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During embryonic development, maintenance of cell identity and lineage commitment requires the Polycomb-group
PRC2 complex, which catalyzes histone H3 lysine 27 trimethylation (H3K27me3). However, the developmental origins of
this regulation are unknown. Here we show that H3K27me3 enrichment increases from blastula stages onward in embryos
of the Western clawed frog (Xenopus tropicalis) within constrained domains strictly defined by sequence. Strikingly, although
PRC2 also binds widely to active enhancers, H3K27me3 is only deposited at a small subset of these sites. Using a Support
Vector Machine algorithm, these sequences can be predicted accurately on the basis of DNA sequence alone, with a se-
quence signature conserved between humans, frogs, and fish. These regions correspond to the subset of blastula-stage
DNA methylation-free domains that are depleted for activating promoter motifs, and enriched for motifs of develop-
mental factors. These results imply a genetic-default model in which a preexisting absence of DNA methylation is the major
determinant of H3K27 methylation when not opposed by transcriptional activation. The sequence and motif signatures
reveal the hierarchical and genetically inheritable features of epigenetic cross-talk that impose constraints on Polycomb
regulation and guide H3K27 methylation during the exit of pluripotency.

[Supplemental material is available for this article.]

The spectacular development of a complex multicellular organism

is precisely regulated by epigenetic mechanisms. The chromatin

landscape has been extensively studied in mammalian cell lines

(Bhaumik et al. 2007; Mikkelsen et al. 2007), but little is known

about how this landscape emerges during development. During

embryogenesis, the Polycomb group (PcG) proteins are essential

for patterning and stable lineage commitment (Simon and Kingston

2009; Margueron and Reinberg 2011; Bogdanovi�c et al. 2012). These

proteins are associated with two complexes, Polycomb repressive

complex 1 and 2 (PRC1, PRC2).

The PRC2 complex is conserved from plants to vertebrates and

catalyzes trimethylation of lysine 27 of histone 3 (H3K27me3), which

is associated with repression of developmental genes (Schuettengruber

et al. 2009). One of the core components, E(Z) homolog 2 (EZH2),

contains a SET domain and is responsible for the catalytic action of

the PRC2 complex (Cao and Zhang 2004). A number of other

proteins interact with PRC2 in a substoichiometric manner (Smits

et al. 2013). One of these is JARID2, a JmjC domain-containing

protein (Peng et al. 2009; Shen et al. 2009; Li et al. 2010; Pasini et al.

2010). Localization of PRC2 to the DNA depends on JARID2; how-

ever, there is evidence that JARID2 recruitment is in turn dependent

on PRC2 (Peng et al. 2009; Shen et al. 2009; Li et al. 2010; Pasini et al.

2010). Although JARID2 can influence the catalytic action of PRC2,

the exact mechanism remains unclear.

The H3K27me3 modification can be bound by the PRC1

complex, which causes compaction of the chromatin (Margueron

and Reinberg 2011). Although historically, PRC1 has been thought

to act downstream from PRC2, there is mounting evidence that

PRC1 functions independently of PRC2 (Schoeftner et al. 2006;

Tavares et al. 2012).

Much is yet unclear about how the PcG complexes are di-

rected to the chromatin. There is evidence supporting both se-

quence-directed and sequence-independent mechanisms. In Dro-

sophila, Polycomb response elements (PREs)—with a combination

of motifs for a number of transcription factors (TFs) such as PHO,

GAGA factor (GAF), and zeste—have been implicated in PRC2 re-

cruitment (Ringrose et al. 2003; Schuettengruber et al. 2009). Al-

though binding of PHO is indeed observed in nearly all Polycomb

domains (Schuettengruber et al. 2009), methods to predict PREs

based on these motifs perform very poorly (Zeng et al. 2012). In

vertebrates, PRE sequences remain largely elusive. The closest

vertebrate homolog of PHO, YY1, has been associated with PcG

function (Atchison et al. 2003; Woo et al. 2010), but its binding

motif is depleted in Polycomb domains (Ku et al. 2008; Liu et al.

2010). Two vertebrate PREs have been identified (Sing et al. 2009;

Woo et al. 2010), however, these are relatively large fragments (1.8

and 3 kb), and the exact sequences required for binding and re-

pression are unknown.

Rather than specific TF binding motifs, CpG islands do seem

to play a major role in PcG protein recruitment in mammals.

