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A B S T R A C T   

The past decade has seen the emergence of the use of reinforcement learning models to study developmental 
change in value-based learning. It is unclear, however, whether these computational modeling studies, which 
have employed a wide variety of tasks and model variants, have reached convergent conclusions. In this review, 
we examine whether the tuning of model parameters that govern different aspects of learning and decision- 
making processes vary consistently as a function of age, and what neurocognitive developmental changes may 
account for differences in these parameter estimates across development. We explore whether patterns of 
developmental change in these estimates are better described by differences in the extent to which individuals 
adapt their learning processes to the statistics of different environments, or by more static learning biases that 
emerge across varied contexts. We focus specifically on learning rates and inverse temperature parameter esti-
mates, and find evidence that from childhood to adulthood, individuals become better at optimally weighting 
recent outcomes during learning across diverse contexts and less exploratory in their value-based decision- 
making. We provide recommendations for how these two possibilities — and potential alternative accounts — 
can be tested more directly to build a cohesive body of research that yields greater insight into the development 
of core learning processes.   

1. Introduction 

From an early age, people are capable of using past positive and 
negative experiences to guide their behavior. Young infants can learn to 
perform actions that elicit reward, like increasing the rate at which they 
kick their feet to move a mobile hanging overhead (Rovee and Rovee, 
1969), or babbling more in response to positive social feedback 
(Rheingold et al., 1959). Even perseverative errors in the classic A-not-B 
task (Piaget and Margaret Trans, 1954) can, in part, be attributed to 
infants’ learning of the association between the action of searching in a 
particular location and the reward of finding a toy (Marcovitch and 
Zelazo, 1999; Marcovitch et al., 2002). The ability to associate actions 
with the outcomes they elicit and to use those associations to guide 
future decisions is evident throughout childhood, adolescence, and 
adulthood (Raab and Hartley, 2018). Such reinforcement learning pro-
cesses are proposed to support diverse adaptive functions that transform 
over the course of development, including the ability to meet homeo-
static needs (Keramati and Gutkin, 2014; Moerland et al., 2018), 
develop social relationships (Jones et al., 2014; Mataric, 1994), and 

pursue epistemic goals (Oudeyer et al., 2007). Given the centrality of 
these learning processes to behavior across domains, for years, devel-
opmental researchers have asked how acquiring learned associations 
and deploying them to guide behavior change across the lifespan 
(Bolenz et al., 2017; DePasque and Galv�an, 2017). 

In the mid-20th century, advances in the application of mathematical 
models to human associative learning provided researchers with 
powerful new tools to describe these fundamental processes (Rescorla 
et al., 1972; Sutton et al., 1998; Witten, 1977). Examining reinforcement 
learning through the application of formal models offers several ad-
vantages. First, quantitative models enable researchers to move beyond 
broad hypotheses to make highly specific predictions about behavior 
(van den Bos and Eppinger, 2016). Theories about component processes 
of learning or patterns of developmental change in these processes can 
be formalized algorithmically and tested by determining how well they 
account for observable behavior. Unlike non-model-based measures of 
decision-making, reinforcement learning models can distinguish pro-
cesses that contribute to learning the value of different options from 
processes that translate those value estimates into choices. In this way, 
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models can help to illuminate developmental change in cognitive pro-
cesses or neural representations that are otherwise difficult to tease 
apart. Second, computational models enable researchers to estimate 
latent variables that may influence behavior but may not be directly 
measurable in many experiments (van den Bos et al., 2018). For 
example, when learning through trial and error, individuals may track 
the value of different choice options. But probing participants to 
explicitly report these value estimates may disrupt or change how they 
learn from experience (Brown and Robertson, 2007; Poldrack and 
Packard, 2003), and the ability to explicitly monitor and report these 
estimates may themselves change across development (Kuhn, 2000). By 
linking individuals’ estimates of value to their measurable decisions 
through a specific, quantitative account, reinforcement learning models 
enable researchers to mathematically define and access these latent 
quantities and search for their representation in the brain (Gl€ascher and 
O’Doherty, 2010). 

For well over thirty years, researchers have simultaneously been 
investigating the development of the ability to learn from reinforcement 
and applying mathematical models to more precisely explain and pre-
dict learning and decision-making processes. These two streams of 
research have intersected with increasing frequency in the last decade, 
with a proliferation of studies applying reinforcement learning models 
to characterize how children and adolescents use the outcomes of their 
actions to update their beliefs about their environments and guide their 
future decisions. Researchers have leveraged reinforcement learning 
models to investigate questions like how children, adolescents, and 
adults learn from probabilistic feedback in both stable (Christakou et al., 
2013; Davidow et al., 2016; Moutoussis et al., 2018; Palminteri et al., 
2016; van den Bos et al., 2012) and dynamic environments (Boehme 
et al., 2017; Decker et al., 2016; Hauser et al., 2015; Javadi et al., 2014; 
Potter et al., 2017), update their beliefs based on positive, negative, and 
neutral feedback (Boehme et al., 2017; Christakou et al., 2013; Jones 
et al., 2014), and integrate advice or other forms of social influence into 
their estimates of the value of different actions (Decker et al., 2015; 
Jones et al., 2014; Rodriguez Buritica et al., 2019). In line with this 
diversity of conceptual questions, this research has also employed a wide 
variety of task structures, reward distributions, and model variants. 

This broad range of topical foci, experimental paradigms, and anal-
ysis approaches has made it challenging to draw broad conclusions from 
the literature as a whole. What have we discovered about how in-
dividuals learn across development from this body of work? We propose 
that there are two possible patterns of consistent, age-related change in 
learning mechanisms that developmental modeling studies could reveal. 
It may be the case that across the different ecological learning problems 
that reinforcement learning tasks have been designed to emulate, there 
are developmental changes in the “settings” of learning parameters, 
such that individuals of different age groups demonstrate consistent 
biases in how they learn from feedback across varied contexts. For 
example, there may be developmental shifts in the extent to which in-
dividuals weight recent feedback when updating their beliefs or in the 
extent to which they use their value estimates to influence choice. These 
static learning settings may affect behavior regardless of the extent to 
which they promote reward maximization within a given environment. 
If different developmental stages are indeed associated with particular 
learning biases, then this should be reflected in consistent age-related 
increases or decreases in model parameters across a wide variety of 
studies. 

