a number of isoforms containing the junction,
whether the junction is annotated or not. In Figure 2a,
the first inferred cDNA fragment is compatible with the
first, third and fourth isoforms. What we need to infer is a
cDNA fragment-originating matrix Z or Z0 where each

cDNA fragment is unambiguously originated from one
isoform. The relevant proportion of isoforms can be
easily derived by summing up the counts of each
column, therefore, make it possible to characterize and
quantify a transcriptome at the isoform-level.

More formally, assume i ¼ ð1, 2 . . . , IÞ is the mapped
cDNA fragment (row) index, j ¼ ð1, 2 . . . , JÞ is the

Figure 2. (a) Illustration of the EM algorithm. Deriving the observed short-read compatible matrix Y or Y0 from short-read alignment (left panel)
Applying EM algorithm to infer the short-read originating matrix Z or Z0 (middle panel). Calculating relative isoform proportions in case and
control (right panel). Note the referred gene is differentially spliced between case and control but not differentially expressed. It is also known as
dichotomy of regulation. (b) Simulation studies to evaluate the accuracy of isoform quantification using the FluxSimulator. For single-end data
(b) and paired-end data (Supplementary Figure S1), we plot predicted isoform abundance scores against true abundance scores. R2 calculated by
robust linear regression analysis were shown in each figure. Fifteen-millions 50-mer single-end short reads and 30-millions 50-mer paired-end short
reads were generated and used for this simulation studies.
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isoform (column) index, lj is the length of jth isoform, and
P; ¼ p1, p2, . . . , pJð Þ, where pj is the mixture proportion
for the isoform j: Initializing all the compatible pj to be the
same, and add up to 1, i.e.

PJ
j¼1 pj ¼ 1: The EM type

algorithm is as follows (24): E-step:

z
k+1ð Þ

i, j ¼
yi, jp

kð Þ
jPJ

j¼1 yi, jp
k
j

, 8i, j,

where yi, j is the normalized indicator having value of 1=lj
if the jth00A0 isoform is compatible, 0 otherwise. M-step:
Let

n
k+1ð Þ

j ¼
XN

i¼1

z
k+1ð Þ

i, j , 8j,

p
k+1ð Þ

j ¼
n
ðk+1Þ
j

N
, 8j:

The EM algorithm iterates between E and M steps until
convergence, i.e.

PJ
j¼1 jp

k+1ð Þ

j � p
ðkÞ
j j < e, e is an arbitrarily

small positive number, i.e. 0.00001. We denote the
converged isoform proportion as p

ðKÞ
j : Assuming the

single gene expression abundance is quantified using
RPKM (for single-ended reads) or FPKM (paired-ended
reads) is �, then the expression abundance for each
isoform is:

�j ¼
�p Kð Þ

j lg

lj
, j ¼ 1, 2 . . . , Jð Þ,

where lg is the sum of total exon length of a gene, and lj is
the sum of total exon length of a transcript in this gene.

We make note that the EM type algorithms have been
used to solve multiple problems in bioinformatics. In par-
ticular, similar algorithms have been designed and applied
to infer full-length isoforms using expressing sequence tags
(ESTs) data (24) and RNA-seq data (17,21). We expect
that the RNA-seq data works better with the EM type
algorithm due to a much larger sample size and a much
reduced number of compatible splicing isoforms. We
include additional mathematical details of the EM algo-
rithm to the Supplementary Data (Section 1).

Genome-wide seed enrichment analysis

Although there are exceptions, microRNA targeting is pri-
marily guided by 7- or 8-mer seeds in a gene region
(usually within the 30-UTR but sometimes within the
50-UTR, or an exon). For our analysis, we consider seed
enrichment as a necessary condition for target prediction.
A single 7- or 8-mer seed in a long genome region tends to
be less likely to be a microRNA target than many seeds in
a short genome region. We also provide additional justi-
fication of using seed enrichment as opposed to seed
presence, as well as combining isoform down-regulation
with seed enrichment criteria for microRNA-155 target
prediction in the Supplementary Data (Supplementary
Table S7, Figures S3 and S4; Sections 2 and 3).

