Research Article

Comparative Genomics of *H. pylori* and Non-Pylori *Helicobacter* Species to Identify New Regions Associated with Its Pathogenicity and Adaptability

De-Min Cao,¹ Qun-Feng Lu,² Song-Bo Li,¹ Ju-Ping Wang,³ Yu-Li Chen,³ Yan-Qiang Huang,³ and Hong-Kai Bi⁴

¹ Center for Scientific Research, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
²School of Medical Laboratory Sciences, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
³School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
⁴Department of Pathogenic Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China

Correspondence should be addressed to Yan-Qiang Huang; hyq77615@163.com and Hong-Kai Bi; hkbi@njmu.edu.cn

Received 21 July 2016; Revised 17 September 2016; Accepted 11 October 2016

Academic Editor: Wen-Jun Li

Copyright © 2016 De-Min Cao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The genus *Helicobacter* is a group of Gram-negative, helical-shaped pathogens consisting of at least 36 bacterial species. *Helicobacter pylori* (*H. pylori*), infecting more than 50% of the human population, is considered as the major cause of gastritis, peptic ulcer, and gastric cancer. However, the genetic underpinnings of *H. pylori* that are responsible for its large scale epidemic and gastrointestinal environment adaption within human beings remain unclear. Core-pan genome analysis was performed among 75 representative *H. pylori* and 24 non-*pylori Helicobacter* genomes. There were 1173 conserved protein families of *H. pylori* and 673 of all 99 *Helicobacter* genus strains. We found 79 genome unique regions, a total of 202,359bp, shared by at least 80% of the *H. pylori* but lacked in non-*pylori Helicobacter* species. The operons, genes, and sRNAs within the *H. pylori* unique regions were considered as potential ones associated with its pathogenicity and adaptability, and the relativity among them has been partially confirmed by functional annotation analysis. However, functions of at least 54 genes and 10 sRNAs were still unclear. Our analysis of protein-protein interaction showed that 30 genes within them may have the cooperation relationship.

1. Introduction

H. pylori is a Gram-negative, spiral-shaped epsilon-proteobacterium. It colonizes 50% of the world's human population, even as high as 80% in developing countries, making it one of the most successful pathogens [1, 2]. This bacterium can cause gastrointestinal disease, such as gastritis, peptic ulcer disease, gastric adenocarcinoma, and mucosa-associated lymphoid tissue (MALT) lymphoma [3–5]. As research continues, a great number of non-pylori *Helicobacter* species (NPHS) inhabiting in a wide variety of human beings, mammals, and birds have been found [6]. Until now, there are at least 36 species of the *Helicobacter* genus that have been studied (http://www.bacterio.net/helicobacter.html). The *Helicobacter* genus strains have been detected in more than 142 vertebrate species [7]. Among them, *H. pylori* is the major pathogenic bacterium in human beings. Besides *H. pylori*, some NPHS were also found to associate with human body function disorders [8]. For instance, *H. heilmannii*, *H. winghamensis*, *H. pullorum*, and *H. canis* were considered as causative agent of stomach and intestinal diseases [9–11].

Many genome regions of *H. pylori*, involved in the mechanism of pathogenesis and adaption to the host environment, have been identified and studied. The well-known Cagpathogenicity island, an approximately 40 kb DNA region that encodes type IV secretion system (T4SS) and effector molecule cancer-associated gene toxin (cagA), has been proved to play a significant role in pathogenicity [12, 13]. The urea enzymes encoded by urease gene cluster can catalyze the hydrolysis of urea to ammonium and carbon dioxide. It is an influential colonization factor and contributes to gastric acid resistance [14]. Vacuolating cytotoxin (VacA) is a pore-forming toxin that implicates in altering host cell biology, including autophagy, apoptosis, cell vacuolation, and inhibition of T-cell proliferation [15–17].

In the past two decades, the whole genome of *H. pylori* and NHPS have been widely sequenced, which give us a more open field of version to study its pathogenicity and adaption mechanism. Previous studies indicated that *H. pylori* has a high rate of gene recombination and unusual genetic flexibility, and those traits were considered to be helpful for the adaption to the dynamic environment [18, 19]. Even though massive virulence factors of them have been studied, the mechanisms that the essential genome components of *H. pylori* lead to its large scale epidemic and gastrointestinal environment adaptation within human beings remain to be further elucidated.

In this study, comparative analysis of whole genome was made to reveal general character and characteristics of *Helicobacter* genus [20]. *H. pylori* and NHPS genomes that are available on public databases were used in the analysis. We intended to identify potential regions of *H. pylori* genomes that are responsible for its epidemicity and adaptability. In addition, comparative genome analysis among *Helicobacter* genus species can give a comprehensive insight into the genomic diversity in each species and help us to understand the relationship well among them.

2. Materials and Methods

2.1. Data Selection and Management. Helicobacter genus involves at least 36 species, while *H. pylori* is given more prominence for medicine. There are multiple complete genomes of them available on public databases, and the genomic data was acquired from NCBI FTP site (ftp://ftp.ncbi .nlm.nih.gov/genomes/) in this study. 99 genomes were selected, including 75 complete *H. pylori* genomes and 24 NPHS genomes, which belong to 19 species (released at the analysis time). To ensure the accuracy and consistency of initial data, chromosome, plasmids, and scaffolds of each candidate strain were concatenated by sequence "NNNNNCATTCCATT-CATTAATTAATTAATGAATGAATGNNNNN" to establish a pseudochromosome for further analysis [21].

In order to get the accordance dataset and avoid contradiction that was caused by difference of the gene prediction method applied in different projects, a single gene finding program, Glimmer version 3.02 [22], was used to predict open reading frames (ORFs). The ORFs were removed while their start or end position was inside the sideward sequence. The predicted results and raw databases information were corroborated to one another. And the program RNAmmer-1.2 [23] was used to predict full length of rRNA gene sequences. The size, GC content, number of genes, source, and other characteristics of all selected genomes were listed in Table 1. 2.2. Phylogenetic Analysis of 16S rRNA. In order to better understand the phylogenetic relationships among *Helicobacter* species, a phylogenetic tree was constructed using the 16S rRNA genes obtained from the 99 genomes. In addition, *Campylobacter jejuni* and *Campylobacter fetus* were used as outgroup. Multiple sequence alignment of 101 16S rRNA genes was performed using MAFFT version 7.123b [24]. The phylogenetic tree was inferred by the Neighbor-Joining method [25] using MEGA7 [26]. To estimate the consensus tree, 1000-bootstrap resampling was done.

2.3. Cluster Analysis of Core and Pan Genome. Orthologous group analyses were performed with software OrthoMCL version 2.0.9 [27], which could generate a similarity matrix normalized by species representation relationship of sequences, and it was then grouped using the Markov Clustering Algorithm (MCL) [28]. All-against-all BLASTP comparisons were used to get pair sequences of protein dataset in OrthoMCL at start. An *E*-value cutoff of 1e-5 and the aligned sequence length longer than the coverage of 50% of a query sequence was chosen to perform OrthoMCL.

A family matrix, which was generated from the genome pairwise comparison of the gene contents of any two genomes, was visualized. The gene families obtained from the OrthoMCL were used to get core and pan genome datasets. The number of unique genes and gene families for each individual species relative to other 98 genomes was calculated and visualized with bar graph.

2.4. Functional Classification of the Core and Accessory Genome. The dataset was combined into three groups: 75 *H. pylori* genomes alone, 24 NPHS genomes alone, and all the tested 99 *Helicobacter* genomes. For core and accessory genome of three groups, functional annotation and category were analyzed by performing BLASTP program against database Clusters of Orthologous Groups (COGs, 2014 update, https://www.ncbi.nlm.nih.gov/COG/), respectively [29, 30]. The percentage of each function category was illustrated by bar chart. All the heatmap and bar were plotted by R (https://www.r-project.org/).

2.5. Unique Regions Analysis of H. pylori. Each of the genomes was aligned to *H. pylori* 26695 using BLASTN program. Then, the genome regions shared by at least 80% of the H. pylori meanwhile lacked in NHPS were detected by a Perl script. The genomic lengths of unique regions only greater than 200 bp were considered. If the genomic length between each adjacent unique regions is less than 300 bp, it was regarded as a part of unique region. DOOR (Database for prOkaryotic OpeRons) [31] was used to predicate operons of *H. pylori* 26695 genome. Virulence factor database (VFDB) [32], COG database [29], InterProScan [33], and nonredundant (NR) protein database [34] were used to annotate and predict the functions of these genes within the target region. Furthermore, pfam [35], KEGG [36], GO [37], and TrEMBL [38] were used to discover more about the putative function of the hypothetical proteins of them.

