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Abstract

Objective: Recessive mutations in the CAPN1 gene have recently been identi-

fied in spastic paraplegia 76 (SPG76), a complex hereditary spastic paraplegia

(HSP) that is combined with cerebellar ataxia, resulting in an ataxia-spasticity

disease spectrum. This study aims to assess the influence of CAPN1 variants on

the occurrence of SPG76 and identify factors potentially contributing to pheno-

typic heterogeneity. Methods: We screened a cohort of 240 unrelated HSP fam-

ilies for variants in CAPN1 using high-throughput sequencing analysis. We

described in detail the clinical and genetic features of the SPG76 patients in our

cohort and summarized all reported cases. Results: Six unreported CAPN1-as-

sociated families containing eight patients with or without cerebellar ataxia were

found in our cohort of HSP cases. These patients carried three previously

reported homozygous truncating mutations (p.V64Gfs*103, c.759+1G>A, and
p.R285*), and three additional novel compound heterozygous missense muta-

tions (p.R481Q, p.P498L, and p.R618W). Lower limbs spasticity, hyperreflexia,

and Babinski signs developed in about 94% of patients, with ataxia developing

in 63% of cases. In total, 33 pathogenic mutations were distributed along the

three reported functional domains of calpain-1 protein, encoded by CAPN1,

with no hotspot region. A comparison of gender distribution between the two

groups indicated that female SPG76 patients were significantly more likely to

present with complicated HSP than male patients (P = 0.015). Interpretation:

Our study supports the clinically heterogeneous inter- and intra-family variabil-

ity of SPG76 patients, and demonstrates that gender and calpain-1 linker struc-

ture may contribute to clinical heterogeneity in SPG76 cases.

Introduction

Hereditary spastic paraplegia (HSP) comprises a group of

clinically heterogeneous disorders characterized by pro-

gressive spasticity and hyperreflexia of the legs due to cor-

ticospinal tract degeneration.1,2 Historically, HSP is

distinguished as pure or complicated forms on the basis

of clinical grounds.3 Pure form HSP shows predominant

spasticity and weakness restricted to the lower limbs, and

often presents hypertonia, hyperreflexia, and Babinski

sign. In addition, bladder dysfunction and sensory distur-

bance are also frequently reported in the pure form.

Complicated form HSP is accompanied by additional

neurological or extra-neurological signs, including ataxia,

intellectual disability, peripheral neuropathy, amyotrophy,

cataracts, hypopigmentation, and others.

HSP is also a genetically heterogeneous disease. To

date, more than 82 known or suspected genes or genetic

loci have been reported to cause HSP.4 Notably, it has

been proposed that many autosomal recessive HSP genes

remain unidentified.3 Recently, loss-of-function mutations

in the CAPN1 gene have been described as causative for

spastic paraplegia 76 (SPG76).5 CAPN1 encodes a neutral

calcium-activated protease known as calpain-1 protein,

which is involved in processes of synaptic plasticity, neu-

ronal migration, neuronal maintenance and necrosis,
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among others.6 Calpain-1 contains three functional

domains, including a protease domain, a C2-like (C2L)

Ca2+ binding domain, and a penta-EF-hand (PEF) Ca2+

binding domain.7,8 Notoriously, HSP patients with auto-

somal recessive inheritance showed higher clinical com-

plexity, especially due to ataxia resulting in ataxia-

spasticity spectrum.9 Even though mutations in CAPN1

were initially associated with cerebellar ataxia in dogs and

humans,6,10 as well as in human complicated form HSP

presented with any of ataxia, dysarthria and amyotrophy,5

reports of pure form HSP patients with CAPN1 muta-

tions are increasing.11-24 Given this broad range of symp-

toms and contributing factors, it remains an ongoing

challenge to find a specific, reliable correlation between

genotype and phenotype for this disease complex.

In this study, we describe six additional CAPN1-associ-

ated SPG76 families containing eight affected individuals

with or without cerebellar signs. These patients had six

homozygous or compound heterozygous variants. In

addition, we provide a summary review of SPG76 litera-

ture in order to clarify the phenotypic heterogeneity asso-

ciated with this disease.

Patients and Methods

Subjects recruitment

This retrospective study was carried out at the Depart-

ment of Neurology of the First Affiliated Hospital of

Fujian Medical University. In total, 240 families that ful-

filled Fink’s diagnostic criteria for HSP symptoms were

enrolled irrespective of their genetic diagnosis.1,2,25-27

Clinical features, brain MRI findings, and genetic data

were collected and analyzed for each available case. The

ethics committees of the First Affiliated Hospital of Fujian

Medical University approved the study, and written

informed consent was obtained from each of the partici-

pants.