GC-rich sequences can recruit PRC2, and CpG islands devoid of

activating motifs are sufficient for initial localization of PRC2 and

subsequent methylation of H3K27 (Ku et al. 2008; Mendenhall

et al. 2010). Similarly, a high density of CpG dinucleotides is suf-

ficient for Polycomb recruitment in mouse (Lynch et al. 2012).

One possible mechanism for PRC1 recruitment to CpG islands

is through KDM2B, which binds to unmethylated CpGs via its

CxxC zinc finger domain (Farcas et al. 2012). Other sequence-
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based recruitment mechanisms include interactions with sequence-

specific TFs such as REST (Dietrich et al. 2012; Arnold et al. 2013)

and RUNX1 (Yu et al. 2012).

Finally, several long noncoding RNAs (lncRNAs) have been

identified that influence Polycomb-dependent H3K27 methylation

(Rinn et al. 2007; Zhao et al. 2008; Tsai et al. 2010). These lncRNAs

may serve as scaffolds by providing binding surfaces for assembly of

specific histone modification complexes (Tsai et al. 2010).

To study the earliest dynamics of regulation by Polycomb in

the context of vertebrate development, we studied the dynamics

and activity of PRC2 in Xenopus tropicalis embryos. H3K27 is mostly

newly methylated at promoter-distal positions, with a dramatic

increase in enrichment from blastula to gastrula. H3K27 methyla-

tion is constrained to preexisting DNA methylation-free domains,

which can be accurately predicted from the primary DNA sequence

using a Support Vector Machine (SVM) algorithm. Specific regula-

tory sequence motifs can further distinguish between active and

repressed methylation-free regions. These conserved, cell-type–

independent signals dynamically guide Polycomb repression during

the exit of pluripotency at the beginning of gastrulation.

Results

The repressive H3K27me3 modification is newly deposited
from blastula stages onward

To characterize the dynamics of H3K27me3 nucleation and spread-

ing in X. tropicalis, we generated epigenetic profiles using chromatin

immunoprecipitation followed by deep sequencing (ChIP-seq) at

four developmental stages. We assayed H3K4me3, H3K27me3, the

enhancer mark H3K4me1, the Polr2a subunit of RNA Polymerase II

(RNAPII), Ezh2, Jarid2, and a ChIP input track as control (see

Methods) (Table 1; Supplemental Table 1).

We identified three clusters of temporal H3K27 methylation

patterns (Fig. 1A,B; Supplemental Figs. 1, 2). Cluster 1 is promoter-

associated, with H3K27me3 constrained to a ;10-kb region cen-

tered at the gene promoter (Fig. 1B, left panel). Cluster 2 shows

large domains (up to ;100 kb) completely covering one or more

genes (Fig. 1B, right panel). Cluster 3 consists of a set of small se-

quences with no clear association with genes (Supplemental Fig. 1).

Genes regulated by H3K27me3 are enriched for developmental

transcription factors and functions in development, pattern for-

mation, and morphogenesis (Supplemental Table 2). Promoters

show very low levels of H3K27me3 at the blastula stage, with a

strong increase at gastrulation (Fig. 1C), whereas H3K4me3 is al-

ready enriched at the blastula stage. Indeed, a genome-wide analysis

of all 1862 promoters that gain H3K27me3 confirms the devel-

opmental hierarchy of permissive and repressive modifications

(Fig. 1D; Akkers et al. 2009). However, we do observe some sites of

early H3K27me3 nucleation. In many broad H3K27me3 domains,

methylation of H3K27 is initiated at a local site. The majority of these

sites do not correspond to gene promoters and show no H3K4me3

enrichment (Supplemental Figs. 3, 4). We did not observe a significant

overlap with noncoding RNA genes (Supplemental Table 4), and TF

motif analysis yielded no enriched motifs. The promoter-distal loca-

tions of early H3K27 methylation sites, however, raised the question as

to how H3K27 methylation relates to both PRC2 and enhancer sites.

Enhancers recruit PRC2

We therefore assessed H3K27me3 dynamics at PRC2 subunits Ezh2

and Jarid2 binding sites. Surprisingly, only a small subset of the

PRC2 binding sites gains H3K27me3 during subsequent develop-

ment to the tailbud stage (Fig. 2A; Supplemental Fig. 5). This sug-

gests that binding of the methyltransferase Ezh2 is either very

unstable or not sufficient for H3K27 methylation at many loci. The

lack of chromatin-associated H3K27me3 is not explained by de-

pletion of histones, as most regions bound by both Ezh2 and Jarid2

binding have the enhancer mark H3K4me1 (Fig. 2A).