We used Pearson’s Chi-square test to quantify the seed
enrichment for each genome region. Basically, we calcu-
late a Chi-square test statistic, which quantifies how much

the observed seed counts deviate from the expected seed
counts in a given genome region. Larger values of the
chi-square test statistic (small P-values) will reject the
null hypothesis of non-enrichment. The Excel function
‘CHISQUARE’ was used to perform the genome-wide
seed enrichment analysis. The raw P-values of the
chi-square test will then be adjusted using the stringent
Bonferroni’s procedure.

30-UTR-luciferase reporter analysis

The 30-UTR assay results were initially reported in our
recent publication (14), and we used it in this article as a
reference to compare the gene-level (14) and the isoform-
level (this work) approaches to microRNA target predic-
tion. For the sake of completeness, we repeat experimental
protocols here: 3.75mg of either the control (pMSCV-puro-
GFP-miR-CNTL) or microRNA-155 (pMSCV-puro-
GFP-microRNA-155) expression vector was cotransfected
with 0.25 mg of the appropriate pMIR-REPORT-dCMV
or pGL4.11 30-UTR reporter plasmid into 1� 106 MutuI
cells using Lipofectamine (Invitrogen). Cells were har-
vested 48 h post-transfection and analyzed using Promega
firefly luciferase assay. Values reported are expression
change of a given 30-UTR relative to change in the
control reporter.

Quantitative RT–PCR

Novel exon–exon junctions were validated by PCR using
primers indicated in Table 1. RT-PCR was performed on
an Eppendorf Mastercycler� ep. Total RNA was reverse-
transcribed with the SuperScript III First-Strand Synthesis
System (Invitrogen) according to manufacturer’s instruc-
tions by using random hexamer primers (50 ng/1.5 mg total
RNA).
The resulting cDNA was subjected to PCR using

sequence specific forward and reverse primers (Inetgrated
DNA Technologies) (Table 1). Platinum Taq polymerase
(Invitrogen) was used following manufacturer’s recom-
mendations. The reaction mixure consisted of 1� High
Fidelity PCR buffer, 0.2mM dNTP each, 2mM MgSO4,
0.2mM primer each, 2 ml cDNA and 1 U Platinum Taq
High Fidelity per 50 ml reaction volume. Amplification
was carried out using the following conditions: 2min at
94�C, followed by 35 cycles of 94�C for 30 s, 60�C for 30 s
and 68�C for 60 s. PCR products were analyzed on a 1.2%
agarose gel and fragment size was determined by compari-
son to the TrackIt 100bp DNA Ladder (Invitrogen).
qRT-PCR (TAF5L) was performed using the isoform
specific primers shown in Table 2. A total RNA of 250 ng
was reverse-transcribed with the SuperScript III First-
Strand Synthesis System (Invitrogen) according to manu-
facturer’s instructions, using Oligo(dT) primers. The result-
ing cDNA was subjected to quantitative (real-time) PCR
using specific primers (Integrated DNA Technologies)
(Table 2). A master mix was prepared for each PCR run
which included Platinum SYBR green SuperMix plus
UDG (Invitrogen), 50 nM fluorescein-NIST traceable
dye, 250 nM forward and reverse primer and nuclease-free
water. Amplification was carried out using the following
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conditions: 2min at 50�C, 10min at 95�C, followed by 40
cycles of 95�C for 30 s and 60�C for 30 s.
Melt curve analysis was performed at the end of every

qRT–PCR run. Samples were tested in triplicate.
Real-time PCR was performed on Bio-Rad MyiQ
iCycler and data analysis was performed using Bio-Rad
IQ5 v2.0 software. No-template controls and no-reverse
transcription controls were performed with each PCR run.
Relative quantification was calculated by using the ��Ct

method.

RESULTS AND DISCUSSIONS

Simulation studies

To assess the accuracy of our EM algorithm in isoform
quantification, we simulated RNA-seq experiments using
FluxSimulator, a freely available software package that
simulates whole transcriptome sequencing experiments
with the Illumina Genome Analyzer. The software
works by first randomly generating integer copies of
each splicing isoform according to the annotation file
provided by the user, followed by constructing an
amplified, size-selected library and sequencing it in silico.
The resulting cDNA fragments are then sampled uni-
formly at random for simulated sequencing, where the
initial and terminal 25, 50 and 75 bp of each selected
fragment are reported as reads. In our simulation
studies, the human Ensembl ASTD database (version
57) was supplied to the software, along with the hg19
version of the human reference genome. In the ASTD an-
notation file, there are 100 297 protein coding isoforms,
corresponding to 21 271 protein-coding genes.
FluxSimulator then randomly assigned expression to
19 992 isoforms, corresponding to 10 343 genes. About

15-million single-end and 30-million paired-end
RNA-seq 50-mer short reads were generated by size selec-
tion of fragments between 175 and 225 bases.