BioMed Research International

H. actonychic str. Sueba157758835778837.1117066366766766776<	Organism	Size (bp)	GC (%)	Scaffolds	Plasmids	CDS	rRNA	tRNA	Natural host
H. aluogastricas 1578404 4705 9 0 12783 3 36 Felme H. bilis ATCC 43879 230521 34.7 9 0 2728 3 6 Mice H. bilis Correct 1807534 4566 1 1 1988 6 36 Dog. cat H. caraclensis MT 198-5491 162384 33.6 1 0 1014 6 39 Dogs H. carani MT 199-5555 1847790 35.54 1 1 1872 6 39 Human H. cironum MT 199-5565 1847790 35.54 1 0 1776 5 36 Cat.dog. rabbit, chetah H. cironum MT 199-5505 184790 215647 379 49 0 2103 3 38 Human H. feinarCC 43072 125664 379 49 0 2183 3 7 Marcota binalogana H. cironum MT 198-5481 1820936 318 1 0 1863 3 <t< td=""><td>H. acinonychis str. Sheeba</td><td>1557588</td><td>38.17</td><td>1</td><td>1</td><td>1706</td><td>6</td><td>36</td><td>Cheetah, tiger</td></t<>	H. acinonychis str. Sheeba	1557588	38.17	1	1	1706	6	36	Cheetah, tiger
H. blis./TCC 43879 253052 34,7 9 0 2728 3 36 Mice H. blis.wiWa 2559659 34,68 17 0 2728 9 6 36 Dog, cat H. biszoeroni CII-1* 180734 45.66 1 1 1988 6 36 Dog, cat H. cansin NCTC 1270* 1932823 44.82 1 0 1614 6 38 dolphin, whale H. cetorum MIT 99-5656 1847790 35.54 1 1 1857 6 36 dolphin, whale H. cinacil COB818 ATCC 48.78*7 201002 38.55 1 1 0 1776 5 36 Cat, dog, rabht, cheetah H. finardice MRU2-0050* 125644 37.9 49 0 1203 3 4 40 H. hendlemmit ASBL 4* 1804601 47.38 1 0 1804 3 36 0 Macaques H. hendlemmit ASBL 4* 180450 141 0 1804	H. ailurogastricus	1578404	47.05	9	0	1633	3	36	Feline
H. blix Starting Starting <ths< td=""><td>H. bilis ATCC 43879</td><td>2530521</td><td>34.7</td><td>9</td><td>0</td><td>2728</td><td>3</td><td>36</td><td>Mice</td></ths<>	H. bilis ATCC 43879	2530521	34.7	9	0	2728	3	36	Mice
H. bizzoeronii CHI-i* 1807534 45.66 1 1 1998 6 36 Dog. cat H. canialdensis MIT 98-5491* 1623845 33.69 1 0 1624 9 40 Barnacle, gese, rodent H. caris NCT 2240* 193232 14.82 1 0 1917 6 38 dolphin, whale H. crinead: CCG 18818 ATCC BAA.847 2240130 38.55 1 1 2329 6 39 Human H. cinaed: CCG 18818 ATCC BAA.847 2240130 38.55 1 1 2329 6 39 Human H. cinaed: CCG 18818 ATCC BAA.847 2240130 38.55 1 0 1736 3 38 Human H. himanini ASBI.4* 1804601 47.38 1 0 1833 3 37 Micro H. himalayensis strain YS1 1829936 39.89 1 0 1843 3 36 Pourter H. matclac 1298 155647 34.56 6 0 1754 3 36 Pourter H. himalayensis strain YS1 1829976	H. bilis WiWa	2559659	34.68	17	0	2751	9	40	Mice
H. canadensis MIT 98-5491° 1623845 33.69 1 0 1624 9 40 Barnacle, geese, rodent H. catrum MIT 99-565 1932823 44.82 1 0 1914 6 38 dolphin, whale H. cetorum MIT 99-566 1847790 35.54 1 1 1852 6 36 dolphin, whale H. cinacil PAGU611' 210102 38.55 1 1 2230 6 39 Human I. cinacil PAGU611' 210102 38.55 1 1 2230 6 39 Human H. cinacil NAGU611' 210102 38.55 1 1 00 1776 5 36 Cat, dog, rabbit, cheetah H. picinamin' ASBL* 180014 2033 3 37 Mice H. hichmanin' ASBL* 180014 2056 39 Maranate Mice H. macacae MIT 99-5501 2365528 40.41 4 0 266 39 Maraques H. matacae 1298 1578097 42.47 1 0 1745 6 38 Piguriate	H. bizzozeronii CIII-1*	1807534	45.66	1	1	1998	6	36	Dog, cat
H. cariis NCTC 12740* 1932823 44.82 1 0 1914 6 39 Dogs H. cetorum MIT 09-7128 1960111 34.53 1 1 1897 6 38 dolphin, whale H. cetorum MIT 99-565 184770 35.54 1 1 1827 6 39 Human H. cinacdi PAGU601* 1201402 38.53 1 1 2329 6 39 Human H. fish ATCC 4919* 1675618 44.51 1 0 17.65 36 Cat, dog, rabbit, cheetah H. heilmannii ASBL-4* 1804601 47.38 1 0 1836 3 37 Micca H. headinaspresis strain YS1 182936 39.89 1 0 1845 6 39 Marman H. matcace MIT 99-5501 236528 40.41 4 0 2669 6 39 Marman H. matcace MIT 99-5501 236528 60.00 1754 3 36 Poultry H. puilorn MIT 98-5489* 1951667 33.58 44 0 2105 3 <td>H. canadensis MIT 98-5491*</td> <td>1623845</td> <td>33.69</td> <td>1</td> <td>0</td> <td>1624</td> <td>9</td> <td>40</td> <td>Barnacle, geese, rodent</td>	H. canadensis MIT 98-5491*	1623845	33.69	1	0	1624	9	40	Barnacle, geese, rodent
H. cetorum MIT 00-7128 1960111 34.53 1 1 1897 6 38 dolphin, whale H. cetorum MIT 99-5656 1847790 35.54 1 1 1852 6 39 Human H. cinaad: CCG 18818 ATCC BAA-847 22101402 38.55 1 1 2329 6 39 Human H. fils ATCC 49179' 1672681 44.51 0 1776 5 36 Cat, deg, rabbit, cheetah H. folls ATCC 49179' 1672681 44.51 0 2103 7 41 Human H. folls ATCC 49179' 1672681 44.51 0 2103 7 41 Human H. heilmannii ASBL4'' 1804601 4738 1 0 1863 3 37 Mice H. initalgenis strain YS1 1829365 9.89 1 0 1745 6 38 Pig.bid H. mateciae 1298 1578097 42.47 0 1745 6 38 Pig.bid H. andensis StrUC StA4.430' 1951657 33.58 44 0 2109 3	H. canis NCTC 12740 [*]	1932823	44.82	1	0	1914	6	39	Dogs
H. ctorum MIT 99-5656 1847790 35.54 1 1 1852 6 36 dolphin, whale H. cinaadi PACUG 1881 8ATCC BAA-847' 2240130 38.34 1 0 2510 6 39 Human H. cinaadi PACUGI' 10102 38.55 1 1 230 3 8 Human H. feinedillae MRV12-0050' 215547 37.9 49 0 2503 3 8 Human H. heilmannii ASBL4' 180601 47.38 1 0 1863 3 37 Mice H. heindayensis strain YS1 182936 39.89 1 0 1866 6 39 Macaques H. macace MIT 99-5501 256928 40.41 0 1452 6 38 Ferret H. panderus MTT 98-5489' 1951667 33.58 44 0 1452 8 38 Pig.brid H. pullorum MT 98-5489' 1951667 33.58 44 0 2109 6 39 Macaques H. pullorum MT 98-5489' 195167 35.58 41 0 <td>H. cetorum MIT 00-7128</td> <td>1960111</td> <td>34.53</td> <td>1</td> <td>1</td> <td>1897</td> <td>6</td> <td>38</td> <td>dolphin, whale</td>	H. cetorum MIT 00-7128	1960111	34.53	1	1	1897	6	38	dolphin, whale
H. cinaacdi CCUG 18818 ATCC BAA-847* 2240130 38.34 1 0 2510 6 39 Human H. cinaadi PAGU61* 2101402 38.55 1 1 2329 6 39 Human H. cinaadi PAGU61* 2101402 38.55 1 0 176 5 36 Cat. dog. rabbit. cheetah H. feinnamii ASBL 4* 1804601 47.38 1 0 2103 3 38 Human H. hepaticus ATCC Si449 1799446 35.93 1 0 1886 6 39 Marmota himalayana H. mastedae I2188 157907 24.47 1 0 1432 8 38 Pig. bird H. pametensis ATCC 51478 1435066 40.08 11 0 1432 8 38 Pig. bird H. pullorum 229313-12* 1691799 34.56 60 0 1754 3 36 Poultry H. pullorum 229313-12* 1691799 34.56 60 0 1844 5 38 Pig. macaque H. pilori 2017 154238 39.3	H. cetorum MIT 99-5656	1847790	35.54	1	1	1852	6	36	dolphin, whale
H. cinaacdi PAGU6I1* 2101402 38.55 1 1 2329 6 39 Human H. fils ATCC 49179* 1672681 44.51 1 0 1776 5 36 Cat, dog, rabbit, cheetah H. feinelliae MRV12-0050* 2155647 37.9 49 0 2103 7 44 Human H. heilmannii ASBL4* 1804601 47.38 1 0 1863 3 37 Mice H. heilmannii ASBL4* 1804601 47.38 1 0 1863 6 39 Marmata himalayana H. macacae MIT 99-5501 235528 40.41 4 0 269 6 38 Ferret H. paaneensis ATCC S1478 1435066 40.08 11 0 1432 8 8 Pig, bird H. pullorum MIT 98-5489* 1951667 33.58 44 0 2105 3 36 Poultry H. suis IS1* 1635292 39.91 136 0 1814 5 8 Pig, bird H. yullorum 22913-12* 1690216 34.74 21 </td <td>H. cinaedi CCUG 18818 ATCC BAA-847*</td> <td>2240130</td> <td>38.34</td> <td>1</td> <td>0</td> <td>2510</td> <td>6</td> <td>39</td> <td>Human</td>	H. cinaedi CCUG 18818 ATCC BAA-847*	2240130	38.34	1	0	2510	6	39	Human
H, feirs ATCC 49179* 1672681 44.51 1 0 1776 5 36 Cat, dog, rabbit, cheetah H, fenimiliae MRV12-0050* 2155647 37.9 49 0 2503 3 38 Human H, hendimamii ASBL4* 1804601 47.38 1 0 1863 3 37 Mice H, hepaticus ATCC 51449 1799146 35.93 1 0 1863 6 39 Marmota himalayana H, masclae MT99-5501 236958 40.41 4 0 1675 6 38 Ferret H, masclae L2198 157807 42.47 1 0 1432 8 38 Pig, bird H, suis HS1* 1691799 34.56 60 0 1754 3 36 Poultry H, suis HS1* 169179 34.56 60 0 1814 5 38 Pig.macaque H, winghamensis ATCC 5HA+30* 1992082 38.85 1 0 1607 3 36 Human H, pylori 2017 1648238 39.3 1 0 <td>H. cinaedi PAGU611*</td> <td>2101402</td> <td>38.55</td> <td>1</td> <td>1</td> <td>2329</td> <td>6</td> <td>39</td> <td>Human</td>	H. cinaedi PAGU611*	2101402	38.55	1	1	2329	6	39	Human
H fermelliae MRY12-0050* 2155647 37.9 49 0 2503 3 38 Human H. helmannii ASBL4* 1804601 47.38 1 0 2113 7 41 Human H. hepaticus ATCC 51449 1799146 35.93 1 0 1866 39 Marmota himalayana H. macacae MIT 99-5501 2369528 40.41 4 0 2669 6 39 Marmota himalayana H. mustelae 12198 1578097 42.47 1 0 1745 6 38 Pig.bird H. pantensis ATCC 51478 1435066 40.08 11 0 1742 8 38 Pig.bird H. suis HS1* 1535292 39.91 136 0 2109 6 39 Mouse H. wipflamensis ATCC BAA-430* 1690216 34.74 21 0 1742 3 36 Human H. pylori 26695-1CH 1667302 38.87 1 0 1667 7 36 Human H. pylori 26695-1 166783 38.87 1 <td< td=""><td>H. felis ATCC 49179*</td><td>1672681</td><td>44.51</td><td>1</td><td>0</td><td>1776</td><td>5</td><td>36</td><td>Cat, dog, rabbit, cheetah</td></td<>	H. felis ATCC 49179*	1672681	44.51	1	0	1776	5	36	Cat, dog, rabbit, cheetah
H. heilmannii ASBLA* 1804601 47.38 1 0 2113 7 41 Human H. heidiavensis strain YSI 1829336 39.89 1 0 1863 3 37 Mice H. himalayensis strain YSI 1829336 39.89 1 0 1896 39 Marmota himalayana H. mustelae L2198 1578097 42.47 1 0 1432 8 38 Ferret H. puulorum 229313-12* 1691799 34.56 60 0 1754 3 36 Poultry H. pullorum 229313-12* 1691799 34.56 60 11744 3 36 Poultry H. pullorum 229313-12* 1691799 34.56 60 11844 5 38 Pig.macaque H. pullorium MIT 98-5489* 1951667 33.58 14 0 2109 6 39 Mouse H H. winghamensis ATCC BAA-430* 1690216 34.74 21 0 1742 3 6 Human H. pylori 2669-1CH 1667302 38.87 1 0 1667	H. fennelliae MRY12-0050*	2155647	37.9	49	0	2503	3	38	Human