To assess the relationship with enhancers, H3K4me1 peaks

with RNAPII (Kim et al. 2010), but not H3K4me3, were selected,

and the enrichment for H3K27me3, Ezh2, and Jarid2 was deter-

mined (Fig. 2B). The results show that PRC2 is recruited to the

majority of active enhancers at the pluripotent blastula stage.

Consistently, these sites contain motifs of important develop-

mental regulators (Supplemental Fig. 6). The POU, Forkhead, Ho-

meobox, HMG-box, and T-box motif families are all significantly

enriched, indicating that enhancers from both pluripotency and

lineage specification networks are bound by PRC2.

Comparative analysis of sequence features of vertebrate
H3K27me3 domains

To determine the involvement of DNA sequence in establishing

H3K27 methylation, we evaluated TF motifs and repeat content in

broad H3K27me3 domains that are established by the gastrula

stage and, moreover, compared nucleosome positioning signals,

GC content, and CpG islands in Xenopus, zebrafish, and human in

a comparative analysis.

First, from known TF motifs, only the REST motif was sig-

nificantly enriched (Supplemental Fig. 7). Although REST is known

to associate with Polycomb complexes (Dietrich et al. 2012; Arnold

et al. 2013), this motif is present in only ;1% of H3K27me3 do-

mains. No other TF binding motifs were significantly associated

with H3K27me3 domains.

Second, identification of overrepresented repeats shows that

large H3K27me3 domains (Cluster 2) are highly enriched for spe-

cific simple sequence repeat types (more than 50 times) such as

Table 1. Overview of the ChIP-sequencing data in this study
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TAGA/TCTA and CA/TG (Supplemental Material; Supplemental

Table 3). This may reflect a tendency of increased DNA polymerase

slippage in Polycomb-repressed chromatin.

Third, to test the involvement of nucleosome positioning

signals, we used a recent model for prediction of nucleosome posi-

tions from DNA sequence (van der Heijden et al. 2012). We observed

a significantly higher predicted positioning signal in H3K27me3

domains compared with random genomic sequence (Fig. 3A, upper

panels) in a pattern that closely follows the H3K27me3 enrichment

profile (Fig. 3A, lower panels).

Finally, we analyzed the GC% and CpG enrichment of

H3K27me3 domains. In human, as reported (Ku et al. 2008;

Mendenhall et al. 2010), the GC% distribution of H3K27me3 do-

mains is highly skewed compared with the genomic background

(Fig. 3B, upper panel). In contrast, there is no significant GC%

skewing in both frog and zebrafish (Fig. 3B, middle and lower

panel). Similarly, the overrepresentation of the CG dinucleotide,

which is very conspicuous in human (and mouse; data not shown),

is only minor in zebrafish and absent in frog (Fig. 3C). Analysis of

H3K27me3 enrichment at CpG islands shows similar results, with

H3K27me3 at the majority of human CpG islands in contrast to frog

and zebrafish (Supplemental Fig. 8). Therefore, CpG island charac-

teristics do not constitute the pan-vertebrate sequence features of

H3K27me3 domains, even though nucleosome positioning signals

are conserved in these regions.

Pan-vertebrate DNA sequence signals of H3K27me3 domains

To use an alternative approach to analyze the DNA sequence

properties of H3K27 methylation, we applied an SVM algorithm

(Lee et al. 2011). This is a supervised machine learning approach

that, in this particular case, uses all sequences of length k (k-mers)

to distinguish a specific set of sequences from genomic back-

ground. It is trained with a subset of the genomic data (positive and

negative sequences) to produce a classifier that can be used to

predict the status of new sequences. The rest of the data that was

not used for training can be used to test the performance of the

SVM. We first trained an SVM on Xenopus H3K27me3 domains.