Alternatively, rather than there being developmental shifts in the 
“settings” of particular learning parameters, development may involve 
changes in an individual’s ability to adapt to the demands of different 
learning environments. It may be the case that rather than demon-
strating particular, static learning biases, individuals vary in the extent 
to which they adjust their learning strategies based on the statistical 
properties of a given environment to behave adaptively across diverse 
contexts. For example, some individuals might weight recent feedback 
more heavily when their environments are rapidly changing and less 

heavily when they are relatively stable. From childhood to adulthood, 
individuals may become better (or worse) at adapting the way they 
learn, such that their learning strategies more (or less) closely approxi-
mate optimal behavior across distinct task contexts. Critically, devel-
opmental change in learning adaptivity should not lead to consistent 
relations between age and parameter estimates across studies, since 
subtle changes in learning environments may alter the extent to which a 
given value-updating or choice strategy promotes reward acquisition. 
Instead, developmental change in learning adaptivity should be re-
flected in age-related differences in the extent to which behavior is 
optimal across learning contexts. 

To determine the extent to which the literature suggests consistent 
patterns of change in either learning settings or adaptivity, we examined 
developmental differences in two parameters meant to capture different 
aspects of the learning process. We focused on learning rates, which 
determine the extent to which individuals weight recent feedback when 
updating their estimates of the value of different actions, and inverse 
temperatures, which govern the extent to which individuals select high- 
valued actions or explore lower-valued alternatives. We find that on 
the surface, learning rate parameter estimates show no clear develop-
mental trends across studies. However, this apparently inconsistent 
pattern provides hints that across development, individuals may become 
better at optimally adapting the extent to which they integrate recent 
outcomes into their estimates of the value of different actions. Unlike 
learning rates, across diverse studies, inverse temperature parameter 
estimates frequently decrease with increasing age, potentially reflecting 
a consistent bias toward exploration earlier in life. However, clear 
inference of such a developmental “setting” is hindered by the fact that 
age-related decreases in inverse temperature estimates can also result 
from researchers’ misspecification of younger individuals’ value esti-
mation processes within a reinforcement learning model. In this review, 
we discuss the neurocognitive mechanisms that may give rise to these 
changes in learning over developmental time. We also provide sugges-
tions for how future work can more directly test these possible trajec-
tories of developmental change in value estimation and choice processes 
to better highlight points of convergence across different studies. 

1.1. Reinforcement learning tasks 

The tasks that have been used to probe reinforcement learning share 
common features. Typically, participants must make a series of 
sequential choices between two to four different options, like slot ma-
chines or decks of cards. Each option probabilistically delivers positive, 
negative, or neutral outcomes. The reward probability can remain the 
same throughout the course of the task (O’Doherty et al., 2004), slowly 
drift across trials (Daw et al., 2006), or reverse at different points in the 
experiment (Ghahremani et al., 2010; Li et al., 2011; O’Doherty et al., 
2003). Participants are typically instructed to try to select the option 
that will give them the most reward. For example, in one variant of a 
classic “two-armed bandit” task, participants make repeated selections 
between two slot machines or “bandits” — one that gives participants 
points on 80 % of trials, and one that gives participants points on 20 % of 
trials. By learning from the outcomes of their choices, participants 
become increasingly likely to select the better bandit. 

1.2. Standard reinforcement learning model 

A classic reinforcement learning algorithm assumes that individuals 
learn by incrementally updating their estimates of the value of taking 
different actions in different states (Rescorla et al., 1972; Sutton et al., 
1998). The extent to which an individual updates her value estimate at 
each time point is governed by her surprise — the difference between 
the reward she receives by taking a specific action, and her estimate of 
the amount of reward she thought she would receive. This difference, 
the reward prediction error, is then scaled by her learning rate and 
added to her prior estimate. Formally, this process can be expressed as: 
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Qðs; aÞtþ1 ¼ Qðs; aÞt þ α�½rt � Qðs; aÞt�

Where, Q indicates the participant’s estimate for the value of taking 
particular action (a) within a particular state (s) at a particular time (t), r 
indicates the reward received, andα is a free parameter that represents 
the participant’s learning rate. 

1.3. The softmax choice function 

Most reinforcement learning models are fit to categorical choice 
data. Thus, the value estimates computed by a basic reinforcement- 
learning algorithm, or any variant thereof, must be transformed into 
choice probabilities. One simple transformation would be to assume that 
participants choose the option with the highest value on each trial. 
However, this function is often suboptimal for learning, as the sampling 
of unexplored choice options or options of uncertain value can promote 
the discovery of rewarding actions, or verify that the current, highest 
valued option is still better than competing alternatives, particularly in 
dynamic or novel environments (Cohen et al., 2007; Daw et al., 2006). 
Indeed, participants fail to exhibit such a maximization policy in their 
choice behavior across many different experiments (Herrnstein, 2000). 
Instead, most models assume that value estimates probabilistically in-
fluence choices by applying a softmax function (Daw, 2011): 

PðaijsÞ ¼
eβQðs;aiÞ

P
k eβQðs;akÞ

Where, αi is a particular action, k is the number of available actions, and 
β is the inverse temperature — a free parameter that determines the 
extent to which value estimates govern actions. When β is high, differ-
ences in the value estimates of each potential action have a large effect 
on choice probabilities, whereas when β is low, choices are “noisier,” or 
related to these value differences to a lesser degree (Fig. 1). 