H. hepaticus ATCC 51449 1799146 35.93 1 0 1863 3 37 Mice H. himalayensis strain YS1 1829936 39.89 1 0 1836 6 39 Marmota himalayana H. macacae MIT 99-5501 2369528 40.41 4 0 2669 6 39 Macaques H. musclae Li2188 157097 24.47 1 0 1432 8 38 Pierret H. pametensis ATCC 51478 1435066 40.08 11 0 1432 8 38 Pierret H. pametensis ATCC 51478 1951667 33.58 44 0 2105 3 36 Poultry H. suis HS1* 105222 39.91 136 0 1814 5 38 Pierret H. suis HS1* 1092082 38.85 1 0 1647 3 36 Houman H. suis HS1* 1092082 38.87 1 0 1667 7 36 Human H. sylori 2017 1548238 39.21 0 16647 7 <td>H. heilmannii ASB1.4*</td> <td>1804601</td> <td>47.38</td> <td>1</td> <td>0</td> <td>2113</td> <td>7</td> <td>41</td> <td>Human</td>	H. heilmannii ASB1.4*	1804601	47.38	1	0	2113	7	41	Human
H. indayensis strain YS1 182936 39.89 1 0 1896 6 39 Marmota himalayana H. maccacea MIT 95501 2369528 40.41 4 0 2669 6 39 Macaques H. mustelae 12198 1578097 42.47 1 0 1745 6 38 Ferret H. panetensis ATCC 51478 1435066 40.08 11 0 1432 8 38 Poultry H. pullorum 229313-12* 1691799 34.56 60 0 1754 3 36 Poultry H. suis HS1* 1635292 39.91 136 0 1814 5 38 Pig. macaque H. typhonius 1920832 38.85 1 0 1742 3 36 human H. pylori 2017 1548238 39.3 1 0 1657 7 36 Human H. pylori 26695-1CL 1667239 38.87 1 0 1667 7 36 Human H. pylori 26695-1CL 1667159 38.87 1 0 1667 </td <td>H. hepaticus ATCC 51449</td> <td>1799146</td> <td>35.93</td> <td>1</td> <td>0</td> <td>1863</td> <td>3</td> <td>37</td> <td>Mice</td>	H. hepaticus ATCC 51449	1799146	35.93	1	0	1863	3	37	Mice
H.macace MIT 99-55012369528 40.41 402669639Macaque'sH.mustelae 121981578097 42.47 101745638FerretH.panletnis ATCC 51478143506640.081101432838Pig, birdH.pullorum 22331-12*169179934.566001754336PoultryH.pullorum MIT 98-5489*195166733.584402105336PoultryH. suis HS1*163529239.9113601814538Pig, macaqueH. typlionius192083238.85102105336HumanH. pylori 201715423839.3101595336HumanH. pylori 2018156283239.29101607736HumanH. pylori 26695-1CL166723938.87101667736HumanH. pylori 26695-1MET166736738.87101667736HumanH. pylori 26695-1MET166736738.87101681736HumanH. pylori 26695-1166736738.87101667736HumanH. pylori 26695-1166738738.87101581636HumanH. pylori 26695166786738.87101581 <td< td=""><td>H. himalayensis strain YS1</td><td>1829936</td><td>39.89</td><td>1</td><td>0</td><td>1896</td><td>6</td><td>39</td><td>Marmota himalayana</td></td<>	H. himalayensis strain YS1	1829936	39.89	1	0	1896	6	39	Marmota himalayana
H. mustelae 12198 1578097 42.47 1 0 1745 6 38 Ferret H. pametensis ATCC 51478 1435066 40.08 11 0 1432 8 38 Pig, bird H. pullorum 229313-12* 1691799 34.56 60 0 1754 3 36 Poultry H. suis HS1* 163529 39.91 136 0 1144 5 38 Pig, macaque H. typhlonius 1920832 38.85 1 0 2109 6 39 Mouse H. vinghamensis ATCC BAA-430* 1690216 34.74 21 0 1742 3 36 Human H. pylori 2017 154238 39.3 1 0 1604 3 36 Human H. pylori 26695-1CH 1667303 38.87 1 0 1667 7 36 Human H. pylori 26695-1CL 1667303 38.87 1 0 1667 7 36 Human H. pylori 26695-1MET 166753 38.87 1 0 1	H. macacae MIT 99-5501	2369528	40.41	4	0	2669	6	39	Macagues
H. panetensis ATCC 51478 1435066 40.08 11 0 1432 8 38 Pig, bird H. pullorum XIT 92-313-12* 1691799 34.56 60 0 1754 3 36 Poultry H. pullorum MIT 98-5489* 1951667 33.58 44 0 2105 3 36 Poultry H. suis HS1* 1635292 39.91 136 0 1814 5 38 Pig, macaque H. typhonius 1920832 38.85 1 0 1742 3 36 Human H. pylori 2017 1548238 39.3 1 0 1657 3 36 Human H. pylori 26695-1CL 1667302 38.87 1 0 1667 7 36 Human H. pylori 26695-1CL 1667303 38.87 1 0 1667 7 36 Human H. pylori 26695-1CL 1667530 38.87 1 0 1667 7 36 Human H. pylori 26695-1CL 166785 38.87 1 0 1667	H. mustelae 12198	1578097	42.47	1	0	1745	6	38	Ferret
H. pullorum 229313-12* 1691799 34.56 60 1754 3 36 Poultry H. pullorum MIT 98-5489* 1951667 33.58 44 0 2105 3 36 Poultry H. suish HSt* 1635292 39.91 136 0 1814 5 38 Pig, macaque H. typhlonius 1920832 38.85 1 0 2109 6 39 Mouse H. winghamensis ATCC BAA-430* 169016 34.74 21 0 1742 3 36 Human H. pylori 2017 1548238 39.3 1 0 1664 3 36 Human H. pylori 2018 1562832 39.29 1 0 1667 7 36 Human H. pylori 26695-ICH 1667302 38.87 1 0 1667 7 36 Human H. pylori 26695-ILCI 1667239 38.87 1 0 1667 7 36 Human H. pylori 26695-ILCI 1667867 38.87 1 0 1681 7 <t< td=""><td>H. pametensis ATCC 51478</td><td>1435066</td><td>40.08</td><td>11</td><td>0</td><td>1432</td><td>8</td><td>38</td><td>Pig, bird</td></t<>	H. pametensis ATCC 51478	1435066	40.08	11	0	1432	8	38	Pig, bird
H pullorum MIT 98-5489* 1951667 33.58 44 0 2105 3 36 Poulry H. suis HSI* 1635292 39.91 136 0 1814 5 38 Pig, macaque H. suis HSI* 1635292 39.91 136 0 1814 5 38 Pig, macaque H. suis HSI* 1635292 39.91 136 0 1742 3 6 human H. pylori 2017 1548238 39.3 1 0 1667 7 36 Human H. pylori 2017 1548238 39.3 1 0 1667 7 36 Human H. pylori 20695-ICH 1667302 38.87 1 0 1667 7 36 Human H. pylori 26695-ICL 1667303 38.87 1 0 1667 7 36 Human H. pylori 26695-ILCL 1667303 38.87 1 0 1667 7 36 Human H. pylori 26695 1667867 38.87 1 0 1681 7	<i>H. pullorum 229313-12</i> *	1691799	34.56	60	0	1754	3	36	Poultry
H. suis HSI* 163292 39.91 136 0 184 5 38 Pig, macaque H. suis HSI* 1920832 38.85 1 0 2109 6 39 Mouse H. winghamensis ATCC BAA-430* 1690216 34.74 21 0 1742 3 36 human liver H. pylori 2017 1548238 39.3 1 0 1595 3 36 Human H. pylori 2018 1562832 39.29 1 0 1667 7 36 Human H. pylori 26695-1CL 1667302 38.87 1 0 1667 7 36 Human H. pylori 26695-1MET 1667303 38.87 1 0 1667 7 36 Human H. pylori 26695-1MET 1667303 38.87 1 0 1667 7 36 Human H. pylori 26695 1667867 38.87 1 0 1583 6 36 Human H. pylori 35A 156655 38.87 1 0 1583 6 36<	H. pullorum MIT 98-5489*	1951667	33.58	44	0	2105	3	36	Poultry
H. typhonius 1920832 38.85 1 0 2109 6 39 Mouse H. typhonius 1920832 38.87 1 0 1742 3 36 human liver H. pylori 2017 1548238 39.3 1 0 1595 3 36 Human H. pylori 2018 1562832 39.29 1 0 1667 7 36 Human H. pylori 26695-1CH 1667302 38.87 1 0 1667 7 36 Human H. pylori 26695-1CL 1667303 38.87 1 0 1667 7 36 Human H. pylori 26695-1MET 1667303 38.87 1 0 1667 7 36 Human H. pylori 26695 1667867 38.87 1 0 1681 7 36 Human H. pylori 3202AP 1667159 38.87 1 0 1583 6 36 Human H. pylori 351 1589954 38.77 1 0 1583 6 36 Human<	H. suis HS1*	1635292	39.91	136	0	1814	5	38	Pig. macaque
H. virghammensis ATCC BAA-430* 1690216 34.74 21 0 1742 3 36 human H. winghamensis ATCC BAA-430* 1548238 39.3 1 0 1595 3 36 human H. pylori 2017 1548238 39.29 1 0 1604 3 36 Human H. pylori 26695-1CH 1667302 38.87 1 0 1667 7 36 Human H. pylori 26695-1CL 1667303 38.87 1 0 1667 7 36 Human H. pylori 26695-1MET 1667303 38.87 1 0 1667 7 36 Human H. pylori 26695-1MET 1667303 38.87 1 0 1681 7 36 Human H. pylori 26695 1667867 38.87 1 0 1681 7 36 Human H. pylori 35A 156655 38.87 1 0 1583 6 36 Human H. pylori 52 1568826 38.94 1 0 1578 6	H. typhlonius	1920832	38.85	1	0	2109	6	39	Mouse
H. pylori 2017 1548238 39.3 1 0 1595 3 36 Human H. pylori 2018 1562832 39.29 1 0 1667 7 36 Human H. pylori 20695-1CH 1667302 38.87 1 0 1667 7 36 Human H. pylori 26695-1CL 1667239 38.87 1 0 1667 7 36 Human H. pylori 26695-1MET 1667303 38.87 1 0 1667 7 36 Human H. pylori 26695-1MET 1667303 38.87 1 0 1667 7 36 Human H. pylori 26695 1667867 38.87 1 0 1681 7 36 Human H. pylori 25020 1667867 38.87 1 0 1583 6 36 Human H. pylori 35A 156655 38.87 1 0 1583 6 36 Human H. pylori 52 156826 38.94 1 0 1578 6 36 Human </td <td>H. winghamensis ATCC BAA-430*</td> <td>1690216</td> <td>34.74</td> <td>21</td> <td>0</td> <td>1742</td> <td>3</td> <td>36</td> <td>human liver</td>	H. winghamensis ATCC BAA-430*	1690216	34.74	21	0	1742	3	36	human liver
In pylori 2018156283239.29101604336HumanH. pylori 26695-1CH166730238.87101667736HumanH. pylori 26695-1CL166723938.87101667736HumanH. pylori 26695-1MET166730338.87101667736HumanH. pylori 26695-1MET166736738.87101667736HumanH. pylori 26695166786738.87101681736HumanH. pylori 26695166786738.87101681736HumanH. pylori 29CaP166715938.81101704736HumanH. pylori 35A156685438.7710166636HumanH. pylori 5215882638.94101578636HumanH. pylori 7C163127639.01111627736HumanH. pylori 83161742638.72101634636HumanH. pylori 84150793039.21121487636HumanH. pylori B38157675839.16101582736HumanH. pylori BM012A166042538.88101679736HumanH. pylori BM012A166042538.8810 <td< td=""><td>H. pylori 2017</td><td>1548238</td><td>39.3</td><td>1</td><td>0</td><td>1595</td><td>3</td><td>36</td><td>Human</td></td<>	H. pylori 2017	1548238	39.3	1	0	1595	3	36	Human
In pylori 26695-1CH166730238.87101667736HumanH. pylori 26695-1CL166730238.87101667736HumanH. pylori 26695-1MET166730338.87101667736HumanH. pylori 26695-1MET166730338.87101667736HumanH. pylori 26695-1MET166786738.87101681736HumanH. pylori 26695166786738.87101681736HumanH. pylori 29CaP166715938.81101704736HumanH. pylori 35A15665538.87101606636HumanH. pylori 51158995438.77101606636HumanH. pylori 7C163127639.01111627736HumanH. pylori 83161742638.72101634636HumanH. pylori 908154966639.3101605336HumanH. pylori Aklavik86150793039.21121487636HumanH. pylori B8166042538.88101679736HumanH. pylori BM012A166042538.88101679736HumanH. pylori BM012S166042538.88	H. pylori 2018	1562832	39.29	- 1	0	1604	3	36	Human