Even though we found no enriched TF motifs in these regions

except for the REST motif, and even though the GC% is similar to

genomic background, an SVM trained on part of the genome is

able to accurately classify H3K27me3-marked regions in the

Figure 1. H3K27me3 is newly deposited from blastula stages onward. (A) Heatmap of a k-means clustering analysis (k = 3, Euclidian distance) of
H3K27me3 (blastula and gastrula), H3K4me3 (blastula and gastrula), H3K4me1, Ezh2, and Jarid2 (blastula) in 10-kb regions around H3K27me3 peak
summits. The rows correspond to the peaks, the x-axis shows the position relative to the peak center. The intensity of the color represents the number of
reads in 100-bp windows. The first two clusters are shown: for cluster 3, see Supplemental Figure 1. (B) Average profile and representative example of the
two clusters shown in A. The average profiles show the median enrichment (black line) and the 50th and 90th percentiles in a darker and lighter color,
respectively. (C ) Boxplot showing enrichment of H3K4me3 (green, left) and H3K27me3 (red, right) in 2-kb regions around the TSS for genes marked by
H3K27me3 in the blastula or gastrula stage (‘‘promoter’’), and all peaks for H3K27me3 in any stage (‘‘H3K27me3 peaks’’). The y-axis represents log2 of the
fold enrichment compared with randomly selected genomic sequences. The background level (no enrichment; log2 of 0) is marked by a dotted line. (D)
H3K4me3 (green) and H3K27me3 (red) enrichment in blastula- and gastrula-stage embryos around transcription start site (TSS; 65 kb) marked by
H3K27me3 in the gastrula. Regions were clustered using hierarchical clustering with the Euclidian distance metric.
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remaining part (Fig. 4A; Supplemental Fig. 9). Next, we analyzed

the performance of the SVM in a cross-species analysis (Fig. 4B).

Shown is the prediction performance as a receiver operating curve

(ROC) that plots the fraction of true positives versus the fraction of

false positives; a high area under the curve (AUC ; 1) corresponds

to high accuracy and sensitivity. An SVM trained in any of the

three species can predict H3K27me3 domains to a certain degree in

a different species, uncovering pan-vertebrate sequence conser-

vation in H3K27 methylation (Fig. 4B). The performance of the

SVM is not based purely on GC% and CpG content as it also can

distinguish natural H3K27me3 sequences from random regions

with an identical dinucleotide background or from regions with

a similar GC% sampled from the genome (Supplemental Fig. 10).

By use of the SVM output from the three species, we identified

motifs that are consistently enriched or depleted in H3K27me3

domains (Supplemental Material; Supplemental Figs. 11, 12). Re-

markably, the unique sequence properties captured by the SVM

trained on human H1 ES cells also identify cell-type–specific

H3K27me3 domains that are not present in H1 ES cells (Supple-

mental Fig. 13), showing that the SVM detects a sequence-based,

cell-type–independent propensity for H3K27 methylation.

H3K27 methylation in preexisting DNA methylation-free
regions

We previously showed that H3K27me3 and DNA methylation tend

to be mutually exclusive using capture of methylated DNA by a

MBD domain (MethylCap) (Bogdanovi�c et al. 2011). Indeed, when

the average MethylCap signal is visualized over H3K27me3 peak

borders, we observe a paucity in DNA methylation in H3K27me3-

enriched regions (Fig. 5A, left panel). Recently, it was shown by

CXXC affinity capture (Bio-CAP) that nonmethylated islands

(NMIs), rather than CpG islands, are a conserved feature of ver-

tebrate genomes (Long et al. 2013). Indeed, the Bio-CAP signal

confirms that H3K27me3 domains are unmethylated (Fig. 5A, left

panel). In human and zebrafish, H3K27me3 is similarly enriched

in regions depleted of DNA methylation (Fig. 5A). The NMIs in

Xenopus do not correspond to the classic definition of CpG islands

(cf. Fig. 3B; Long et al. 2013). Strikingly, we find that H3K27me3 is

deposited during gastrulation in preexisting (blastula-stage) DNA

methylation-free regions (Supplemental Fig. 14). However, this only

concerns a subset of NMIs, as many NMIs have already gained

H3K4me3 by the blastula stage without gaining H3K27me3. In

Xenopus, all NMIs gain one or both of these histone modifications

(Fig. 5B). Taken together, a paucity in DNA methylation is a con-

served feature of H3K27me3 domains that is shared with many

H3K4me3-enriched promoters, raising the question of which fea-

tures could distinguish between unmethylated regions that gain

and those that do not gain H3K27me3.