Other choice functions propose different processes for transforming 
value estimates into choice probabilities. In some algorithms, for 
example, the uncertainty around each option’s estimated value also 
affects the choice probability computation whereas in others, choice 
probabilities are assumed to be random — independent of both value 
and uncertainty — on some proportion of trials (Gershman, 2018). 
Further variants of the choice function account for biases toward 
repeating or avoiding previously selected actions, regardless of their 
outcome history (Daw, 2011). 

1.4. Model comparison 

Many studies fit multiple models to each participant’s responses to 
determine which algorithms best capture value-updating and choice 
processes. Researchers can assess the fit of each model by computing the 
extent to which it captures participant choices while applying a penalty 
based on the number of parameters, such that simpler models will be 
preferred (Aikake, 1974; Stone, 1979). In addition to examining 
age-related change in parameter estimates, developmental researchers 
can examine whether individuals at different ages are best fit by 
different models. 

2. What have studies found? 

2.1. Learning rates 

In the classic formalization of a reinforcement learning model, a 
single free parameter captures individual differences in the value- 
updating process. This parameter — the learning rate — reflects the 
degree to which prediction errors are incorporated into the updated 
value estimates during learning. High learning rates indicate that in-
dividuals weight prediction errors to a greater degree, resulting in value 
estimates that are heavily influenced by recent outcomes. Low learning 
rates indicate the opposite: that prediction errors yield small revisions to 
an individual’s value estimate, resulting in choices that are less biased 
by recent experience and affected by a longer history of choice out-
comes. Estimates of learning rates can thus help address the question of 
how the integration of past experiences to guide actions changes across 
task contexts, and critically, with age. 

At first glance, results from reinforcement learning studies do not 
suggest any consistent pattern in the tuning of the learning rate 
parameter across development. Of five developmental studies that re-
ported results from a single-learning rate model, one (Decker et al., 
2015) found that learning rates declined with age, with the greatest 
difference between children (6–12 years old) and adolescents (13–17 
years old). Four other studies found either no change in learning rates 
across adolescents (12–17 years old) and young adults (18–32 years old) 
(Javadi et al., 2014; Palminteri et al., 2016) or an increase in learning 
rates across adolescents and adults (Davidow et al., 2016) or across 
children (8–12 years old), adolescents (13–17 years old), and young 
adults (18–30 years old) (Master et al., 2019). Few modeling studies 
have examined how preschool-aged children make value-based de-
cisions, but results from earlier studies of young children’s learning 
strategies that did not leverage formal models are similarly varied — 
some studies suggest that preschool-aged children (as young as 3) may 
be more likely to place more weight on recent outcomes relative to older 
children and adults (Ivan et al., 2018; Schusterman, 1963; Weir, 1964), 
whereas others suggest that older children weight recent outcomes more 
heavily than younger children (Berman et al., 1970). 

However, this apparent lack of consistency in findings across studies 
may be better understood by considering an important feature of rein-
forcement learning: namely, that the optimal setting of a learning rate 
(the degree to which past versus recent experiences should influence 
one’s current value estimates) depends on the statistics of the particular 
task or environment (Behrens et al., 2008, 2007; Li et al., 2011; McGuire 
et al., 2014; Nassar et al., 2012, 2010; O’Reilly et al., 2013). Thus, the 
heterogeneity of results across developmental studies must be inter-
preted in light of the heterogeneity of the task structures and reward 
probabilities that have been used. For example, in environments with 
deterministic rewards, with the best action leading to reward 100 % of 
the time, scaling prediction errors to a large degree is optimal, since 
prediction errors are always indicative of a suboptimal response. In 
probabilistic environments, however, very high learning rates can cause 
participants to overweight recent outcomes at the expense of aggre-
gating over a longer history of trials. This can cause recent, rare out-
comes — like a negative outcome from a generally good option — to bias 

Fig. 1. The softmax function transforms estimates of the value of different 
options into choice probabilities. The inverse temperature determines the 
extent to which differences in the value of different options are scaled. When 
the inverse temperature is high, differences are exaggerated and choices are 
more deterministic. 
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participants’ estimates away from the true, underlying expected value of 
an action. Indeed, two recent studies (Decker et al., 2015; Master et al., 
2019) reported opposite patterns of developmental change in learning 
rates, but they also employed different task structures. In an environ-
ment in which the optimal action still led to negative feedback on a small 
proportion of trials, Decker et al. (2015) found that learning rates 
decreased from childhood to adulthood, whereas in an environment 
where the optimal action was always rewarded, Master et al. (2019) 
found that they increased. Though these two studies reported opposite 
relations between age and learning rates, when those learning rates are 
interpreted in the context of each task, both patterns suggest that adults 
may have better calibrated their learning to the statistics of their envi-
ronments. For this reason, even across studies applying similar models to 
address similar questions, developmental findings that appear incon-
sistent may actually reflect convergent evidence for age-related change 
in the ability to optimally weight recent feedback across contexts. 

Research examining valence-dependent shifts in value updating 
similarly suggests that development may be marked by improvements in 
adapting learning to the demands of particular environments. The basic 
reinforcement-learning algorithm assumes that individuals update their 
value estimates to the same extent in response to both better-than- 
expected and worse-than-expected outcomes, but a variant of this 
model allows for differential scaling of positive and negative prediction 
errors by introducing separate learning rates for each outcome type 
(Caz�e and van der Meer, 2013; Niv et al., 2012). Across developmental 
studies using a variety of tasks, model comparison suggests that such 
two-learning-rate models, which capture valence asymmetries in value 
updating, provide a better account of participants’ learning than single 
learning-rate models. As with estimates of single learning rates, on the 
surface, results from two-learning-rate models do not suggest a strong 
relation between age and parameter tuning. Though two studies found 
no differences in positive or negative learning rates across age groups 
(Jones et al., 2014; Moutoussis et al., 2018), three different experiments 
found age-related decreases in negative learning rates (Hauser et al., 
2015; Rodriguez Buritica et al., 2019; van den Bos et al., 2012). This 
trend corroborates previous behavioral findings (Berman et al., 1970; 
Ivan et al., 2018; Levinson and Reese, 1967), in which children exhibited 
a stronger tendency to switch responses after making an incorrect choice 
than they did to repeat responses after a correct one. Only one study 
observed an opposite age-related pattern, in which weighting of nega-
tive prediction errors increased across adolescence, and weighting of 
positive prediction errors decreased with age across both adolescents 
and adults (Christakou et al., 2013). 