High-throughput sequencing and data
analysis

Genomic DNA was extracted from the peripheral blood

of the included subjects using a QIAGEN kit. Prior to

high-throughput sequencing (HTS), multiplex ligation-de-

pendent probe amplification (MLPA) was applied to

detect the large deletions or copy number variations

(CNV) in commonly known pathogenic genes (ATL1,

SPAST, NIPA1, SPG11, REEP1, and SPG7) using SALSA

MLPA probe mixes (MRC-Holland). Subsequently, point

mutations and small indel (insertion/deletion) mutations

(< 50 base pairs) in 82 known HSP-causative genes

(https://neuromuscular.wustl.edu) were screened by

targeted next-generation sequencing (NGS) or whole-ex-

ome sequencing (WES) using the Illumina HiSeq 3000

platform.25-28 The pathogenicity of the filtered variants

was then investigated by in silico prediction tools. The

variants were finally comprehensively classified according

to the American College of Medical Genetics and Geno-

mics (ACMG) criteria.29 Specifically, each pathogenic cri-

terion is weighted as very strong (PVS1), strong (PS1–4),
moderate (PM1–6), or supporting (PP1–5). In particular,

segregation of the identified pathogenic CAPN1 variants

(NM_001198868.2) was investigated in their available rel-

atives using Sanger sequencing with the variant-specific

primers (Supplemental File S1: Table S1).

Statistical analysis

Results are expressed as ratios or means with min to max

values. To compute p values, Student’s t-test and Chi-

squared followed by Bonferroni test were used, as indi-

cated in the figure legends.

Results

Genetic spectra of CAPN1

A total of 110 families carrying the known HSP-causative

genes were diagnosed through HTS analysis (Supplemen-

tal File S2: Figure S1a). Remarkably, six unrelated families

carrying CAPN1 mutations were identified, accounting

for 12.2% (6/49) of the autosomal-recessive HSP cases

(Supplemental File S2: Figure S1b). Genetically, six

homozygous or compound heterozygous variants of

CAPN1 were detected from the aforementioned six fami-

lies (Family 1 to Family 6) (Fig. 1A and Supplemental

File S2: Figure S2), three of which were previously docu-

mented pathogenic homozygous mutations

(c.182_183insC (p.V64Gfs*103), c.759+1G>A, and

c.853C>T (p.R285*)).6,11,21 The other three additional

compound heterozygous missense variants ((c.1442G A

(p.R481Q), c.1493C>T (p.P498L), and c.1852C T

(p.R618W)) occurred at extremely low allele frequency

(<7 9 10-5) and have not yet been reported. The former

two of these mutations were located in the C2L Ca2+-

binding domain, while the latter was found in the PEF

Ca2+ binding domain of calpain-1 (Fig. 1b). Notably, the

three novel variants showed concordant segregation with

the HSP phenotype, and were predicted to be deleterious.

Thus, these three missense variants can be classified as

likely pathogenic according to the ACMG criteria (PM1+
PM2+PP1+PP3) (Supplemental File S1: Table S2).29

Intriguingly, two separate, unrelated families (Families 1

and 4) harbored the same homozygous mutation

p.V64Gfs*103, while the other two families (Families 2
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and 6) carried a separate, identical heterozygous mutation

p.P498L.

Clinical profiles of CAPN1-related SPG76

The clinical profiles of eight patients from the six

CAPN1-related SPG76 families are shown in Table 1. Col-

lectively, the mean � SD of age at onset of the affected

individuals was 27.6 � 6.3 years, ranging from 19- to 38-

years-old. The mean � SD of disease duration was

12.4 � 6.0 years. Clinically, bilateral lower limb spasticity,

with or without weakness, was the initial symptom for all

cases. Moreover the brisk deep tendon reflex observed in

four extremities and extensor plantar responses were the

common clinical signs among all eight patients.

Three probands (II-1 in Family 2, IV-4 in Family 5,

and II-1 in Family 6) had the core features of HSP with-

out cerebellar signs, and were considered as prototypical

pure forms. Five other affected individuals (II-1 in Family

1, II-1 and II-2 in Family 3, and IV-1 and IV-2 in Family

4) exhibited ataxia and hypermyotonia in the lower limbs,

without the dysdiadochokinesia, nystagmus, or slurred

speech. Specifically, the male patient II-2 in Family 3 first

noticed symptoms of slowly progressive lower limb stiff-

ness and unsteadiness at the age 38. He presented with

truncal and gait ataxia, but was still able to walk indepen-

dently without aids. His cranial MRI revealed very mild

vermian atrophy. The patients IV-1 and IV-2 in Family 4

were born to the third-degree consanguineous parents

and started with gait difficulty at 21 years. In these two

patients, dysarthria began approximately 20 years later,

with their ability to walk without aid lost by age 40.