In prior 26695-1CL166723938.87101667736HumanH. pylori 26695-1166763838.87101667736HumanH. pylori 26695-1166763838.87101669736HumanH. pylori 26695-1166786738.87101681736HumanH. pylori 26695166786738.87101681736HumanH. pylori 29CaP166715938.81101704736HumanH. pylori 5115895438.77101606636HumanH. pylori 5215682638.94101578636HumanH. pylori 7C163127639.01111627736HumanH. pylori 83161742638.72101634636HumanH. pylori 908154966639.3101605336HumanH. pylori 838157675839.16101582736HumanH. pylori 88168002938.78111673636HumanH. pylori BM012A166042538.88101679736HumanH. pylori BM012S160404938.88101676736Human	H. pylori 26695-1CH	1667302	38.87	1	0	1667	7	36	Human
In prior 2009 Fab1007 201007 736HumanH. pylori 26695-1166763838.87101667736HumanH. pylori 26695-1MET166730338.87101681736HumanH. pylori 26695166786738.87101681736HumanH. pylori 26095166715938.81101704736HumanH. pylori 35A156665538.87101583636HumanH. pylori 5115882638.94101578636HumanH. pylori 7C163127639.01111627736HumanH. pylori 83161742638.72101634636HumanH. pylori 908154966639.3101605336HumanH. pylori 838157675839.16101582736HumanH. pylori B88168002938.78111673636HumanH. pylori BM012A166042538.88101679736HumanH. pylori BM012S166046938.88101676736Human	H pylori 26695-1CL	1667239	38.87	1	0	1667	, 7	36	Human
In pylori 26695 1 MET166730338.87101669736HumanH. pylori 26695 1 MET166786738.87101681736HumanH. pylori 29CaP166715938.81101704736HumanH. pylori 35A156665538.87101583636HumanH. pylori 51158995438.77101606636HumanH. pylori 52156882638.94101578636HumanH. pylori 7C163127639.01111627736HumanH. pylori 83161742638.72101634636HumanH. pylori 908154966639.3101605336HumanH. pylori AklavikII7163612538.73121607636HumanH. pylori B8168002938.78101582736HumanH. pylori B8168002938.78111673636HumanH. pylori BM012A166042538.88101679736HumanH. pylori BM012S166046938.88101676736HumanH. pylori BM012A160423338.96101584736Human	H pylori 26695-1	1667638	38.87	1	0	1667	, 7	36	Human
In pylori BoosInternationalInternationalInternationalInternationalInternationalH. pylori 26695166786738.87101681736HumanH. pylori 29CaP166715938.81101704736HumanH. pylori 35A156665538.87101583636HumanH. pylori 51158995438.77101606636HumanH. pylori 52156882638.94101578636HumanH. pylori 7C163127639.01111627736HumanH. pylori 83161742638.72101634636HumanH. pylori 908154966639.3101605336HumanH. pylori Aklavik117163612538.73121607636HumanH. pylori B8150793039.21121487636HumanH. pylori BM012A166042538.88101679736HumanH. pylori BM012S166046938.88101676736HumanH. pylori BM012S166046938.88101676736HumanH. pylori BM012A160423338.96101584736Human	H pylori 26695-1MET	1667303	38.87	1	0	1669	, 7	36	Human
H. pylori 29CaP166715938.81101704736HumanH. pylori 35A156665538.87101583636HumanH. pylori 51158995438.77101606636HumanH. pylori 5215682638.94101578636HumanH. pylori 7C163127639.01111627736HumanH. pylori 83161742638.72101634636HumanH. pylori 908154966639.3101605336HumanH. pylori AklavikI17163612538.73121607636HumanH. pylori B38150793039.21121487636HumanH. pylori B4012A166042538.88101679736HumanH. pylori BM012B165906038.88101676736HumanH. pylori BM012S16046938.88101683736Human	H pylori 26695	1667867	38.87	1	0	1681	, 7	36	Human
H. pylori 250alHor 15500al16160 a500alHumanH. pylori 35A156665538.87101583636HumanH. pylori 51158995438.77101606636HumanH. pylori 52156882638.94101578636HumanH. pylori 7C163127639.01111627736HumanH. pylori 908154966639.3101605336HumanH. pylori Aklavik117163612538.73121607636HumanH. pylori B38157675839.16101582736HumanH. pylori B8166042538.88101679736HumanH. pylori BM012A166042538.88101676736HumanH. pylori BM012S16046938.88101683736HumanH. pylori BM013A160423338.96101584736Human	H pylori 29CaP	1667159	38.81	1	0	1704	, 7	36	Human
H. pylori Shi15000550001016006501H. pylori 51158995438.77101606636HumanH. pylori 52156882638.94101578636HumanH. pylori 7C163127639.01111627736HumanH. pylori 83161742638.72101634636HumanH. pylori 908154966639.3101605336HumanH. pylori Aklavik117163612538.73121607636HumanH. pylori B38150793039.21121487636HumanH. pylori B8168002938.78111673636HumanH. pylori BM012A166042538.88101679736HumanH. pylori BM012S166046938.88101676736HumanH. pylori BM013A160423338.96101584736Human	H tylori 35A	1566655	38.87	1	0	1583	6	36	Human
H. pylori 5115681 1101578 63636HumanH. pylori 52156882638.94101578 636HumanH. pylori 7C163127639.01111627 736HumanH. pylori 83161742638.72101634 636HumanH. pylori 908154966639.3101605 336HumanH. pylori Aklavik117163612538.73121607 636HumanH. pylori Aklavik86150793039.21121487 636HumanH. pylori B38157675839.16101582 736HumanH. pylori B8168002938.78111673 636HumanH. pylori BM012A166042538.88101676 736HumanH. pylori BM012S166046938.88101683 736HumanH. pylori BM013A160423338.96101584 736Human	H tylori 51	1589954	38.77	1	0	1606	6	36	Human
H. pylori 52163026303 111167063010H. pylori 7C163127639.01111627736HumanH. pylori 83161742638.72101634636HumanH. pylori 908154966639.3101605336HumanH. pylori Aklavik117163612538.73121607636HumanH. pylori Aklavik86150793039.21121487636HumanH. pylori B38157675839.16101582736HumanH. pylori B8168002938.78111673636HumanH. pylori BM012A166042538.88101676736HumanH. pylori BM012S166046938.88101683736HumanH. pylori BM013A160423338.96101584736Human	H tylori 52	1568826	38.94	1	0	1578	6	36	Human
H. pylori FC1612/101612/10171612/17 <t< td=""><td>H pylori 7C</td><td>1631276</td><td>39.01</td><td>1</td><td>1</td><td>1627</td><td>7</td><td>36</td><td>Human</td></t<>	H pylori 7C	1631276	39.01	1	1	1627	7	36	Human
H. pylori 601617 12030.72101607 10301607 11010H. pylori 908154966639.3101605336HumanH. pylori Aklavik117163612538.73121607636HumanH. pylori Aklavik86150793039.21121487636HumanH. pylori B38157675839.16101582736HumanH. pylori B8168002938.78111673636HumanH. pylori BM012A166042538.88101679736HumanH. pylori BM012S166046938.88101683736HumanH. pylori BM013A160423338.96101584736Human	H pylori 83	1617426	38.72	1	0	1634	6	36	Human
H. pylori 76016160051.516160555616011601H. pylori Aklavikl17163612538.73121607636HumanH. pylori Aklavik86150793039.21121487636HumanH. pylori B38157675839.16101582736HumanH. pylori B8168002938.78111673636HumanH. pylori BM012A166042538.88101679736HumanH. pylori BM012S166046938.88101683736HumanH. pylori BM013A160423338.96101584736Human	H pylori 908	1549666	39.3	1	0	1605	3	36	Human
H. pylori Hullmin160125301512160163014H. pylori Aklavik86150793039.21121487636HumanH. pylori B38157675839.16101582736HumanH. pylori B8168002938.78111673636HumanH. pylori BM012A166042538.88101679736HumanH. pylori BM012B165906038.88101676736HumanH. pylori BM012S166042938.88101683736HumanH. pylori BM013A160423338.96101584736Human	H pylori Aklavik117	1636125	38 73	1	2	1607	6	36	Human
H. pylori BA157675839.16101582736HumanH. pylori B38157675839.16101582736HumanH. pylori BM012A166042538.88101679736HumanH. pylori BM012B165906038.88101676736HumanH. pylori BM012S166046938.88101683736HumanH. pylori BM013A160423338.96101584736Human	H pylori Aklavik86	1507930	39.21	1	2	1487	6	36	Human
H. pylori BS016703035.10161562736HumanH. pylori BM012A166042538.88101679736HumanH. pylori BM012B165906038.88101676736HumanH. pylori BM012S166046938.88101683736HumanH. pylori BM013A160423338.96101584736Human	H pylori B38	1576758	39.16	1	0	1582	7	36	Human
H. pylori BM012A166042538.88101679736HumanH. pylori BM012B165906038.88101676736HumanH. pylori BM012S166046938.88101683736HumanH. pylori BM013A160423338.96101584736Human	H pylori B8	1680029	38.78	1	1	1673	6	36	Human
H. pylori BM012B 1659060 38.88 1 0 1676 7 36 Human H. pylori BM012S 1660469 38.88 1 0 1683 7 36 Human H. pylori BM012S 1604233 38.96 1 0 1584 7 36 Human	H pylori BM012A	1660425	38.88	1	0	1679	7	36	Human
H. pylori BM012B 105000 38.88 1 0 1683 7 36 Human H. pylori BM013A 1604233 38.96 1 0 1584 7 36 Human	H. pylori BM012R	1650060	38.88	1	0	1676	7	36	Human
H. pylori BM0125 1000405 30.00 1 0 1005 7 30 11 H. pylori BM013A 1604233 38.96 1 0 1584 7 36 Human	H. pylori BM0125	1660469	38.88	1	0	1683	7	36	Human
11. pytor bivorsa 1004255 50.50 1 0 1564 7 50 Human	H. pylori BM0123	1604233	38.96	1	0	1584	7	36	Human
H toylari BM013B 1604212 38 96 1 0 1586 7 36 Human	H pylori BM013R	1604233	38.96	1	0	1586	7	36	Human
$H \text{ tyleri } Divisib \qquad 1001212 30.70 1 0 1500 7 50 11011011 \\ H \text{ tyleri } Divisib 1635449 38.86 1 0 1616 6 36 \text{Human}$	H. pylori Cuz20	1635//10	38.86	1	0	1616	6	36	Human
H tylori FI \$37 1660876 38.88 1 1 1676 6 36 Human	H pylori EI \$37	1660876	38.80	1	1	1676	6	36	Human
H pylori El6 1575399 38.88 1 0 1503 6 36 Human	H pylori F16	1575300	38.88	1	0	1502	6	36	Human
<i>H. pylori F30</i> 1579693 38.8 1 1 1582 6 36 Human	H. pylori F30	1579693	38.8	1	1	1582	6	36	Human