While valence asymmetries in learning rates might be interpreted as 
developmental “settings” for the processing of positive and negative 
outcomes, such asymmetric feedback sensitivity may instead reflect 
task-specific adaptation of responsivity to signed prediction errors ac-
cording to what is optimal in that task context. As with single learning 
rates, the optimal settings of the weighting of positive and negative 
prediction errors vary depending on the reward statistics of the envi-
ronment. To illustrate this point, we simulated choice data from agents 
with two learning rates on two different tasks. The first was a probabi-
listic selection task similar to that used in van den Bos et al. (2012). 
Simulated agents completed 150 trials in which they chose between two 
options — one option rewarded them with a point on 80 % of trials and 
gave them nothing on 20 % of trials; the other option rewarded them 
with a point on 20 % of trials and gave them nothing on 80 % of trials. 
The second task was modeled after the task used in Christakou et al. 
(2013). Again, simulated agents completed 150 trials in which they 
chose between two options. One option caused agents to win either 1.9, 
2, or 2.1 points on 50 % of trials but lose � 2.4, � 2.5, or � 2.6 points on 
50 % of trials; the other option caused them to win either 0.9, 1, or 1.1 
points on 50 % of trials but lose � 0.4, � .5, or � .6 points on 50 % of 
trials. For each task, we simulated data from 40,000 agents with positive 
and negative learning rates that ranged from 0.01 to 1, with a fixed 
inverse temperature for each environment and calculated the reward 

earned by each agent. 
As Fig. 2 illustrates, the optimal learning rates differ across contexts. 

In the first case, having relatively equivalent, or slightly positively 
biased, positive and negative learning rates helps to maximize reward 
gain, a pattern associated with increasing age across children, adoles-
cents, and adults in van den Bos et al. (2012). In the second case, having 
a high negative learning rate helps the agent to reduce their value es-
timate for the option with the high gains but even higher losses, which 
results in better performance overall. This pattern was observed with 
increasing age across adolescents and adults in Christakou et al. (2013). 
Thus, while the settings of positive and negative learning rates in van 
den Bos et al. (2012) and Christakou et al. (2013) exhibit seemingly 
opposite developmental patterns, both studies reveal a pattern of more 
optimal weighting of valenced prediction errors with increasing age. 

A few developmental studies have modeled participants’ choice 
behavior in task environments with abrupt changes in reward contin-
gencies (Boehme et al., 2017; Hauser et al., 2015; Javadi et al., 2014). In 
these types of contexts, any static setting of the learning rate may impede 
performance. Instead, it may be optimal for individuals to increase their 
learning rates, weighting recent observations more heavily, when in-
creases in prediction error indicate changes in reward probabilities and 
reduce them during more stable periods (Behrens et al., 2007; Li et al., 
2011; Nassar et al., 2012). Only one developmental study has applied a 
model that allows the learning rate to dynamically shift based on the 
magnitude of the prediction error (Javadi et al., 2014). Here, adoles-
cents and adults had both similar baseline learning rates and also 
dynamically adjusted their learning rates in a similar manner. Whether 
younger individuals exhibit similar adaptation of learning to the dy-
namics of environmental reward contingencies has not yet been 
examined. 

Understanding the neural mechanisms that might underpin adapt-
ability is challenging for myriad reasons. While many studies have 
examined developmental differences in neural responsivity to reward 
and punishment (Silverman et al., 2015; Somerville et al., 2010), fewer 
studies have focused on responsivity to valenced feedback in the context 
of learning, when the weight given to different outcomes influences an 
individual’s ability to gain reward. Both cross-sectional and longitudinal 
developmental studies have observed larger striatal responses to reward 
(Galvan et al., 2006; Van Leijenhorst et al., 2010; Braams et al., 2015) 
and to punishment (Galv�an and McGlennen, 2013) in adolescents 
compared to children or adults, but it is unclear how these responses 
relate to differences in outcome weighting during learning. Studies in 
adults highlight a central role for the striatum and the ventral medial 
prefrontal cortex in feedback-based learning and value representation 
(Bartra et al., 2013). Many studies examining representations of pre-
dictions errors and their integration into value estimates across devel-
opment have observed differential age-related patterns of activation in 
these regions (Christakou et al., 2013; Hauser et al., 2015; van den Bos 
et al., 2012). While one learning study reported greater striatal response 
to positive reward prediction errors in adolescents compared to children 
and adults (Cohen et al., 2010), such age differences in the striatal 
response to positive prediction errors, or in positive learning rates, were 
not apparent in other learning studies (Hauser et al., 2015; van den Bos 
et al., 2012). Another studied associated high negative learning rates in 
adolescence with increased activity in the anterior insula (Hauser et al., 
2015), a region broadly implicated in the processing of aversive out-
comes (Büchel et al., 1998; Samanez-Larkin et al., 2008; Simmons et al., 
2004). As with behavior, these differences across experiments could 
reflect a lack of convergence across studies or task-specific modulation 
of learning. Moving forward, research could elucidate the relative 
contribution of more static learning biases — and their potential neural 
underpinnings — from adaptation to task environments by examining 
how the same individuals learn across multiple contexts in which the 
optimal learning rate, or learning rate asymmetry, varies. 