The estimated isoform abundance was plotted against
the true isoform abundance using single-ended short reads
(Figure 2b) and paired-end short reads (Supplementary
Figure S1). A very good linear correlation was observed
(over 0.97) for both single- and paired-end data. We make
note that the EM algorithm fails to estimate the abun-
dance level of a very small portion (�10%) of the
isoforms, which fall into such situations, as many
isoforms within one gene, the length of the unique exon
is shorter than the read length, and so on (detailed infor-
mation can be found in Supplementary Data, Section 4)
Simulation results obtained using other experimental
factors, such as read length and counts, showed a similarly
robust correlation. These simulation studies provide
compelling evidence for the excellent accuracy of our al-
gorithm in quantifying isoform transcripts.

Validation studies

Our validation studies were carried out using in-house
results from 149 different 30-UTR reporter plasmids con-
taining a spectrum of microRNA-155 seed types, config-
urations and potency (11). The rationale of selecting these
30-UTR’s for in vitro assays is based on current
microRNA target database. The 149 genes analyzed in
the current study at the 30-UTR reporter level were
selected from a wider panel of 170 such 30-UTR reporters
based on adherence to the following three criteria: (i) the
expression estimated from RNA-seq experiments is
above 0.5 RPKM at the gene-level; (ii) the expression
estimated from our isoform-level approach is above 0.2
RPKM; (iii) the genes exhibit a 7-/8-mer seed enrichment

Table 2. Quantitative RT–PCR experiments to verify novel junctions (9 out of 10 were verified)

TABLE II Reference

transcript ID

Junction

assessed

Forward primer Reverse primer

PLDN ENST00000220531 Exons 1–4 50-CACACGTTTGCTTCTTCCCTGTGT-30 50-GGCATGATAGTGTTTAGCCTCAGC-30 379 bp

TMEM126A ENST00000304511 Exons 1–3 50-CCCAGGTAATTTGAGCAAAGGCCA-30 50-CTATGAGGCCACAAAGAGCAGCAT-30 244 bp

PGPEP1 ENST00000269919 Exons 3–5 50-TCCGGTTGAGTACCAAACAGTCCA-30 50-CGTGACTCTGGTACAAAGAGGTGT-30 344 bp

NOL9 ENST00000377705 Exons 3–7 50-TAACCAGCTATCCGGGTTCATCCT-30 50-TGTGGAGTCCTCAGGTGAGTGAAA-30 403 bp

C15orf17 ENST00000357635 Exons 1–3 50-AGATCGGTAATAGAGCCCTCCGTCT-30 50-ATCTGGACTCTGGCTAAGAGCAGT-30 242 bp

YEATS4 ENST00000247843 Exons 2–5 50-GGGCACACTCATCAGTGGACAGTAT-30 50-CCCAGCATTGCATTGGTGTCTGAT-30 266 bp

NARS2 ENST00000281038 Exons 12–14 50-GCTGTTGATCTTCTGGTTCCTGGAGT-30 50-AAGATGCACTGCAGGTAGCGTTCA-30 200 bp

SLC7A11 ENST00000280612 Exons 1–3 50-GCACCATCATTGGAGCAGGAATCT-30 50-TGTAGCGTCCAAATGCCAGGGATA-30 285 bp

ARL1 ENST00000261636 Exons 3–5 50-TAGGAGGACAGACAAGTATCAGGCCA-30 50-TCCTTCAAGGCAGGTAACCCAAGT-30 247 bp

The novel splice junction tested for each gene spanned the exons indicated in the ‘Junction assessed’ column of the indicated ‘reference transcript ID’.