TABLE 1: Continued.

Organism	Size (bp)	GC (%)	Scaffolds	Plasmids	CDS	rRNA	tRNA	Natural host
H. pylori F32	1581461	38.86	1	1	1587	6	36	Human
H. pvlori F57	1609006	38.73	1	0	1619	6	36	Human
H. pylori G27	1663013	38.87	1	1	1672	7	36	Human
H. pylori Gambia9424	1712468	39.12	1	1	1694	6	36	Human
H. pylori Hp238	1586473	38.7	1	0	1616	5	36	Human
H. pylori HPAG1	1605736	39.07	1	1	1595	6	36	Human
H. pylori HUP-B14	1607584	39.04	1	1	1597	6	36	Human
H. pylori India7	1675918	38.9	1	0	1664	6	36	Human
H. pylori J166	1650561	38.93	1	0	1630	6	36	Human
H. pylori J99	1643831	39.19	1	0	1629	6	36	Human
H. pylori Lithuania75	1640673	38.87	1	1	1659	6	36	Human
H. pylori ML1	1629815	38.69	1	0	1701	6	36	Human
H. pylori ML2	1562125	38.92	1	0	1764	6	36	Human
H. pylori ML3	1635334	38.64	1	1	1744	4	36	Human
H. pylori NY40	1696917	38.81	1	0	1751	6	36	Human
H. pylori OK113	1616617	38.73	1	0	1649	6	36	Human
H. pylori OK310	1595436	38.77	1	1	1595	6	36	Human
H. pylori oki102	1633212	38.81	1	0	1630	6	36	Human
H. pylori oki112	1637925	38.81	1	0	1635	6	36	Human
H. pylori oki128	1553826	38.97	1	0	1565	6	36	Human
H. pylori oki154	1599700	38.8	1	0	1626	6	36	Human
H. pylori oki422	1634852	38.83	1	0	1641	6	36	Human
H. pylori oki673	1595058	38.82	1	0	1623	6	36	Human
H. pylori oki828	1600345	38.8	1	0	1618	6	36	Human
H. pylori oki898	1634875	38.83	1	0	1612	6	36	Human
H. pylori P12	1684038	38.79	1	1	1688	6	36	Human
H. pvlori PeCan18	1660685	39.02	1	0	1629	6	36	Human
H. pylori PeCan4	1638269	38.91	1	1	1622	6	36	Human
H. pvlori Puno120	1637762	38.9	1	1	1617	6	36	Human
H. pylori Puno135	1646139	38.82	1	0	1616	6	36	Human
H. pylori Rifl	1667883	38.87	1	0	1678	7	36	Human
H. pylori Rif2	1667890	38.87	1	0	1674	7	36	Human
H. pylori Sat464	1567570	39.09	1	1	1553	6	36	Human
H. pylori Shi112	1663456	38.77	1	0	1651	6	36	Human
H. pylori Shi169	1616909	38.86	1	0	1593	6	36	Human
H. pylori Shi417	1665719	38.77	1	0	1623	6	36	Human
H. pylori Shi470	1608548	38.91	1	0	1612	6	36	Human
H. pylori SJM180	1658051	38.9	1	0	1640	6	36	Human
H. pylori SNT49	1610830	39	1	1	1599	6	36	Human
H. pylori SouthAfrica20	1622903	38.57	1	0	1701	6	36	Human
H. pylori SouthAfrica7	1679829	38.42	1	1	1689	6	36	Human
H. pylori UM032	1593537	38.82	1	0	1613	6	36	Human
H. pylori UM037	1692794	38.89	1	0	1708	6	36	Human
H. pylori UM066	1658047	38.62	1	0	1651	6	36	Human
H. pylori UM298	1594544	38.82	1	0	1618	6	36	Human
H. pylori UM299	1594569	38.82	1	0	1617	6	36	Human
H. pylori v225d	1595604	38.94	1	1	1608	6	36	Human
H. pylori XZ274	1656544	38.57	1	1	1798	7	36	Human

Note: (1) *NPHS associated with gastric disease in humans. (2) Latin name, genome size, GC-content, scaffolds number, plasmid number, information of genes, and natural host are listed.

Small noncoding RNAs (sRNAs) are ubiquitous regulators existing in all living organisms. They can impact various biological processes via interacting with mRNA targets or binding to regulatory proteins [39, 40]. RNAspace.org (http://RNAspace.org/), which is a comprehensive prediction and annotation tool of ncRNA [41], was used to predict ncRNA of *H. pylori*. Then, the particular ones contained by unique regions of *H. pylori* (URHP) were detected.

The analysis results were virtualized by BLAST ring image generator (BRIG) [42]. Five *H. pylori* strains, 26695, Cuz-20, J99, PeCan4, and SouthAfrica7, were drawn on the inner rings to represent the *H. pylori* species. URHP were drawn on the outer ring and twenty-four NHPS were drawn between them.

2.6. Protein-Protein Interaction Network Analysis of URHP Proteins. To better understand the role of URHP proteins in the *H. pylori* adaption and pathogenicity, protein-protein interaction network analysis of URHP proteins was carried out using Search Tool for the Retrieval of Interacting Genes/Proteins (STRING version 10.0) [43]. The STRING database (http://string-db.org/) is a comprehensive database that could provide a strict assessment and integration of protein-protein interactions, including physical as well as functional interrelationships.

3. Results and Discussion

3.1. Genome Statistics and Features. H. pylori was discovered by Warren and Marshall in 1983 and proved to be the pathogen that caused gastritis [44]. Then, the important pathogen strain H. pylori 26695 genome was completely sequenced in 1997 [45]. Altogether, ninety-nine genomes were used in this study and listed in Table 1, including 75 complete H. pylori genomes and 24 NPHS genomes, and plasmids were identified within 27 genomes (Table 1). The NPHS, which can be classified into 20 Helicobacter species, includes 11 completed genomes. Average genome size of all strains is 1,689,380 bp, ranging from 1,435,066 bp (*H*. pametensis ATCC 51478) to 2,559,659 bp (H. bilis WiWa). The genomes are relatively small and compact compared with other bacteria, which may indicate a specific adaptation for their obligate pathogenic lifestyles [46, 47]. This genus has a low GC content, whose average GC content is 38.91%, ranging from 33.58% (H. pullorum MIT 98-5489) to 47.38% (H. heilmannii ASB1.4). The average number of protein coding sequences predicted is 1,730, ranging from 1,432 (H. pametensis ATCC 51478) to 2,751 (H. bilis WiWa).

The hosts of this genus species have great variety. All the *H. pylori* strains and *H. cinaedi*, *H. fennelliae*, *H. heilmannii*, and *H. winghamensis* were originally isolated from humans. The natural hosts of *H. canis*, *H. bizzozeronii*, *H. Canadensis*, *H. felis*, *H. pullorum*, and *H. suis* are mammals or birds, including pig, cat, dog, and geese. At the same time, the above six NHPS were also found to associate with gastric disease in humans [48–51]. *H. acinonychis*, *H. ailurogastricus*, *H. bilis*, *H. cetorum*, *H. hepaticus*, *H. himalayensis*, *H. macacae*, *H. mustelae*, *H. pametensis*, and *H. typhlonius* were isolated from

nonhuman sources only, which had not been reported in human infection before [52–54].

3.2. Phylogenetic Analysis of 16S rRNA. Helicobacter genus species have a wide range of hosts. However, H. pylori is one of the most prevalent pathogenic bacteria that comigrated and evolved with human beings all around the world [55]. Each Helicobacter species has its own specific or broad hosts or even only survives in several host's organs [56], suggesting that each one of them has developed a balance of adaption with its hosts. In order to better understand the pattern of evolution in this genus, a phylogenetic tree based on 16S rRNA has been constructed for 99 Helicobacter species with *Campylobacter fetus* and *Campylobacter jejuni* as outgroup. After multiple alignments, the common gaps and missing data were masked. In the final dataset, there were 1,489 bp of each aligned sequence. As shown in Figure 1, H. acinonychis and H. cetorum, whose nature hosts are cats and aquatic mammals, respectively, are the closest species to H. pylori, and H. pylori strains have a very close relationship among them.

3.3. Homologous Proteome Analysis by Pairwise Comparisons. The whole predicted proteins (proteome) of each strain used in this study were compared to estimate the amount of proteins they shared. The homolog between any two different proteomes ranged from 43.71% (H. heilmannii ASB 1.4 versus H. bilis ATCC 43879) to 99.87% (H. pylori BM013A versus H. *pylori* BM013B), while it is generally to be above 80% within the *H. pylori* strains (Figure 2). The results also showed that *H*. acinonychis (average 81.7%) and H. cetorum (average 75.59%) had the highest similarity with H. pylori. The relationships shown by the homologous analysis are consistent when compared with the phylogenetic tree. The internal homology against its own proteome ranged from 1.45% (H. pullorum 229313-12) to 9.52% (H. heilmannii ASB1.4) with average 3.50%, which indicates that this genus's strains have a low redundancy in their genome composition.