Many of the examples we have highlighted are suggestive of a 
pattern of increasingly optimal value updating with age. However, it is 
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difficult to infer such a general, age-related trend across the wide range 
of tasks and reward contingencies that have been used in previous 
studies, particularly because many do not report the optimal parameter 
settings given the reward statistics of the task environment. Behavioral 
measures of performance partially corroborate the account of age- 
related improvement in optimal decision-making. Though participants 
across age groups often demonstrated no differences in their proportion 
of optimal choices or in the total reward they earned throughout the task 
(Boehme et al., 2017; Cohen et al., 2010; Hauser et al., 2015; Javadi 
et al., 2014; van den Bos et al., 2012), in many contexts, older partici-
pants made more optimal choices than younger individuals (Christakou 
et al., 2013; Decker et al., 2015; Moutoussis et al., 2018; Palminteri 
et al., 2016; Rodriguez Buritica et al., 2018). Only one study found that 
adolescents outperformed adults (Davidow et al., 2016). This behavioral 
metric, however, must be interpreted cautiously. Participants’ pro-
portions of optimal choices and the total reward they earned throughout 
the experiment are influenced not just by their integration of reward into 
value estimates during learning, but also by the way in which these 
value estimates influence choice, which we discuss in the next section. 
Reporting how the parameter estimates that capture participants’ 
learning deviate from those of an optimal agent may provide greater 
insight into the specific components of learning that drive age-related 
performance differences and would make results easier to compare 
across different studies. Additionally, the hypothesis that with 
increasing age, individuals become better at adapting their learning to 
different contexts could be tested more directly through studies exam-
ining whether older individuals’ tuning of their learning rates more 
closely approximates the optimal setting across diverse task 
environments. 

2.2. Inverse temperatures 

During learning, individuals must not only estimate the value of 
different choice options, but also determine how to use those values to 
guide action selection. The inverse temperature parameter determines 
the degree to which value estimates influence choice; high inverse 
temperatures indicate that individuals tend to select the higher-value 
option while low inverse temperatures indicate that value differences 
between options govern choices to a lesser extent (See Fig. 1). Estimates 
of inverse temperatures can help address the question of how the use of 
learned values to guide decision-making changes across development. 

Across reinforcement learning studies, developmental change in the 
inverse temperature parameter follows a somewhat consistent pattern. 
All studies we examined either did not report age-related differences in 
the inverse temperature parameter, found no differences (Davidow 

et al., 2016; Hauser et al., 2015; Moutoussis et al., 2018; van den Bos 
et al., 2012), or found that inverse temperatures increased with 
increasing age (Christakou et al., 2013; Decker et al., 2015; Javadi et al., 
2014; Palminteri et al., 2016; Rodriguez Buritica et al., 2019). No 
studies reported decreases in inverse temperatures with age. Suggesting a 
possible deviation from this general trend, a few early studies found that 
in prediction tasks, preschool-aged children more consistently selected 
the more probable outcome relative to adults (Brackbill and Bravos, 
1962; Derks and Paclisanu, 1967). However, the majority of studies that 
have applied reinforcement learning models to developmental data have 
only included participants over the age of seven, and these model esti-
mates suggest that from middle childhood, increases in age are related to 
more consistent choices for options that participants have learned yield 
greater rewards. These findings suggest that, across development, there 
may be a change in the “setting” of this key learning parameter such that 
choices are increasingly dictated by their potential to yield reward. But 
if indeed there is developmental change in the tuning of the inverse 
temperature parameter, what cognitive mechanisms underlie it? 

2.2.1. Exploration 
The selection of choice options with non-maximal expected values is 

often thought of as “exploration” (Daw et al., 2006), and as such, lower 
inverse temperatures earlier in life have often been attributed to chil-
dren’s greater tendency to explore their environments (Blanco and 
Sloutsky, 2019; Gopnik et al., 2015, 2017; Sumner et al., 2019). But 
exploration itself may be driven by multiple, distinct, neurocognitive 
processes. Studies of exploration have identified at least two forms of 
exploratory behavior: Individuals may explore either in an 
uncertainty-directed manner by directing their choices toward options 
that will reveal the most information, or randomly by making stochastic 
or “noisy” decisions that are not driven by either reward or information 
gain (Wilson et al., 2014). 

2.2.1.1. Random exploration. Random exploration can be an effective 
learning strategy across many environments (Bridle, 1990; Sutton et al., 
1998; Wilson et al., 2014), and it does not require complex computation, 
making it a potentially useful strategy for more resource-constrained 
learners, like children. Indeed, many studies have found that children 
do demonstrate a bias toward a more stochastic choice policy relative to 
adults (Blanco and Sloutsky, 2019; Gopnik et al., 2015, 2017; Sumner 
et al., 2019). For example, Sumner et al. (2019) found that 6-to-12-year--
old children tended both to select lower-valued choice options and to 
switch their responses from trial to trial more frequently than adults in 
both an environment with static rewards and one with dynamic rewards. 
Though they earned less reward than adults in both contexts, they were 

Fig. 2. Simulated data from 40,000 agents in two different learning environments indicate that the optimal asymmetry between positive and negative learning rates 
differs across contexts. In a two-armed bandit task with static, asymmetric reward probabilities and binary rewards, agents earned the most reward by implementing 
a slightly higher positive relative to negative learning rate (A). In a two-armed bandit task with static but equivalent reward probabilities, but rewards that differed in 
their magnitude, agents generally earned the most reward by implementing a very low negative learning rate (B). 
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better at identifying the most rewarding option in the dynamic envi-
ronment, which may suggest that an early bias toward exploration is an 
evolutionarily adaptive mechanism that facilitates learning of environ-
mental structure. 