TF motifs distinguish unmethylated regions that do or do not
gain H3K27me3

The H3K27me3-marked sequences form a subset of the NMIs in

all three species. More precisely, H3K27me3 decorates DNA

methylation-free regions at many developmentally regulated genes,

whereas unmethylated islands near other genes, including house-

keeping genes, gain H3K4me3 but not H3K27me3 (Fig. 5B). We

therefore trained an SVM on DNA methylation-free regions and find

it performs very well (ROC AUC 0.953) (Fig. 6A). Only 19% of the

NMIs in Xenopus gain H3K27me3. However, an SVM specifically

trained to distinguish between NMIs with and without H3K27me3

is able to separate them with high performance (ROC AUC 0.853)

(Fig. 6B). Interestingly, the k-mers with the highest and lowest

weights of the SVM correspond to important regulatory motifs

(Fig. 6C,D). NMIs without H3K27me3 are characterized by motifs

of housekeeping TFs such as ETS, NFY, CREB, and YY1 (Fig. 6C).

These correspond to the motifs that were previously identified in

mouse CpG islands without H3K27me3 (Ku et al. 2008). However,

we find that NMIs that gain H3K27me3 show enrichment of

motifs for developmental regulators such as Sox and Homeobox

TFs (Fig. 6D). Therefore, TF motifs distinguish unmethylated DNA

elements that do or do not acquire H3K27me3.

Blastula-stage H3K27me3 peaks function as repressive elements
in Xenopus and mouse

We wondered if regions carrying the SVM sequence signature could

function as repressive elements. We selected sites with a positive

SVM score that showed H3K27me3 enrichment in blastula-stage

embryos. These sites (;1 kb) were cloned into a pGL3 reporter vector

and used for injection in Xenopus embryos and for transfection of

mouse ES cells (Fig. 7A). In both experimental systems, these sites

significantly repress luciferase expression (P < 0.001) and show

H3K27me3 enrichment (P < 0.001), but no difference in H3K4me3

Figure 2. PRC2 is recruited to the majority of active developmen-
tal enhancers. (A) The majority of PRC2 binding sites do not gain
H3K27me3. Heatmap of a hierarchical clustering of Ezh2, Jarid2,
H3K27me3, and H3K4me1 enrichment around the summits of Ezh2
and Jarid2 peaks. Data are visualized in 100-bp bins in 10-kb regions.
(B) PRC2 is recruited to active enhancers. Enrichment of H3K4me1,
RNAPII, H3K27me3, Ezh2, and Jarid2 at active enhancers. Data are
visualized in 100-bp bins in 10-kb regions and are sorted by H3K4me1.
Enhancers are defined as RNAPII peaks in regions with H3K4me1 but
not H3K4me3.
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enrichment (Fig. 7B). This confirms that the pan-vertebrate conserved

sequence signature we identified indeed directs H3K27 methylation

and repression across species. None of the selected sites are CpG is-

lands, and the mean GC% is 38%, lower than the overall GC% of

both the Xenopus and the mouse genome (;40%).

H3K27 methylation is influenced by nucleosome density and

by allosteric activation of Ezh2 (Margueron et al. 2009; Yuan et al.

2012). To assess the influence of sequence length, we tested the

effect of multimerization on four H3K27me3 initiation sites in

mouse ES cells. Figure 7C shows the H3K27me3 ChIP-qPCR re-

covery of the same 1-kb fragment multimerized one, two, or four

times. The recovery increases almost linearly with the length of the

inserted fragment, though the background signal of the vector

backbone shows no such increase.

Discussion
Our interspecies analysis of Polycomb regulation uncovered prin-

ciples of H3K27 methylation during embryonic development in-

volving epigenetic cross-talk, sequence features, and a hierarchy of

activation and repression. The developmental timing of H3K27

methylation from the pluripotent blastula stage onward in Xenopus

embryos is consistent with a function in stable differentiation

and lineage commitment (Bogdanovi�c et al. 2012). The dynamics

Figure 3. Conserved and diverged sequence features of vertebrate H3K27me3 domains. (A) The top panel shows the predicted nucleosome occupancy
of H3K27me3 domains (red line) and random genomic regions (gray line). The maximum nucleosome occupancy (van der Heijden et al. 2012) was
calculated per 1 kb using a moving window (window size, 1 kb; step size, 100 bp). Shown is the mean of predicted maximum occupancy for all H27me3
domains or random genomic regions. The bottom panel shows the median ChIP-seq enrichment of H3K27me3 domains. (B) %GC of H3K27me3 domains
and genomic background in human, Xenopus tropicalis, and zebrafish. (C ) Overrepresentation of dinucleotides in human, X. tropicalis, and zebrafish
H3K27me3 domains compared with the genomic background (log2 of the fold difference in dinucleotide frequency).