Table 1. Quantitative RT–PCR experiments to verify isoform target TAF5L

TABLE I Forward primer Reverse primer

TAF5L LTE ENST00000366676 Last two exons 50-AGCCCCACCAAGTAGACGTGT-30 50-TCTCCGTGCCTGCATTATCAT-30

TAF5L EX ENST00000366676 Last two exons 50-AGTAGACGTGTCCCGCATCCATTT-30 50-AACAAGAGAGCAACCCTGAGCTGT-30

TAF5L Iso ENST00000366675 Last exon 50-CACAGGAAGTAGAGTTGCCAGCT-30 50-AACGGTTACAAGCCAAACAAGATT-30

Iso TAF5L ENST00000366675 Last exon 50-CCCACAGAAGGTTGTGCCATTTCA-30 50-ACATGGAGCCACAGGATATGCACT-30

TBP Housekeeping 50-GATGGATGTTGAGTTGCAGGGTGT-30 50-AGCACGGTATGAGCAACTCACAGT-30
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(adjusted P< 0.05) in their 30-UTR region at the isoform-
level. Using the corresponding 30-UTR reporter data from
this set of genes, we tested our isoform-level approach
and compared the results to those obtained using the
gene-level approach (14). We used stringent and loose
relative expression cut-offs (0.6, 0.7 and 0.8; relative ex-
pression meaning expression in Mutu-microRNA-155
versus Mutu-control cells) to discriminate true targets
from false targets. We also used a statistical criterion,
i.e. q-value (30), as an auxiliary evaluation parameter.
Results using different cut-offs are consistent and are
included in the Supplementary Table S1.

We compared the microRNA-155 targets predicted by
gene-level, isoform-level approaches and 30-UTR assay. In
Figure 3a, the set of 149 targets were divided into eight
distinct categories. Because a full list of true microRNA-
155 targets is not available as a gold standard, the eight
categories essentially represent all possible outcomes of
comparing three approaches to microRNA target predic-
tion, i.e. gene-level, isoform-level and 30-UTR assay. We
provide biological interpretation and/or insight for each
category. In particular, categories (1) and (2) are to
support the notion that the isoform-level approach dom-
inates the gene-level approach. The detailed gene informa-
tion for each category is available as Supplemental Data
(Supplementary Table S1).

(1) Targets exclusively predicted by the isoform-level
approach (four predicted targets). The seeming paradox
of this category is why there is discordance between the
isoform-level analysis and the 30-UTR reporter analysis.
The discrepancy for at least two of these genes, PHF17
and MALT1, can probably be explained by differences in
the 30-UTR’s tested in these two approaches (with the dif-
ferent 30-UTR’s containing different microRNA-155 seed
site repertoires). For example, PHF17 has two expressed
isoforms (ENST00000413543 and ENST00000226319).
The 30-UTR of the isoform ENST00000413543 that
was tested in our 30-UTR assay contains two 7-mer
microRNA-155 seeds and was found to be a false target
based on the 30-UTR reporter analysis (fc=0.81) (in
Figure 3b). On the other hand, the 30-UTR of the
isoform, ENST00000226319 contains one 8-mer
microRNA-155 seed and was predicted by our isoform-
level approach as the true target (fc=0.53) (in Figure 3b).
While we have not tested the 30-UTR for this isoform in a
30-UTR reporter assay, we anticipate that the 8-mer
microRNA-155 seed contained within the 30-UTR of this
isoform is, in fact, responsive to microRNA-155.

Looking more carefully into the gene- and the isoform-
level expression, the differential expression ratio of
ENST00000226319 is 0.53 and that of ENST00000413543
is 1.67 (the two isoforms are roughly equally abundant).
The differential expression ratio observed at the gene-
level (0.85) is a composite of the down-regulated
ENST00000226319 isoform (predicted target) and the
up-regulated ENST00000413543 isoform.