Children’s and adolescent’s “noisier” choices may also be driven by a 
tendency to avoid repeating the same actions, regardless of how 
rewarding they are. Some studies have modeled this tendency directly, 
by including a “perseverative” or “stickiness” parameter that captures a 
participant’s tendency to re-select the previously selected option 
(Christakou et al., 2013; Decker et al., 2016). These studies found that 
children and adolescents tended to be less “sticky” than adults, in that 
they switched responses more often. Early work on children’s prediction 
and decision-making similarly suggests that middle childhood — the 
developmental stage of the youngest participants typically included in 
recent reinforcement learning work — may be characterized by an 
elevated tendency to alternate responses (Craig and Myers, 1963; 
Gratch, 1959; Ross and Levy, 1958; Weir, 1964). Including a specific 
model parameter to account for perseveration can distinguish this form 
of random exploration or stochastic behavior from other mechanisms 
that implement a non-maximizing choice policy. If studies do not 
include this parameter, any variance in choice driven by perseverative 
tendencies will be absorbed by the inverse temperature parameter. 

2.2.1.2. Directed exploration. Though children may implement a more 
stochastic choice policy, their greater exploratory tendencies may also 
be driven by a stronger desire to resolve uncertainty. Experiments that 
have directly probed children’s learning strategies suggest that early, 
children often direct their exploration toward the most uncertain parts 
of the environment (Blanco and Sloutsky, 2019). Many studies have 
found that children engage more with toys or puzzles when they are less 
certain about their causal mechanisms (Bonawitz et al., 2012, 2011; 
Cook et al., 2011; Denison et al., 2013; Gweon et al., 2014; Gweon and 
Schulz, 2008; Schulz and Bonawitz, 2007; van Schijndel et al., 2015). 
The inverse temperature parameter used across reinforcement learning 
studies may reflect, in part, some of this early uncertainty-resolving 
behavior. As individuals learn which option is most rewarding and 
select it more often, they also become more certain about its reward 
probability. In contrast, they select lower-valued options less frequently, 
and do not accumulate as much experience with their outcomes. Thus 
the lower-valued options also tend to be less well-known, such that their 
selection on some trials could in part be explained by individuals acting 
to reduce their uncertainty to the greatest extent (Wilson et al., 2014). 
One recent study found that this uncertainty-driven exploration may 
influence children’s performance on value-based learning tasks (Blanco 
and Sloutsky, 2019). Specifically, relative to adults, 4-year-old children 
more often selected choice options that they had not recently selected 
and more often selected those with hidden, as opposed to visually 
explicit, rewards, though there was extensive heterogeneity in choice 
behavior within the group. The authors suggest that young children’s 
tendency to distribute their attention may bias them toward behavior 
that maximizes information-gain, as opposed to choice behavior that 
maximizes reward. It is important to note, however, that this study only 
included young children and adults; it remains unclear whether and how 
a bias toward uncertainty-reduction may interact with value-based 
learning across middle childhood and adolescence, into adulthood. 

2.2.1.3. Strategic exploration. As with learning rates, the optimal tuning 
of the temperature parameter depends on the structure of the environ-
ment. In dynamic contexts with changing reward probabilities (e.g., 
Decker et al., 2016; Javadi et al., 2014) high rates of exploration 
throughout the task are necessary to continuously discover newly 
rewarding options. But in environments in which reward probabilities 
are static and easy to learn, participants can maximize reward by 
exploring only minimally to learn which option tends to be more fruitful. 
Once learners discover the better option, exploration yields no benefit. 

Thus, while children do seem to explore to a greater extent than adults, it 
is not clear whether there are also developmental differences in in-
dividuals’ ability to adapt their rate of exploration to the statistics of 
their environments. 

It may be the case that the most pronounced developmental changes 
in exploration are changes in strategic exploration — or the extent to 
which individuals adjust their exploratory behavior based on its utility. 
One study that quantified random, directed, and strategic exploration 
across 12-to-28-year-olds found evidence only for age-related change in 
strategic exploration (Somerville et al., 2017). Specifically, older par-
ticipants increased the frequency with which they selected the more 
uncertain choice option when they would have more opportunities to 
use the information they acquired, suggesting their rate of directed 
exploration was sensitive to its utility. A recent reward-learning study 
similarly found that while children and adults demonstrated comparable 
rates of exploration at the beginning of a task, adults more rapidly 
switched to a strategy of consistently selecting the highest-valued option 
(Plate et al., 2018). Though many mechanisms could explain this 
finding, one possibility proposed by the authors is that adults were 
better than children at strategically reducing their exploration as it 
became less beneficial. These findings suggest that, though children may 
demonstrate increased choice stochasticity relative to adolescents and 
adults, developmental differences in inverse temperature estimates may 
also sometimes reflect age-related improvement in the ability to stra-
tegically adapt rates of exploration to the specific task environment. 

2.2.1.4. Neural mechanisms of exploration. Different neurocognitive 
mechanisms may account for the changes in random, uncertainty- 
directed, and strategic exploration that may contribute to age-related 
differences in inverse temperature parameter estimates. The devel-
oping brain itself may be “noisier,” leading to more variable behavior on 
some cognitive tasks in childhood and early adolescence (Li et al., 2004; 
MacDonald et al., 2006). For example, when performing both cognitive 
control and memory tasks, school-aged children and adolescents 
demonstrate more intraindividual variability in their response times 
relative to adults (McIntosh et al., 2008; Tamnes et al., 2012; Williams 
et al., 2005). The emergence of greater behavioral consistency in early 
adulthood has been linked to increases in white matter integrity 
(Tamnes et al., 2012) and, counterintuitively, to increases in the vari-
ability of neural activity, which may indicate the flexible engagement of 
different functional brain networks during demanding cognitive tasks 
(McIntosh et al., 2008). 

While studies have investigated neural mechanisms of behavioral 
stochasticity across development, less is known about changes in the 
neural mechanisms that support directed exploration. Research in adults 
has found that the rostrolateral prefrontal cortex (RLPFC), a brain region 
implicated in relational and analogical reasoning (Bunge, 2004; Bunge 
et al., 2009) may track the relative uncertainty around different choice 
options, and promote uncertainty-directed exploration (Badre et al., 
2012). Genetic evidence further suggests that dopamine function in the 
prefrontal cortex may also relate to uncertainty-directed exploration 
(Frank et al., 2009); individuals with an allele associated with enhanced 
prefrontal dopamine function demonstrated a greater use of directed 
exploration. These studies both highlight potential focal points of 
further investigation of the neural mechanisms that may support 
changes in directed exploration across development. The RLPFC and its 
connectivity to other neural regions continues to change throughout 
adolescence (Wendelken et al., 2016, 2011). However, to the best of our 
knowledge, no studies have investigated how the development of the 
RLPFC may relate to changes in exploratory decision-making strategies 
in reinforcement learning contexts. 