3.4. Core-Pan Genome Analysis. The core genome, which is responsible for the basic life processes and major phenotypic characteristics, is composed of the gene families that are shared by all the Helicobacter species strains. The pan genome is the overall gene families existing in any Helicobacter species strain. The pan genome size of 75 H. pylori genomes is 4,409 with an average of about 39 new gene families extended with followed addition of genome. The increasing speed of pan genome size is almost the same with previous analysis of Ali et al., and their sample size is 39 genomes [57]. For 24 NPHS genomes along, the pan genome size is 12,010, including 4,412 singleton genes. When all NPHS and *H. pylori* genomes were used, the pan genome size was rapidly increased to 14,686, including 8,243 singleton genes. It is more than thrice the size of 75 H. pylori pan genome size. The above pan genome analytic results suggest that the genomes of Helicobacter genus species are open and have diversity. Nevertheless, the core genome size is relatively stable. There are 1,173 gene families shared by all the H. pylori genomes, which represent

FIGURE 1: 16S rRNA phylogenetic tree of 99 *Helicobacter* genus strains and 2 *Campylobacter* species was constructed by Neighbor-Joining (NJ) algorithms. The sum of branch length of the optimal tree is 0.47957369. The evolutionary distances were computed using the *p*-distance method.

more than 74% of their average gene family contents (~1,565). For all the NPHS genomes along, the core genome size is 682, which is almost the same with the size (673) for all *H. pylori* with NPHS genomes together. It is interesting that there is an obvious difference between the core genome size of *H. pylori* and NPHS. This may indicate that those unique gene families shared by *H. pylori* strains are very relevant to their adaption to unique living environment, pathogenicity, and epidemic.

Estimation of the size of unique genes and gene families for each individual species relative to all 99 genomes was simultaneously carried out (Figure 3). *H. macacae* MIT 99-5501 has the largest number of unique genes and gene families, which are 1,016 and 964, respectively. It accounts for 38.07 percent of its gene contents. The number of unique genes of *H. pylori* is relatively few. This may be due to the fact that too many *H. pylori* genomes were compared with each other. For example, *H. pylori* BM013A genome and *H. pylori* BM013B genome exhibit a high degree of similarity, so only few unique genes exist between them. For all the NHPS, the average number of unique genes and gene families are 325 and 303. It once again implies the obvious genomic plasticity among *Helicobacter* species living in different habits and possessing diverse lifestyles.

FIGURE 2: Homologous proteins analysis among proteomes (orthologous) and internal proteomes (paralogous) in the *Helicobacter* genus species. The blocks on the diagonal represent paralogous data and the others represent orthologous data. The percentage of orthologous and paralogous proteins are represented by red and green, respectively. The similarity is indicated by depth of color. The number of homologs and percentage of similarities between/within proteomes are shown in corresponding block.

3.5. COG Category of Core Genome and Accessory Genome. The core genome and accessory genome of 99 *Helicobacter* strains were composed of 673 and 14,013 protein families, separately. For 75 *H. pylori* genomes along, the core genome and accessory genome sizes were 1,173 and 3,236, as well as 682 and 11,328 for 24 NPHS genomes along. According to COG category analysis of the above six datasets, possible functions of their gene clusters were identified and subdivided into 23 subcategories. The unassigned gene clusters were put into the same class with function unknown (Figure 4). For three

FIGURE 3: The number of unique genes and gene families for each individual species relative to all 99 genomes. Orange and turquoise bar graphs represent unique genes and gene families for each individual species, respectively.

core genome datasets, more than 90% protein clusters were assigned to COG function category. Nevertheless, average 28.1% protein clusters were assigned for three accessory datasets, suggesting that there are still a plenty of proteins without clear biological functions that need to be studied.

In line with what we expected, the significant protein clusters belonging to core genome were assigned to the groups of housekeeping functions. For core genome of 99 Helicobacter strains, translation, ribosomal structure, biogenesis (category J), and cell wall/membrane/envelope biogenesis (category M) take up 17.26% and 9.65%, respectively, and the percentages are far more than accessory genome. On the contrary, for functional subcategories extracellular structures (category W), mobilome, prophages, transposons (category X), and defense mechanisms (category V), the proportion of accessory genome is greater than core genome. Most of these protein clusters closely related to the interaction of strains and their living environment [58-60]. For instance, type IV pilus (TFP) assembly proteins (category W) are important components of TFP pilus which help H. pylori colonization [61]; multiple transposase genes (category X) which can cause antibiotic resistance and transposition are also important to create genetic diversity within species and adaptability to dynamic living conditions [62]; ABC-type multidrug transport system proteins (category V) are used to drug resistance [63] and so on. In addition, the poorly characterized part accounting for more than 70% may be involved in specific adaptations that help *Helicobacter* species survive in novel environments.

3.6. Identification of H. pylori Unique Regions. A reasonable hypothesis often made in studying bacteria evolution is that the numerous host specific adaptation that a bacterial species displays will be correlated with its specific regions and genes [64]. In this study, seventy-nine sequence segments, total length of 202,359 bp, about 12.4% of the H. pylori genome, were identified as unique regions. These regions are shared by H. pylori strains but absent from NHPS. The lengths of the unique regions range from 211 bp to 27,269 bp and median length is 1,502. A total of 155 genes are contained in them. Functional annotation of the above genes was performed by VFDB, COG database, InterProScan, and NR database, respectively. Furthermore, the results were integrated (Table S1, in Supplementary Material available online at http://dx.doi.org/10.1155/2016/6106029) and classified into

FIGURE 4: Functional classification of core genome and accessory genome by COG database. Core genome and accessory genome of 99 *Helicobacter* genomes and core genome and accessory genome of 75 *H. pylori* genomes, along with core genome and accessory genome of 24 NPHS genomes are shown using different colors, respectively.

different function categories (Figure 5). Besides, a total of 28 sRNAs within the URHP were identified (Table S2).

In the circular graph, the largest *H. pylori* unique region named UR_26 containing 28 genes can be observed obviously. Average about two genes were contained in each unique region. However, about 82.3% unique regions contain two genes or less. Operons, as the basic units of transcription and cellular functions, have been proved that they are extensively existing in *H. pylori* genome [65]. Within *H. pylori*, sixty unique genes, more than three quarters, are contained in nineteen unique polycistrons. Twenty-three polycistrons are located partly in URHP, in addition to seventy-one monocistrons (Table S1). The known acid induction of *H. pylori* adaptability and virulence operons, such as cag-pathogenicity island, transcriptional regulator (tenA), catalase, and membrane protein (hopT), are included in them [65–67]. These results indicate that *H. pylori* can regulate the expression of those unique genes by control of operons depending on environmental conditions.

A total of 101 genes could get the certain functional annotation within the URHP, compared to the above 4 databases. Unique region UR_26 represents the T4SS, which can deliver effector protein cancer-associated gene toxin (cagA) into gastric epithelial cells. It is reported that T4SS plays a crucial role in the pathogenesis of gastric cancer [12, 60]. Besides T4SS, a plenty of genes, which have been proved strongly to correlate to pathogenicity and adaption, are contained in the unique regions. For instance, membrane proteins babB/hopT, sabB/hopO, and sabA/hopP, and so forth are involved in cell adhesion. These genes facilitate colonization of *H. pylori* and increase immune response, resulting in enhanced mucosal inflammation [68–70]; abundant restriction-modification

FIGURE 5: Regions conserved in *H. pylori* and absent from NHPS. From inside to outside, rings 1 and 2 are GC content and GC skew of reference genome *H. pylori* 26695, respectively; rings 3–7 represent *H. pylori* strains while rings 8–31 represent NHPS. The depth of color of rings 3–31 indicates the sequence similarity. Outer ring is the unique regions of *H. pylori* and absent from NHPS. Inside the outer ring, different colors represent different function categories: purple: Cag-PAI; blue: membrane genes; green: transport and metabolism genes; gray: cell growth, division, and basic metabolism; aqua: other functional genes; black: hypothetical genes; red: sRNAs.

(RM) system proteins have large effects on gene expression and genome maintenance. They give *H. pylori* the ability to adapt to dynamic environmental conditions during longterm colonization [71]; ABC transporters, MFS transporter, sugar efflux transporter, short-chain fatty acids transporter, and so forth, which are important virulence factors because they play roles in nutrient uptake and secretion of toxins and antimicrobial agents, are important for their interactions with complicated and changeable environments [72–74]. Even though pfam, KEGG, GO, and TrEMBL databases were used for functional annotation, the other 54 genes still cannot get the clear function information, accounting for nearly a third of all URHP genes.

Noncoding small RNAs act as posttranscriptional regulators that fine-tune important physiological processes in pathogens to adapt dynamic, intricate environment [75, 76]. To investigate the regulatory roles of the putative unique sRNAs, we mapped them to the genome of *H. pylori* 26695 [76]. Eighteen of them have matches with genes, unexpectedly (Table S2). Ten sRNAs (SR1, SR2, SR6, SR15, SR20, SR21, SR22, SR23, SR13, and SR25) match perfectly with the known acid induction genes, including eight membrane proteins, DNA polymerase III subunits gamma, tau, and adenine-specific DNA methyltransferase [67, 77]. Besides, SR5 matches with HcpA, which is considered as a virulence factor to trigger the release of a concerted set of cytokines to active the inflammatory response [78]. The small CRISPR RNAs SR7 and SR18 are guides of the CRISPR-Cas system, which was reported as potential participants in bacteria stress responses and virulence [79].

Altogether, it has been proved that the close associations exist between most of the operons, genes, or sRNAs within URHP and adaptability or virulence of *H. pylori*. However, some of them cannot get the certain functional information via current databases, which indicates that our genetic knowledge is still incomplete to explain pathogenicity and adaption mechanism of *H. pylori* fully and these function unknown genes need to be further studied.

3.7. Protein-Protein Interaction Network Analysis. The 155 URHP genes and 54 genes with unknown functions of H. pylori were analyzed using STRING to build protein-protein interaction map, respectively. As shown in Figure S1, a total of 125 genes were assigned into an independent interaction network. It is easy to find two main protein-protein interaction groups: one is well-known cag-pathogenicity island, and the other takes succinyl-CoA-3-ketoacid CoA transferase (encoded by scoA and scoB of operon UO_54), acetone carboxylase (encoded by C694_03570, C694_03590, and C694_03595 of operon UO_55), and acetyl-CoA acetyltransferase (encoded by C694_03555 of operon UO_54) as the center of the interaction map. The second main proteinprotein interaction group genes are involved in acetone metabolism. Brahmachary et al. proved that those genes play an important role in survival and colonization of the H. pylori in gastric mucosa [80, 81]. Figure 6 shows a possible protein-protein interaction map of the 54 URHP function unknown genes. Thirty proteins were targeted to two divided interaction maps. One includes 18 proteins; the other includes

12 ones. These genes may have synergistic effect on surviving characteristics of *H. pylori*. They could be used as the most possible proteins to further explore the common pathogenic behavior of this pathogen.