(2) Targets predicted by both the isoform-level
approach and the 30-UTR reporter assays but not by the
gene-level approach (19 predicted targets). This category
best highlights the importance of performing isoform-
based assessment of microRNA targeting. Here, the

differential expression ratio of the target isoform calculated
from the isoform-level analysis is more consistent with
the 30-UTR reporter assay results than it is with the
results from the gene-level analysis. A good illustra-
tion of where this could have important biological signifi-
cance is the case of TAF5L. TAF5L has three expressed
isoforms (ENST00000366676, ENST00000366675 and
ENST00000258281). The 30-UTR of the isoform
ENST00000366675 (abundance proportion 11–20%, non-
dominant isoform) was tested in our 30-UTR reporter
assay, and was predicted by both the isoform-level
approach and the 30-UTR reporter assay as a
microRNA-155 target (Figure 3c). It was not detected by
the gene-level approach because this isoform accounts for
only 20% of the total gene-level expression in control cells.
To validate that the predominant, unregulated isoform
(ENST00000366676) is not responsive to microRNA-155
(as negative control of no repression), we cloned the
30-UTR of this isoform into a reporter vector and tested
it for responsiveness to microRNA-155. As shown in
Figure 3d, while ENST00000366675 again showed inhib-
ition by microRNA-155, the ENST00000366676 isoform
was not responsive. To further validate the isoform
specific differences in expression at the endogenous RNA
level, real time RT–PCR analysis was carried out on
microRNA-155 expressing versus control cells using
isoform specific PCR primers (Table 1). As shown in
Figure 3d, RT–PCR demonstrated concordance with the
isoform-level analysis of the RNA-seq data. Since the
amino acid composition of the proteins expressed from
these two isoforms is different at the carboxyl terminus,
the isoform specific regulation of one of these isoforms

Figure 3. (a) Venn Diagram of the microRNA targets predicted by the
three approaches at 0.8 cut-off level of relative expression. (b) An
example of isoform target exclusively predicted by the isoform-level
approach (Gene PHF17). It represents a group of genes with
dichotomy-regulated isoforms and the down-regulated isoform (poten-
tial target) was not tested in 30-UTR assay. (c). An example of isoform
target predicted jointly by the isoform-level approach and the 30-UTR
assay (Gene TAF5L). It represents a group of genes with
dichotomy-regulated isoforms where the down-regulated isoform was
also tested in 30-UTR assay. (d) Quantitative RT–PCR and 30-UTR
reporter assay of the TAF5L isoform relative expression. (e) An
example of target predicted by both the isoform- and gene-level
approaches, but not by the 30-UTR assay (Gene TBRG1). (f) An
example of drop out in the 8-mer seed region of the 30-UTR (Gene
CEBPB).
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Figure 3. Continued.
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can have a significant regulatory impact on the TAF5L
interactome and consequently, TAF5L function.

(3) Targets predicted by both the isoform- and
gene-level approaches, but not the 30-UTR assays (five
predicted targets). Genes within this group are likely to
have non-functional microRNA-155 seed sequences
within their 30-UTR’s as evidenced by a lack of a
response in the 30-UTR reporter assay. In these cases,
the regulation observed at the gene- and isoform-level
likely occurs through indirect mechanisms. There is now
good evidence that microRNA-155 targets an abundance
of transcription factors (14,26–30). It is reasonable that
the expression of at least some of the genes within this
group is suppressed through the microRNA-155

mediated inhibition of one or more of these factors. For
example, gene TBRG1 has two highly expressed isoforms
(ENST00000473629 and ENST00000441174). The
30-UTR of the isoform ENST00000441174 (abundance
proportion 33–35%, non-dominant isoform) was tested
in 30-UTR assay, but not predicted by 30-UTR assay as
the microRNA-155 target (Figure 3e). One possible reason
includes that these are genes where regulation probably
occurs through indirect mechanisms but not through tar-
geting of 30-UTR.
(4) Targets predicted by all three approaches (90 pre-

dicted targets). This group largely represents genes whose
dominant isoform contains functional microRNA-155
seeds within the 30-UTR region. The finding that this

Figure 3. Continued.
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category contains a largest number of targets is expected
and represents genes that may be discovered by conven-
tional gene-level approaches.
(5) Targets predicted exclusively by the gene-level

approach (one predicted target). Only one case exists in
the validation studies, supporting the notion that the
isoform-level approach dominates the gene-level
approach.
(6) Targets predicted by the 30-UTR assay and the

gene-level approach but not the isoform-level approach
(five predicted targets). These cases represent a relative
minority of genes from our validation studies and may
arise from a variety of different experimental error types
including those that arise from low-expression values or
by incorrect/inaccurate isoform assessment.
(7) Targets exclusively predicted by 30-UTR assay (20