Taken together, prior work suggests that multiple different forms of 
exploration — and unique neural mechanisms — may contribute to 
observed changes in inverse temperature parameter estimates across 
development. To better understand the neurocognitive mechanisms of 
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change in value-based decision-making across development, future 
work should combine behavioral tasks that can isolate different 
exploratory strategies with neuroimaging measures that can track their 
underlying neural instantiations. 

2.2.2. Model mismatch 
Though inverse temperature parameter estimates can capture 

exploratory behavior, they may also capture noise in the value estimates 
themselves, with lower inverse temperatures arising when there is a 
mismatch between the cognitive learning algorithms implemented by 
participants and the mathematical learning algorithms implemented by 
the model (Palminteri et al., 2016; Wyart and Koechlin, 2016). For 
example, a child may believe that the task is structured such that each 
choice option will always pay out a loss after it pays out two rewards in a 
row. In this case, she may always select option B after receiving two 
rewards in a row from option A. Here, her choices would be highly 
consistent with her beliefs about the value of the two options, but simple 
single or dual-learning-rate models would not be able to capture this 
structured fluctuation of her value estimates. This in turn, would lead 
the model to suggest that she was frequently selecting the choice she 
believed was lower value, leading to a low inverse temperature 
parameter estimate that could be mistaken for “exploration” of the 
low-value option. 

In line with this hypothetical example, Palminteri et al. (2016) found 
that in a task in which reward probabilities for choice options were 
anti-correlated, adults’ choices were best captured by a model that 
included a counterfactual learning module that updated value estimates 
for both the chosen and unchosen option, as well as a contextual module 
that tracked the average value of sets of choice options to enable similar 
performance in reward and punishment contexts. Palminteri et al. 
(2016) found that not only did the most complex model best capture 
adult choices, but that in adults, inverse temperatures also increased 
with model complexity. This suggests that the inverse temperature pa-
rameters in the simpler models were capturing noise in the model’s 
value estimates. When that “noise” was accounted for by additional 
modules that more accurately reflected adults’ learning strategies, their 
choices were more deterministically related to the model’s value esti-
mates. Palminteri et al. (2016) showed that differences in inverse tem-
peratures may arise due to differences in the extent to which 
value-updating algorithms accurately capture participants’ learning 
process. We suggest that differences in inverse temperatures across age 
groups may arise for the same reason. To better disambiguate explora-
tion from a mismatch between model algorithms and participant 
learning strategies, developmental studies should include larger, 
hypothesis-driven test sets of models that might account for a wide range 
of learning strategies that individuals might implement at different 
stages of development. 

Of course, even a very large test set of models may not include one 
that perfectly captures the idiosyncratic learning and decision strategies 
of every participant. Returning to our previous example, a participant 
might believe that rewards are distributed with a particular structure (i. 
e. two rewards followed by a loss), but testing models that represent 
these plausible, but highly specific, structured beliefs, quickly becomes 
impractical, if not impossible. A participant might believe that an option 
pays out a loss after each reward, or every two rewards, or every three 
rewards, or they might believe that inconsequential features of the task 
— like the side of the screen on which an option appears — determines 
her payout. Children and adolescents in particular may approach tasks 
with a broader set of hypotheses about their structures (Gopnik et al., 
2015, 2017). Relative to adults, children’s beliefs may be less con-
strained by prior knowledge, enabling them to more flexibly update 
their beliefs or conceive of novel solutions to problems (German and 
Defeyter, 2000; Lucas et al., 2014). The protracted development of the 
prefrontal cortex may underlie the shift from more flexible, divergent 
thinking to more constrained and efficient goal-directed behavior 
(Thompson-Schill et al., 2009). These findings suggest that as a group, 

children may demonstrate greater heterogeneity in their beliefs about 
their learning environments, which may inform their estimates of the 
value of their actions, preventing their choices from being well-captured 
by any single model. Researchers could better test this idea by exam-
ining how the variability in the fit of different models differs across age 
groups. 

3. Conclusions 

Over the past ten years, many studies have applied computational 
models to examine how value-based learning changes with age. Many 
experiments have applied similar models to address related questions 
about how learning develops, and when taken together as a whole, their 
results can appear contradictory. From childhood to adulthood, learning 
rates increase (Davidow et al., 2016; Master et al., 2019) decrease 
(Decker et al., 2015), or do not change (Javadi et al., 2014; Palminteri 
et al., 2016). Inverse temperatures remain constant (Davidow et al., 
2016; Hauser et al., 2015; Moutoussis et al., 2018; van den Bos et al., 
2012), increase (Christakou et al., 2013; Decker et al., 2015; Javadi 
et al., 2014; Palminteri et al., 2016; Rodriguez Buritica et al., 2019), or 
vary within a single context (Plate et al., 2018). But the lack of a simple 
story regarding the relation between age and the tuning of model pa-
rameters is a feature of value-based learning, not a bug. Developmental 
changes in core learning processes may reflect age-related differences in 
how individuals adapt their behavior — like the extent to which they 
weight recent outcomes — to different environments, rather than to 
more stable settings of parameters. Still, some potential trends in 
parameter tuning emerged. Inverse temperatures, which reflect the de-
gree to which value estimates influence choices, may increase with age, 
a pattern that has been attributed to greater stochastic and exploratory 
behavior earlier in development, but which may be better explained by 
the developing ability to strategically align one’s level of exploration to 
its utility in a given context. This pattern may also reflect a higher degree 
of mismatch between the value-updating algorithms implemented in 
computational models and those that actually control children’s and 
adolescents’ learning processes. 