4. Conclusions

H. pylori is an age-old pathogenic microorganism that has infected more than half of the population with strong adaptability. In this study, we presented a comparative genomics analysis of 75 representative H. pylori complete genomes and 24 NHPS ones. Pan genome analysis showed that both all Helicobacter genus strains and only H. pylori species had an open and diverse genome, which may be the result of the different strains that cope with their specific living conditions. However, the core genome is conserved relatively higher. We found 1173 conserved protein families for 75 H. pylori strains and 673 for all the 99 Helicobacter genus strains. The regions and genes, which are conserved among H. pylori genomes but absent from NHPS genomes, were considered as potential targets that were associated with H. pylori pathogenicity and adaptation. Functional annotation of 155 genes within 79 URHP indicated that most of them are well-known pathogenic and adaptive associated ones, such as cag-pathogenicity island, babB, sabB, and ABC transporter, whereas there are still 54 genes of which the biological functions remain unclear. Protein-protein interaction network analysis showed that 30 of them could be assigned to two different interaction networks. Besides, the functional analysis of the operons and sRNAs which were unique to *H. pylori* also showed the intimate association between these genomic structures and its pathogenicity and adaptation. All the URHP, especially those components whose functions remain unclear, could be as potential candidates for further studying and deeply understanding the mechanism of widespread epidemics and pathogenicity in H. pylori. In addition, the analysis tools and pipeline used in this study could be as a reference applied to other species.

Abbreviations

- MALT: Mucosa-associated lymphoid tissue
- NPHS: Non-pylori Helicobacter species
- T4SS: Type IV secretion system
- cagA: Cancer-associated gene toxin
- VacA: Vacuolating cytotoxin
- ORFs: Open reading frames
- COGs: Clusters of Orthologous Groups
- VFDB: Virulence factor database
- NR: Nonredundant
- URHP: Unique regions of *H. pylori*
- DOOR: Database for prokaryotic operons
- sRNAs: Small noncoding RNAs
- BRIG: BLAST ring image generator.

Competing Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

FIGURE 6: Protein-protein interaction networks of URHP function unknown genes. Thirty proteins are shown in two interaction networks. Network nodes represent proteins and edges represent protein-protein associations. Different colors represent the types of evidence for the interaction.

Authors' Contributions

The authors consider that De-Min Cao and Qun-Feng Lu contributed equally to this work. De-Min Cao, Yan-Qiang Huang, and Hong-Kai Bi conceived and designed the study. De-Min Cao and Qun-Feng Lu collected the data and performed the analysis. De-Min Cao, Ju-Ping Wang, Song-Bo Li, and Yu-Li Chen wrote the manuscript with the assist

of all authors. All authors read and approved the final paper.

Acknowledgments

This work was supported by Key Laboratory of Microbial Infection Research in Western Guangxi (Youjiang Medical University for Nationalities), Guangxi Key Discipline Fund of Pathogenic Microbiology (no. [2013]16), Key Laboratory Fund of Colleges and Universities in Guangxi (no. Gui Jiao Ke Yan [2014]6), National Natural Science Foundation of China (no. 31460023), Natural Science Foundation of Guangxi (no. 2014GXNSFAA118206), and Special Fund for Public Welfare Research and Capacity Building in Guangdong Province (no. 2014A020212288).

References

- S. Suerbaum and C. Josenhans, "Helicobacter pylori evolution and phenotypic diversification in a changing host," *Nature Reviews Microbiology*, vol. 5, no. 6, pp. 441–452, 2007.
- [2] L. Kennemann, X. Didelot, T. Aebischer et al., "Helicobacter pylori genome evolution during human infection," Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 12, pp. 5033–5038, 2011.
- [3] J. G. Kusters, A. H. M. Van Vliet, and E. J. Kuipers, "Pathogenesis of *Helicobacter pylori* infection," *Clinical Microbiology Reviews*, vol. 19, no. 3, pp. 449–490, 2006.
- [4] S. Zhang, L. Moise, and S. F. Moss, "*H. pylori* vaccines: why we still don't have any," *Human Vaccines*, vol. 7, no. 11, pp. 1153–1157, 2011.
- [5] J. Parsonnet, G. D. Friedman, D. P. Vandersteen et al., "Helicobacter pylori infection and the risk of gastric carcinoma," *New England Journal of Medicine*, vol. 325, no. 16, pp. 1127–1131, 1991.
- [6] P. Gueneau and S. Loiseaux-De Goër, "Helicobacter: molecular phylogeny and the origin of gastric colonization in the genus," *Infection, Genetics & Evolution*, vol. 1, no. 3, pp. 215–223, 2002.
- [7] M. D. Schrenzel, C. L. Witte, J. Bahl et al., "Genetic characterization and epidemiology of helicobacters in non-domestic animals," *Helicobacter*, vol. 15, no. 2, pp. 126–142, 2010.
- [8] A. Smet, B. Flahou, I. Mukhopadhya et al., "The other helicobacters," *Helicobacter*, vol. 16, no. 1, pp. 70–75, 2011.
- [9] Z. Nikin, B. Bogdanovic, B. Kukic, I. Nikolic, and J. Vukojevic, "Helicobacter heilmannii associated gastritis: case report," *Archive of Oncology*, vol. 19, no. 3-4, pp. 73–75, 2011.
- [10] K. Van Den Bulck, A. Decostere, M. Baele et al., "Identification of non-*Helicobacter pylori* spiral organisms in gastric samples from humans, dogs, and cats," *Journal of Clinical Microbiology*, vol. 43, no. 5, pp. 2256–2260, 2005.
- [11] P. L. Melito, C. Munro, P. R. Chipman, D. L. Woodward, T. F. Booth, and F. G. Rodgers, "Helicobacter winghamensis sp. nov., a novel Helicobacter sp. isolated from patients with gastroenteritis," *Journal of Clinical Microbiology*, vol. 39, no. 7, pp. 2412– 2417, 2001.
- [12] A. E. Frick-Cheng, T. M. Pyburn, B. J. Voss, W. H. Mcdonald, M. D. Ohi, and T. L. Cover, "Molecular and structural analysis of the *Helicobacter pylori* cag Type IV secretion system core complex," *mBio*, vol. 7, no. 1, pp. 77–80, 2016.
- [13] A. Tohidpour, "CagA-mediated pathogenesis of Helicobacter pylori," *Microbial Pathogenesis*, vol. 93, pp. 44–55, 2016.
- [14] D. Mora and S. Arioli, "Microbial urease in health and disease," *PLoS Pathogens*, vol. 10, no. 12, 2014.
- [15] T. L. Cover and S. R. Blanke, "Helicobacter pylori VacA, a paradigm for toxin multifunctionality," *Nature Reviews Microbiology*, vol. 3, no. 4, pp. 320–332, 2005.
- [16] K. Yahiro, M. Satoh, M. Nakano et al., "Low-density lipoprotein receptor-related protein-1 (LRP1) mediates autophagy and apoptosis caused by Helicobacter pylori VacA," *Journal of Biological Chemistry*, vol. 287, no. 37, pp. 31104–31115, 2012.

- [17] E. Lerat and H. Ochman, "Recognizing the pseudogenes in bacterial genomes," *Nucleic Acids Research*, vol. 33, no. 10, pp. 3125–3132, 2005.
- [18] W. Fischer, U. Breithaupt, B. Kern, S. I. Smith, C. Spicher, and R. Haas, "A comprehensive analysis of Helicobacter pylori plasticity zones reveals that they are integrating conjugative elements with intermediate integration specificity," *BMC Genomics*, vol. 15, no. 1, article 310, 2014.
- [19] K. P. Haley and J. A. Gaddy, "Helicobacter pylori: genomic insight into the host-pathogen interaction," *International Journal of Genomics*, vol. 2015, Article ID 386905, 8 pages, 2015.
- [20] D. Medini, C. Donati, H. Tettelin, V. Masignani, and R. Rappuoli, "The microbial pan-genome," *Current Opinion in Genetics & Development*, vol. 15, no. 6, pp. 589–594, 2005.
- [21] H. Tettelin, V. Masignani, M. J. Cieslewicz et al., "Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial 'pan-genome," *Proceedings of the National Academy of Sciences of the United States of America*, vol. 102, no. 39, pp. 13950–13955, 2005.
- [22] A. L. Delcher, D. Harmon, S. Kasif, O. White, and S. L. Salzberg, "Improved microbial gene identification with GLIMMER," *Nucleic Acids Research*, vol. 27, no. 23, pp. 4636–4641, 1999.
- [23] K. Lagesen, P. Hallin, E. A. Rødland, H.-H. Stærfeldt, T. Rognes, and D. W. Ussery, "RNAmmer: consistent and rapid annotation of ribosomal RNA genes," *Nucleic Acids Research*, vol. 35, no. 9, pp. 3100–3108, 2007.
- [24] K. Katoh and D. M. Standley, "MAFFT multiple sequence alignment software version 7: improvements in performance and usability," *Molecular Biology and Evolution*, vol. 30, no. 4, pp. 772–780, 2013.
- [25] N. Saitou and M. Nei, "The neighbor-joining method: a new method for reconstructing phylogenetic trees.," *Molecular biol*ogy and evolution, vol. 4, no. 4, pp. 406–425, 1987.
- [26] S. Kumar, G. Stecher, and K. Tamura, "MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets," *Molecular Biology and Evolution*, vol. 33, no. 7, pp. 1870–1874, 2016.
- [27] L. Li, C. J. Stoeckert Jr., and D. S. Roos, "OrthoMCL: identification of ortholog groups for eukaryotic genomes," *Genome Research*, vol. 13, no. 9, pp. 2178–2189, 2003.
- [28] S. Dongen, "A cluster algorithm for graphs," in *Information Systems* [*INS*], pp. 1–40, 2000.
- [29] M. Y. Galperin, K. S. Makarova, Y. I. Wolf, and E. V. Koonin, "Expanded Microbial genome coverage and improved protein family annotation in the COG database," *Nucleic Acids Research*, vol. 43, no. 1, pp. D261–D269, 2015.
- [30] R. L. Tatusov, M. Y. Galperin, D. A. Natale, and E. V. Koonin, "The COG database: a tool for genome-scale analysis of protein functions and evolution," *Nucleic Acids Research*, vol. 28, no. 1, pp. 33–36, 2000.
- [31] F. Mao, P. Dam, J. Chou, V. Olman, and Y. Xu, "DOOR: a database for prokaryotic operons," *Nucleic Acids Research*, vol. 37, supplement 1, pp. D459–D463, 2009.
- [32] E. Lerat and H. Ochman, "Ψ-Φ: Exploring the outer limits of bacterial pseudogenes," *Genome Research*, vol. 14, no. 11, pp. 2273–2278, 2004.
- [33] P. Jones, D. Binns, H.-Y. Chang et al., "InterProScan 5: genomescale protein function classification," *Bioinformatics*, vol. 30, no. 9, pp. 1236–1240, 2014.
- [34] K. D. Pruitt, T. Tatusova, and D. R. Maglott, "NCBI reference sequences (RefSeq): a curated non-redundant sequence

database of genomes, transcripts and proteins," Nucleic Acids Research, vol. 35, no. 1, pp. D61–D65, 2006.