H3K27 methylation dynamics during development
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support reestablishment of repressive chromatin rather than in-

heritance from sperm or oocytes. This has previously been sug-

gested for zebrafish (Lindeman et al. 2011) and is supported by

analysis of histone modifications by mass spectrometry (Schneider

et al. 2011).

The PRC2 complex is present at the majority of active devel-

opmental enhancers, possibly recruited by binding of PRC2 to en-

hancer RNAs (eRNAs) that are expressed at enhancers (Kanhere et al.

2010; Kim et al. 2010). However, only a subset of these enhancers

gain the H3K27me3 mark. This implies additional regulation, such as

activation or inhibition of Ezh2 through posttranslational modifi-

cations (Cha et al. 2005; Lan et al. 2007; Wei et al. 2011). Also, PRC2

may be ineffective in H3K27 methylation at these sites because of

H3K27 acetylation, a hallmark of active enhancers.

Our results indicate that Polycomb recruitment in vertebrates

is not necessarily mediated through a PRE, defined by a combina-

tion of repressive binding motifs. We find that overall susceptibility

to H3K27 methylation is linked to specific sequence properties,

absence of DNA methylation, and binding sites for cell-type–specific

transcriptional activators. The conserved sequence signature, how-

ever, marks the Polycomb-regulated subgenome in a cell-type–

independent fashion and may reflect a propensity for H3K27

methylation. Part of the sequence component reflects the pres-

ence of constitutive DNA methylation-free domains. This is very

significant as binding of PRC2 to nucleosomes is counteracted by

methylated DNA (Bartke et al. 2010). PRC2 binding and H3K27

methylation are also inhibited by gene activation, especially by

the presence of the H3K4me3 permissive mark (Schmitges et al.

2011).

In humans, the conserved sequence signature correlates with

CpG islands, which previously have been implicated in Polycomb

recruitment (Ku et al. 2008; Mendenhall et al. 2010; Lynch et al.

2012). In contrast, Polycomb-regulated sequences in Xenopus and

zebrafish do not exhibit a strong CpG or GC% enrichment. How-

ever, they are devoid of DNA methylation and can be accurately

identified using an SVM. In addition, Xenopus H3K27me3 nucle-

ation sites show repressive capacity in mouse ES cells, even though

these sequences do not correspond to CpG islands.

Interestingly, we find that constitutive and cell-type–specific

TF motifs distinguish between different DNA methylation-free

regions that do or do not acquire H3K27 methylation. Supporting

this model, a single point mutation in a binding site of the activating

SP1 TF can result in repression by Polycomb (Caputo et al. 2013). The

data suggest a genetic default mechanism for this type of facultative

heterochromatin, in which default H3K27 methylation in domains of

unmethylated DNA can be counteracted by dynamic and cell-type–

dependent gene activation. The default nature of this repression is

significant in light of the hierarchy between activation and re-

pression, as H3K4me3 is acquired before localized H3K27 methyl-

ation represses multilineage gene expression (Akkers et al. 2009).

Our results indicate that it is not GC richness by itself that

causes H3K27 methylation but, rather, associated sequence fea-

tures and absence of DNA methylation in combination with an

absence of activating signals. After initial recruitment of PRC2, the

H3K27me3 modification spreads on unmethylated susceptible se-

quences due to the activating effect of nucleosome density (Yuan

et al. 2012) and an allosteric positive feedback loop (Margueron et al.

2009). Indeed, the predicted nucleosome occupancy is significantly

higher in H3K27me3 domains compared with the genomic average.

During subsequent development and differentiation, Polycomb

action may be complemented by gene-specific targeting mecha-

nisms involving REST or other repressors.

Binding of PRC2 is reduced by DNA methylation, and

H3K27me3 is also inhibited by other histone modifications (Bartke

et al. 2010; Pasini et al. 2010; Schmitges et al. 2011), overriding the

genetic-default state in different cell types. The underlying geno-

mic sequence signature may function as a genetically inheritable

constraint on Polycomb target selection, and the interplay with

other epigenetic modifications may elegantly explain the stability of

cell lineage commitment. An H3K27 methylation-default state

within DNA methylation-free regions that are not transcriptionally

activated may establish two major features of epigenetic regulation of

Figure 4. A k-mer Support Vector Machine (SVM) can accurately predict H3K27me3 domains from the primary sequence in vertebrates. (A) Examples
of H3K27me3 domain prediction by a k-mer SVM using k = 8 (lower track; black is a positive score, gray a negative score). H3K27me3 enrichment in the
blastula and gastrula is visualized in the top two tracks. (B) Interspecies performance of k-mer SVMs (k = 8) trained on different vertebrates. Performance is
visualized in a receiver operator curve (ROC) and the ROC area under curve (ROC AUC) is shown as a performance measure. The y-axis shows the
sensitivity; the x-axis, 1� specificity. The columns indicate the species used for training; the rows indicate the species used for evaluation. For instance, the
lower left ROC curve indicates the performance of human sequence classification of an SVM trained on frog.
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development: (1) de novo reconstitution of the epigenetic landscape