In discussing these results, we have laid out a few suggestions for 
building a more interpretable body of developmental reinforcement 
learning literature. First, findings may be easier to compare across 
studies if researchers report not just the parameter estimates that best 
capture participant data, but also the range of parameter settings, or 
combinations of parameter settings, that enable optimal performance on 
the task. Additionally, more studies should test the extent to which 
participants adjust their tuning of learning parameters when faced with 
different environmental structures or statistics (Bolenz et al., 2019; 
Dorfman and Gershman, 2019; Kool et al., 2017). Reporting deviations 
from optimality and examining adaptability across contexts — both at 
the behavioral and neural level — will enable researchers to better tease 
apart the extent to which developmental change in model parameter 
estimates reflect more stable, context-independent learning biases that 
are present at particular developmental periods versus differences in the 
extent to which participants flexibly adapt their learning to the demands 
of distinct environments. 

In reviewing prior work, we have taken reported parameter esti-
mates and model-fitting results at face value, but many studies have not 
examined the extent to which parameters or tested models are identi-
fiable and recoverable given the specific tasks used. Models that propose 
different value-updating algorithms, like one- vs. two-learning rate 
models, may not make sufficiently different predictions in some contexts 
for them to be differentiated. It may also be the case that different 
parameter settings would not lead participants to make different choices 
in some task contexts, preventing parameters from being accurately 
estimated. Other papers have more extensively laid out recommenda-
tions for best practices in model-fitting, and we refer readers to them for 
a more comprehensive overview of steps that can be taken to better 
ensure the collection of interpretable data and the accuracy and 
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robustness of the inferences drawn from computational analyses (Lee 
et al., 2019.; Wilson and Collins, 2019.). Given the large investments of 
time and resources required to conduct developmental research, 
ensuring that we are collecting meaningful data and using the compu-
tational tools at our disposal — like simulation — to ensure the 
robustness of our findings, is particularly important. 

In a similar vein, many of the neuroimaging studies that have 
examined changes in value-based learning have relied on relatively 
small samples of around 40 participants (Christakou et al., 2013; Cohen 
et al., 2010; Hauser et al., 2015). While different findings across studies 
could elucidate how changes in task context trigger the engagement of 
distinct neural mechanisms, they could also reflect false positive, 
spurious findings (Button et al., 2013; Poldrack et al., 2017; Turner 
et al., 2018). The literature could thus benefit from more studies that test 
not just how behavior varies across different contexts, but also from 
direct replications of previously reported findings. Finally, though re-
searchers often search for neural correlates of developmental differences 
in parameter estimates, model-based fMRI may not always be sensitive 
to such differences (Wilson and Niv, 2015). 

The majority of studies that we reviewed relied on cross-sectional 
samples of school-aged children, adolescents, and adults to measure 
developmental differences in learning processes. One shortcoming of the 
literature is that preschool-aged children have been largely excluded 
from this work. Including very young children in modeling studies is 
challenging, because reliably estimating reinforcement learning model 
parameters requires a large amount of data from each participant. Pre-
schoolers may lack the requisite attention spans to complete the number 
of trials this data-hungry methods requires. Tasks that are “gamified,” 
and those that can be performed repeatedly across different testing 
sessions, could help to surmount this challenge. Additionally, while 
cross-sectional studies have illuminated developmental differences in 
learning, they have not provided direct evidence that these differences 
reflect normative, developmental trajectories. Future work should 
directly test how learning processes change over time by employing 
longitudinal designs (Crone and Elzinga, 2015). One challenge with 
studying learning processes through repeated testing is that it may be 
difficult to tease apart performance improvements due to participants’ 
increasing exposure to and experience with particular tasks from more 
general, age-related improvement in learning ability. However, the ef-
fects of experience with a particular task likely dissipate with time and 
might be mitigated if researchers change their task framing and narra-
tives while maintaining the same cognitive demands. 

This review focused on simple implementations of reinforcement 
learning models. Of course, in the real word — and in experimental tasks 
with greater complexity — many different cognitive processes interact 
with the basic value-updating and choice mechanisms we discussed 
here. Studies of adults have leveraged models with more complex value- 
updating algorithms or task representations to characterize interactions 
between reinforcement learning and episodic memory (Bornstein and 
Norman, 2017; Gershman and Daw, 2017), working memory (Collins 
and Frank, 2009; Collins et al., 2017), attention (Leong et al., 2017; Niv 
et al., 2015), planning (Daw et al., 2011; Lally et al., 2017), and causal 
inference (Dorfman et al., 2019; Gershman et al., 2015), yielding insight 
into how different processes work together to support learning and 
adaptive action in more complex environments. Several recent empirical 
studies have extended these lines of inquiry into developmental pop-
ulations (Cohen et al., 2019; Davidow et al., 2016; Decker et al., 2016; 
Master et al., 2019.; Moutoussis et al., 2018; Raab and Hartley, 2019). 
This work holds the potential to better elucidate how known develop-
mental changes in cognitive processes inform reinforcement learning 
over development. Moreover, by testing samples with a wide age range 
of participants, in which these cognitive processes will be more variable, 
developmental research may be able to provide fundamental insights 
into the nature of the interaction between key component processes of 
cognition and value-based learning and decision making. 

Though modeling reinforcement learning can provide insight into 

the way in which participants of different ages learn from the outcomes 
of their actions, it does not inherently provide insight into the processes 
that govern developmental change itself. As we continue down this road 
of inquiry, we may reach clearer conclusions about how learning rates, 
temperatures, or even the value-updating algorithms that individuals 
implement change with age. But these models are inherently descriptive, 
not mechanistic. Ultimately, our mandate as researchers who seek to 
understand development itself is to ask why these algorithms, or the 
settings at which they are implemented, change with the accumulation 
of experience, the maturation of critical neural functions, or interactions 
between them. 
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