- [35] R. D. Finn, A. Bateman, J. Clements et al., "Pfam: The protein families database," *Nucleic Acids Research*, vol. 42, no. 1, pp. D222–D230, 2014.
- [36] H. Ogata, S. Goto, K. Sato, W. Fujibuchi, H. Bono, and M. Kanehisa, "KEGG: kyoto encyclopedia of genes and genomes," *Nucleic Acids Research*, vol. 27, no. 1, pp. 29–34, 1999.
- [37] M. Ashburner, C. A. Ball, J. A. Blake et al., "Gene ontology: tool for the unification of biology," *Nature Genetics*, vol. 25, no. 1, pp. 25–29, 2000.
- [38] E. Camon, M. Magrane, D. Barrell et al., "The Gene Ontology Annotation (GOA) Project: implementation of GO in SWISS-PROT, TrEMBL, and InterPro," *Genome Research*, vol. 13, no. 4, pp. 662–672, 2003.
- [39] E. Westhof, "The amazing world of bacterial structured RNAs," *Genome Biology*, vol. 11, no. 11, pp. 79–82, 2010.
- [40] G. Storz and D. Haas, "A guide to small RNAs in microorganisms," *Current Opinion in Microbiology*, vol. 10, no. 2, pp. 93–95, 2007.
- [41] M.-J. Cros, A. De Monte, J. Mariette et al., "RNAspace.org: an integrated environment for the prediction, annotation, and analysis of ncRNA," *RNA*, vol. 17, no. 11, pp. 1947–1956, 2011.
- [42] N.-F. Alikhan, N. K. Petty, N. L. Ben Zakour, and S. A. Beatson, "BLAST ring image generator (BRIG): simple prokaryote genome comparisons," *BMC Genomics*, vol. 12, article no. 402, 2011.
- [43] D. Szklarczyk, A. Franceschini, S. Wyder et al., "STRING v10: protein-protein interaction networks, integrated over the tree of life," *Nucleic Acids Research*, vol. 43, no. 1, pp. D447–D452, 2015.
- [44] J. R. Warren and B. Marshall, "Unidentified curved bacilli on gastric epithelium in active chronic gastritis," *The Lancet*, vol. 321, no. 8336, pp. 1273–1275, 1983.
- [45] J.-F. Tomb, O. White, A. R. Kerlavage et al., "The complete genome sequence of the gastric pathogen Helicobacter pylori," *Nature*, vol. 388, no. 6642, pp. 539–547, 1997.
- [46] J. Bryant, C. Chewapreecha, and S. D. Bentley, "Developing insights into the mechanisms of evolution of bacterial pathogens from whole-genome sequences," *Future Microbiol*ogy, vol. 7, no. 11, pp. 1283–1296, 2012.
- [47] N. A. Moran, "Microbial minimalism: genome reduction in bacterial pathogens," *Cell*, vol. 108, no. 5, pp. 583–586, 2002.
- [48] F. E. Dewhirst, C. Seymour, G. J. Fraser, B. J. Paster, and J. G. Fox, "Phylogeny of Helicobacter isolates from bird and swine feces and description of Helicobacter pametensis sp. nov.," *International Journal of Systematic Bacteriology*, vol. 44, no. 3, pp. 553–560, 1994.
- [49] J. Waldenström, S. L. W. On, R. Ottvall, D. Hasselquist, C. S. Harrington, and B. Olsen, "Avian reservoirs and zoonotic potential of the emerging human pathogen helicobacter canadensis," *Applied & Environmental Microbiology*, vol. 69, no. 12, pp. 7523–7526, 2003.
- [50] V. B. Young, C.-C. Chien, K. A. Knox, N. S. Taylor, D. B. Schauer, and J. G. Fox, "Cytolethal distending toxin in avian and human isolates of *Helicobacter pullorum*," *Journal of Infectious Diseases*, vol. 182, no. 2, pp. 620–623, 2000.
- [51] D. Kersulyte, M. Rossi, and D. E. Berg, "Sequence divergence and conservation in genomes of *Helicobacter cetorum* strains from a dolphin and a whale," *PLoS ONE*, vol. 8, no. 12, Article ID e83177, 2013.

- [52] R. P. Marini, S. Muthupalani, Z. Shen et al., "Persistent infection of rhesus monkeys with '*Helicobacter macacae*' and its isolation from an animal with intestinal adenocarcinoma," *Journal of Medical Microbiology*, vol. 59, no. 8, pp. 961–969, 2010.
- [53] J. Frank, C. Dingemanse, A. M. Schmitz et al., "The complete genome sequence of the murine pathobiont helicobacter typhlonius," *Frontiers in Microbiology*, vol. 6, article 1549, 2016.
- [54] F. Haesebrouck, F. Pasmans, B. Flahou et al., "Gastric helicobacters in domestic animals and nonhuman primates and their significance for human health," *Clinical Microbiology Reviews*, vol. 22, no. 2, pp. 202–223, 2009.
- [55] D. Falush, T. Wirth, B. Linz et al., "Traces of human migrations in *Helicobacter pylori* populations," *Science*, vol. 299, no. 5612, pp. 1582–1585, 2003.
- [56] T. P. Mikkonen, R. I. Kärenlampi, and M.-L. Hänninen, "Phylogenetic analysis of gastric and enterohepatic Helicobacter species based on partial HSP60 gene sequences," *International Journal of Systematic & Evolutionary Microbiology*, vol. 54, no. 3, pp. 753–758, 2004.
- [57] A. Ali, A. Naz, S. C. Soares et al., "Pan-genome analysis of human gastric pathogen *H. pylori*: comparative genomics and pathogenomics approaches to identify regions associated with pathogenicity and prediction of potential core therapeutic targets," *BioMed Research International*, vol. 2015, Article ID 139580, 17 pages, 2015.
- [58] C. H. Schilling, M. W. Covert, I. Famili, G. M. Church, J. S. Edwards, and B. O. Palsson, "Genome-scale metabolic model of Helicobacter pylori 26695," *Journal of Bacteriology*, vol. 184, no. 16, pp. 4582–4593, 2002.
- [59] K. J. Guillemin and N. R. Salama, "Helicobacter pylori functional genomics," Methods in Microbiology, vol. 33, pp. 291–319, 2002.
- [60] D. N. Sgouras, T. T. H. Trang, and Y. Yamaoka, "Pathogenesis of Helicobacter pylori infection," *Helicobacter*, vol. 20, pp. 8–16, 2015.
- [61] M. So, "Pilus retraction powers bacterial twitching motility," *Nature*, vol. 407, no. 6800, p. 98, 2000.
- [62] R. K. Aziz, M. Breitbart, and R. A. Edwards, "Transposases are the most abundant, most ubiquitous genes in nature," *Nucleic Acids Research*, vol. 38, no. 13, pp. 4207–4217, 2010.
- [63] J. Lubelski, W. N. Konings, and A. J. M. Driessen, "Distribution and physiology of ABC-type transporters contributing to multidrug resistance in bacteria," *Microbiology and Molecular Biology Reviews*, vol. 71, no. 3, pp. 463–476, 2007.
- [64] T. Lefébure and M. J. Stanhope, "Evolution of the core and pangenome of *Streptococcus*: positive selection, recombination, and genome composition," *Genome Biology*, vol. 8, no. 5, article R71, 2007.
- [65] C. M. Sharma, S. Hoffmann, F. Darfeuille et al., "The primary transcriptome of the major human pathogen *Helicobacter pylori*," *Nature*, vol. 464, no. 7286, pp. 250–255, 2010.
- [66] D. S. Merrell, M. L. Goodrich, G. Otto, L. S. Tompkins, and S. Falkow, "pH-regulated gene expression of the gastric pathogen *Helicobacter pylori," Infection and Immunity*, vol. 71, no. 6, pp. 3529–3539, 2003.
- [67] Y. Wen, E. A. Marcus, U. Matrubutham, M. A. Gleeson, D. R. Scott, and G. Sachs, "Acid-adaptive genes of Helicobacter pylori," *Infection and Immunity*, vol. 71, no. 10, pp. 5921–5939, 2003.
- [68] D. T. Pride, R. J. Meinersmann, and M. J. Blaser, "Allelic variation within *Helicobacter pylori babA* and *babB*," *Infection & Immunity*, vol. 69, no. 2, pp. 1160–1171, 2001.

- [69] J. Mahdavi, B. Sondén, M. Hurtig et al., "Helicobacter pylori sabA adhesin in persistent infection and chronic inflammation," *Science*, vol. 297, no. 5581, pp. 573–578, 2002.
- [70] R. Rad, M. Gerhard, R. Lang et al., "The Helicobacter pylori blood group antigen-binding adhesin facilitates bacterial colonization and augments a nonspecific immune response," *Journal* of *Immunology*, vol. 168, no. 6, pp. 3033–3041, 2002.
- [71] Y. Furuta, H. Namba-Fukuyo, T. F. Shibata et al., "Methylome diversification through changes in DNA methyltransferase sequence specificity," *PLoS Genetics*, vol. 10, no. 4, Article ID e1004272, 2014.
- [72] J. K. Hendricks and H. L. T. Mobley, "*Helicobacter pylori* ABC transporter: effect of allelic exchange mutagenesis on urease activity," *Journal of Bacteriology*, vol. 179, no. 18, pp. 5892–5902, 1997.
- [73] N. Yan, "Structural advances for the major facilitator superfamily (MFS) transporters," *Trends in Biochemical Sciences*, vol. 38, no. 3, pp. 151–159, 2013.
- [74] A. L. Davidson and J. Chen, "ATP-binding cassette transporters in bacteria," *Annual Review of Biochemistry*, vol. 73, pp. 241–268, 2004.
- [75] Á. D. Ortega, J. J. Quereda, M. Graciela Pucciarelli, and F. García-del Portillo, "Non-coding RNA regulation in pathogenic bacteria located inside eukaryotic cells," *Frontiers in Cellular and Infection Microbiology*, vol. 4, article no. 162, 2014.
- [76] B. Xiao, W. Li, G. Guo et al., "Identification of small noncoding RNAs in *Helicobacter pylori* by a bioinformatics-based approach," *Current Microbiology*, vol. 58, no. 3, pp. 258–263, 2009.
- [77] S. Bury-Moné, J.-M. Thiberge, M. Contreras, A. Maitournam, A. Labigne, and H. De Reuse, "Responsiveness to acidity via metal ion regulators mediates virulence in the gastric pathogen *Helicobacter pylori*," *Molecular Microbiology*, vol. 53, no. 2, pp. 623–638, 2004.
- [78] L. Deml, M. Aigner, J. Decker et al., "Characterization of the Helicobacter pylori cysteine-rich protein A as a T-helper cell type 1 polarizing agent," *Infection and Immunity*, vol. 73, no. 8, pp. 4732–4742, 2005.
- [79] R. Louwen, R. H. J. Staals, H. P. Endtz, P. Van Baarlen, and J. Van Der Oost, "The role of CRISPR-cas systems in virulence of pathogenic bacteria," *Microbiology and Molecular Biology Reviews*, vol. 78, no. 1, pp. 74–88, 2014.
- [80] P. Brahmachary, G. Wang, S. L. Benoit, M. V. Weinberg, R. J. Maier, and T. R. Hoover, "The human gastric pathogen *Helicobacter pylori* has a potential acetone carboxylase that enhances its ability to colonize mice," *BMC Microbiology*, vol. 8, no. 1, article 14, pp. 1–8, 2008.
- [81] M.-J. Zhang, F. Zhao, D. Xiao et al., "Comparative proteomic analysis of passaged Helicobacter pylori," *Journal of Basic Microbiology*, vol. 49, no. 5, pp. 482–490, 2009.