during early development and (2) locking cell lineage commitment

by raising the activation threshold of multilineage gene expression

after initial lineage specification at the onset of gastrulation.

Methods

Published data
All previously published, public data sets used in this study are
summarized in Supplemental Table 6.

Animal procedures

X. tropicalis and Xenopus laevis embryos were obtained by in vitro
fertilization, dejellied in 3% cysteine, and collected at the following
Nieuwkoop-Faber stages: nine (blastula), 12 (gastrula), 16 (neurula),
and 30 (tailbud).

Chromatin immunoprecipitation and antibodies

Chromatin for chromatin immunoprecipitation was prepared as
previously described (Jallow et al. 2004; Akkers et al. 2012). The
following antibodies were used: anti-H3K4me3 (Abcam ab8580), anti-
H3K27me3 (Upstate/Millipore 07-449), anti-H3K4me1 (Diagenode
CS-037-100), Jarid2 (Abcam ab48137), EZH2 (Active Motif 39103),
and POLR2A (Diagenode AC-055-100).

For all ChIP-seq samples, three independent biological repli-
cates of different chromatin isolations were pooled.

Sequencing and alignment

Sequencing samples were prepared according to the manufacturer’s
protocol (Illumina). Shortly, adapter sequences were ligated, the li-
brary was size-selected (200–300 bp), and amplified. The sequencing
(36 cycles) was carried out on a Genome Analyzer IIx (Illumina)
except for the Input track, which was sequenced on a HiSeq 2000
(Illumina). Reads passing the Illumina chastity filter were aligned
to the X. tropicalis genome (version JGI 7.1) using BWA (Li and
Durbin 2009). For processing and manipulation of SAM/BAM files,
SAMtools was used (Li et al. 2009). All duplicate reads and reads
mapping to repeat regions were removed.

Detection of enriched regions

We used PeakRanger version 1.15 (Feng et al. 2011) with the
following parameters: FDR 1 3 10�6 (H3K27me3, H3K4me3) or
1 3 10�4 (Ezh2, Jarid2, RNAPII, H3K4me1), ext_length 300. All
peaks were called relative to an input control track. Only scaffolds
>2 Mb were included in the analysis.

Generation of profiles and heatmaps

All heatmaps and bandplot profiles were generated using fluff
(http://simonvh.github.com/fluff). This Python package uses pysam
(http://code.google.com/p/pysam/), pybedtools (Dale et al. 2011),
and HTSeq (http://www-huber.embl.de/users/anders/HTSeq/) for
BAM and BED manipulations and Pycluster (de Hoon et al. 2004)

Figure 5. H3K27 methylation in DNA methylation-free regions. (A) The methylation state (top panel) and H3K27me3 enrichment (bottom panel)
visualized over H3K27me3 domain borders. The methylation state assessed by MethylCap (X. tropicalis; light blue) or bisulfite sequencing (human and
zebrafish; dark blue) is shown, as well as the Bio-CAP signal (green). For H3K27me3 ChIP-seq, MethylCap, and Bio-CAP, the number of reads per 1 kb is
shown from �15 kb to +5 kb relative to the H3K27me3 domain border. The bisulfite seq signal indicates the mean fraction of methylated CpGs. For data
sets, see Supplemental Table 6. (B) Screenshot of a representative profile of H3K4me3 (green), H3K27me3 (red), and Bio-CAP (blue) ChIP-seq enrichment
in X. tropicalis blastula-stage embryos.
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for k-means and hierarchical clustering. For all heatmap clustering,
the Euclidian distance metric was used. For hierarchical clustering,
we used the pairwise complete-linkage function.