predicted targets). There are a good number of predicted
targets falling into this category and many of these likely
represent tissue specific differences in 30-UTR structure.
For example, shortened transcript extension through the
30-UTR in vivo is a hallmark of lymphocyte activation and
cancer cells (31). Such truncated 30-UTR’s obviously
cannot be targeted by microRNAs whose seeds are
located in the truncated regions of the 30-UTR’s. To illus-
trate this point, as shown in Figure 3f, we observed low
read numbers across the microRNA-155 seed sequences at
the 30-end of CEBPB. A few more genes might be inter-
preted in a similar way, such as DCUN1D2 and
KIAA1274. Another possible reason for a lack of
response at the gene- or isoform-level includes the possi-
bility that these genes are inhibited principally at the trans-
lational level but not at the transcriptional level. Whereas
the output of the 30-UTR reporter assay reflects changes at
both of these levels, RNA-seq reflects only changes at the
transcriptional level.
(8) There are five genes where all three approaches

predict them to be non-targets. These genes represent ac-
cordant results on genes that have non-functional
microRNA-155 seed sequences.

Genome-wide microRNA-155 target prediction at the
isoform-level

Our validation studies have demonstrated the potential
application of the proposed computational approach for
quantifying transcriptomes and microRNA targetomes.
We next proceeded to carry out genome-wide studies to
predict microRNA-155 targets at the isoform-level. For
this analysis, we used isoform-based differential expres-
sion information in combination with seed enrichment in-
formation to predict targeting isoforms and the respective
targeting region. We attempted to answer the following
important biological questions that were raised initially:
‘Which isoform is the target? What’s the targeting region?
What might be the targeting mechanisms?’
There are a total of 100 297 annotated protein coding

isoforms in Ensembl ASTD database (version 57), corres-
ponding to 21 271 protein coding genes. Since our
RNA-seq data is single-ended, we used RPKM to
quantify the abundance level of each isoform. We first
applied an RPKM cut off of 0.5 to the control wild-type

Mutu I cell line to determine which genes need to be
filtered out, and then remove these very low-abundance
genes in both control and case conditions (we note that
low-abundance gene expression under the case condition
might represent the genuine repression effect). After selec-
tion using this criterion, 10 513 genes were left for the
genome-wide isoform-level analysis. For both case and
control conditions, we then filtered out very
low-abundance isoforms, which have an average RPKM
value less than 0.2 in wild-type Mutu I cells. Finally, the
results of 42 093 isoforms, corresponding to 10 193 genes,
were used to compare the isoform- and gene-level
approaches.

Due to the up- and down-regulation that takes place
within the same gene (differential splicing) for some
cases, the variance of the isoform-level analysis is higher
than that observed at the gene-level analysis since the up-
and down-regulation of the isoforms can cancel each other
out at the gene-level. In addition, the total number of
statistical tests needed for the isoform-level analysis is
much greater than what is required for the gene-level
analysis, making the comparison using adjusted P-values
less sensible. We therefore primarily used a biological cri-
terion, differential expression ratio (or fold change), and
used q-value (25) as an auxiliary statistical criterion in
detecting significant down-regulation. Similar to the val-
idation studies, we used a number of fold change cut-offs
ranging from a strict 0.6 to a loose 0.8. Detailed results are
included in Supplementary Tables S2–S4.

Since the isoform proportion and abundance results we
obtained are in the format of continuous numbers, we
used a shrinkage t-test (32) to call significantly
down-regulated genes, and predicted them as microRNA
targets based on the presence of seed enrichment. Among
these 10 513 genes, 1176 genes were predicted as targets
using a cutoff=0.8, q-value=0.0045 and microRNA-
155 seed enrichment level of 0.05. We also applied the
same test on the corresponding 42 093 isoforms and
found 2828 of these (corresponding to 1722 genes) that
were predicted as microRNA targets using the same
down-regulation fold change and seed enrichment
criteria. The overlapping information of the microRNA
target prediction using the gene- and isoform-level
approaches is presented in Figure 4a. In Figure 4a, 1056
microRNA gene targets were predicted by both the
isoform- and gene-level approach, and the isoform-level
approach further determines the specific isoform that is
targeted. There are also 666 and 120 microRNA gene
targets exclusively predicted by the isoform- and
gene-level approaches, respectively.