Analysis of sequence features

As input for all sequence feature analysis, we used H3K27me3 do-
mains of at least 1 kb from gastrula embryos (stage 12, X. tropicalis;
shield, zebrafish) or ES cells (H1-hESC, human). To identify enriched
motifs, we used ‘‘maxenr’’ from the GimmeMotifs package (van
Heeringen and Veenstra 2011) to scan for all vertebrate motifs from
JASPAR. All motifs present in at least 1% of the sequences with
an enrichment of at least three times compared with random
background sequences were reported. For the repeat analysis, see
Supplemental Material. We calculated the average maximum
predicted nucleosome occupancy using an empirical statistical
mechanics model (Supplemental Material; van der Heijden et al.
2012). An equal number of regions was randomly selected from
the same genome and analyzed in the same manner.

Bio-CAP analysis

Peaks were called using MACS 2 (Zhang et al. 2008) relative to
the input. The SVM was trained on 1-kb peaks centered around
the Bio-CAP peak summit. For motif analysis, the 30 8-mers with
either highest or lowest weight were clustered and matched to
known motifs using GimmeMotifs (van Heeringen and Veenstra
2011). After clustering, enrichment was determined, and only
motifs with an enrichment of at least 1.5 times are shown in
Figure 6.

SVM analysis of H3K27me3 domains

For SVM analysis, we employed the method previously described
for enhancer prediction (Lee et al. 2011). We used 1-kb H3K27me3
regions as positive sequences and randomly selected genomic se-
quences with no H3K27me3 ChIP-seq enrichment as negative se-
quences. For training we used all chromosomes except scaffold_9
(Xenopus) and chr2 (humans, zebrafish), which were used for val-
idation and assessment of (cross-species) performance. In addition,

Figure 6. Transcription factor motifs predict the H3K27me3 state of DNA methylation-free regions. (A) ROC curve of the classification of X. tropicalis
DNA methylation-free regions (Bio-CAP peaks) compared with random genomic regions using a k-mer SVM (k = 8). (B) ROC curve of the classification of
DNA methylation-free regions (Bio-CAP peaks) using a k-mer SVM (k = 8). The regions are classified as either gaining H3K27me3 or remaining devoid
of H3K27me3. (C ) Motifs from k-mers with a high SVM weight, which are enriched in (active) DNA methylation-free regions without H3K27me3. The best
match to known motifs is shown; uncertain matches are marked with an asterisk. (D) Motifs from k-mers with a low SVM weight that are enriched in
(repressed) DNA methylation-free regions with H3K27me3.
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we performed a 10-fold cross-validation procedure using random
partitioning of training (90%) and evaluation (10%) data sets to
obtain the average performance (mean ROC AUC) of the SVM on
X. tropicalis H3K27me3 regions.

ES cell culture

Male mouse embryonic stem cells (E14) were cultured according to
standard SIGTR protocols (http://www.sanger.ac.uk/resources/
mouse/sigtr/). Briefly, cells were grown on 0.1% gelatin-coated
plates and maintained in high-glucose Dulbecco’s modified Eagle’s
medium (Gibco, Invitrogen) supplemented with 15% FBS (PAA
Laboratories), 1% penicillin/streptomycin (PS; Gibco), 0.0035%
b-mercaptoethanol (Sigma-Aldrich), and 0.2% LIF (Chemicon).

Transient transfection and luciferase assays

Selected regions of ;1 kb in size were amplified from genomic
DNA (Supplemental Table 5) and cloned into the pGL3-promoter
vector (Invitrogen). Plasmid DNA was purified using the Plasmid
Maxi Kit (Qiagen) or the Wizard Plus SV miniprep DNA purification
system (Promega) and transfected in E14 cells using Lipofectamine
2000 (Invitrogen) or microinjected into one-cell-stage X. laevis
embryos. Luciferase expression was measured 48 h after transfec-
tion (ES cells) or at the gastrula stage (X. laevis). Whole-cell protein
extracts were prepared in reporter lysis buffer (Promega), and lucif-
erase assays were performed according to manufacturer’s protocol
(Promega). Significance was calculated using the one-tailed Wilcoxon
ranked-sum test.

Quantitative (RT-) PCR

PCR reactions were performed on a MyiQ single-color real-time PCR
detection system (Bio-Rad) using iQ SYBR green supermix (Bio-Rad).
Primer sequences are available in the Supplemental Material.

Data access
The sequencing data have been submitted to the NCBI Gene Ex-
pression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/) un-
der accession number GSE41161. Visualization tracks are available
at our website (http://veenstra.ncmls.nl).
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