Figure 4b shows that for 77% of the 1056 genes pre-
dicted as targets by both the gene- and isoform-level
approaches, the dominant isoform being specifically
regulated. We further used seed enrichment region to
predict the targeting region of each targeting isoform.
Figure 4c shows the percentage of seed targeting regions
predicted by both the gene- and isoform-level approaches,
in which 53% of the predicted isoform targets fall in the
30-UTR region, supporting the conventional notion that
30-UTR region is the most common microRNA targeting
region. Interestingly, we also predicted almost half of the
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isoform targets with targeting regions in exons and
50-UTR’s. For the 666 gene targets, corresponding to
1065 isoforms, which were exclusively predicted as
targets by the isoform-level approach, the trend was
reversed in that 62% of targeting genes are represented
by non-dominant isoforms (Figure 4d). Figure 4e shows
the percentage of seed targeting regions predicted by the
isoform-level approach exclusively. Similar to Figure 4c,
we observed that almost half of the predicted targeting
regions are not in the 30-UTR. In summary, it is clearly
seen from Figure 4 that the isoform-level approach is
capable of predicting non-dominant isoform targets that
otherwise is invisible to the gene-level down-regulation
approach.

Discovery of novel transcripts

Similar to other biological processes, novel transcripts
that are not annotated in splicing databases are likely to
play an important role in microRNA-155 targeting. In
order to discover these novel transcripts, we performed
the same genome-wide analysis using the augmented
ASTD annotation table. We provide more details and
results in Tables 1 and 2, Supplementary Tables S5
and S6, Figures S2 and S5 and the Supplementary Data
(Section 5).

CONCLUSION

Due to its importance, computational prediction of
microRNA targets has been well-studied. However, the
existing rule-based, data-driven and expression profiling
approaches to target prediction are mostly approached
from the gene-level. Gene is a unit of heredity in a living
cell that is used extensively in genetics but is becoming a
less appropriate concept in transcriptome and targetome
research. Here we propose the use of splicing isoform as a

more appropriate concept for microRNA target predic-
tion, and other genomics research since it is the isoform
that is the ultimate effector of biological outcomes.
Before the emergence of the deep-sequencing technol-

ogy, exon and tiling microarrays allowed for the analysis
of transcriptomes at the isoform-level. The widespread use
of these two microarray platforms were limited, however,
by intrinsic technological limitations such as resolution,
coverage, and signal saturation etc. The advent of
deep sequencing technology provides, for the first time,
an opportunity to profile transcriptomes at base-wise reso-
lution, making it possible to develop computational
approaches to predict microRNA targets at the isoform-
level. The abundant exon–exon junction evidence revealed
in RNA-seq data enables novel transcript discovery. We
believe this work to be one-of-its-kind, as it allows for the
prediction of isoform targets that have not been possible
with the gene-level approach that we developed previously
(14). Our computational work has provided deeper bio-
logical insights into the microRNA targeting mechanisms
as evidenced by in vitro 30-UTR assay validation and
in vivo genome-wide microRNA target prediction.
Going beyond microRNA target prediction, the gene

as a concept has been extensively used in many
transcriptome-based studies. Familiar examples are gene
regulatory networks and cancer classification using high
throughput data. These studies have given insights into
important biological mechanisms. As illustrated here for
microRNA targetome research, splicing isoform is a more
appropriate object for transcriptome-based studies.
Consequently, the abovementioned analyses are expected
to be more biologically insightful when performed at the
isoform-level. Our isoform-level approach can be poten-
tially integrated with many transcriptome-based studies to
open an avenue for new isoform-based bioinformatics
analysis.

Figure 4. (a) Venn diagram of the microRNA gene targets prediction using the gene- and isoform-level approaches. (b) The percentage of gene
targets represented by dominant and non-dominant isoforms predicted by both the gene- and the isoform-level approaches. (c) The percentage of
isoform targeting regions predicted by both the gene- and the isoform-level approaches. (d) The percentage of gene targets represented by dominant
and non-dominant isoforms predicted by the isoform-level approach exclusively. (e) The percentage of isoform targeting regions predicted by the
isoform-level approach exclusively.
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