Notably, none of the affected individuals complained of

bladder dysfunction or any sensory abnormalities. How-

ever, the cranial MR imaging of the other available indi-

viduals showed no remarkable signs of disease.

Comprehensive analysis of phenotypic
heterogeneity for CAPN1-associated SPG76

The combination of our cohort with the other previously

reported cases resulted in a total of 35 pedigrees, which

included 67 SPG76-affected individuals that carried a

total of 33 homozygous or compound heterozygous

CAPN1 mutations among them.5,6,11-24 These mutations

were distributed along the entire CAPN1 locus with no

Figure 1. Mutational spectrum of CAPN1 in SPG76 patients. (A) The pedigrees of six SPG76 families in our cohort, with CAPN1 mutations

indicated. Filled black squares and circles indicate affected individuals. The proband in each family is indicated by an arrow. The genotypes of all

available family members were determined. Dash symbol indicates reference allele. (B) The mutation distribution across the CAPN1 gene and

corresponding calpain-1 protein containing a protease domain (amino acid 56-352), a C2L Ca2+-binding domain (amino acid 364-524), and a PEF

Ca2+-binding domain (amino acid 546-714). Gray bars indicate the linker structure. Filled green circles highlight the mutations causing pure form

HSP. Filled red circles highlight the mutations causing complicated form HSP. The half-red and half-green circles highlight the mutations causing

either pure or complicated form HSP. (C) Statistical analysis of the correlation between mutation distribution and HSP forms.
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exon-associated hotspot (Fig. 1B,C). Additionally, scru-

tiny of the integrated clinical information available for

85.1% (57/67) of the CAPN1-associated SPG76 patients

showed that 36.8% (21/57) of these patients were pure

form HSP (Fig. 2A). In contrast, 63.2% (36/57) of this

patient subset presented as complicated HSP with cerebel-

lar signs, and 25% (9/36) of which exhibited cerebellar

atrophy.

To explore the factors (i.e., gender, disease course,

genetic background, etc.) potentially contributing to phe-

notypic heterogeneity, we first validated the parental rela-

tionship between pure form and complicated form HSP

and found no significant differences in consanguinity

(Fig. 2B). Subsequently, a comparison of gender distribu-

tion between the two groups indicated that female SPG76

patients were significantly more likely to present with

complicated HSP than male patients (P = 0.015, Fig. 2C).

Given that slowly progressive paraparesis is the prototypi-

cal characteristic of HSP, we then evaluated age at onset

and disease duration. However, this analysis revealed no

significant differences in the disease course between pure

form and complicated form HSP (Fig. 2D,E). We investi-

gated the relationship between genotype and phenotype.

No significant differences were found in the ratio of trun-

cating mutations (i.e., nonsense, frameshift, and splicing

site mutations) versus missense mutations between the

pure and complicated groups (Fig. 2F).

Discussion

In the current study, HTS analysis of 240 HSP families

identified six additional autosomal-recessive HSP families,

Figure 2. Comprehensive analysis of phenotypic heterogeneity for CAPN1-associated SPG76. (A) Distribution of pure, complicated, and

undetermined forms (no available clinical information) across all reported SPG76 patients (n = 67). (B) Statistical comparison of the percentage of

parental kinship between the pure and complicated forms of SPG76. Chi-squared followed by Bonferroni test. (C) Statistical comparison of the

gender distribution between pure and complicated forms. Chi-squared followed by Bonferroni test. * indicates P < 0.025. (D) Statistical

comparison of the age at onset between pure and complicated forms. Student’s t-test. (E) Statistical comparison of the disease duration between

pure and complicated forms. Student’s t-test. (F) Statistical comparison of the percentage of truncating or missenses mutation types between

pure and complicated forms. Nonsense, frameshift, and splicing site mutations are combined into the truncating mutation category for

comparison with missense mutations. In box and whisker plots, error bars indicate min to max. Chi-squared followed by Bonferroni test. ns, not

significant.
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with eight patients carrying six homozygous or com-

pound heterozygous variants of CAPN1. Among them,

the three homozygous variants (c.182_183insC

(p.V64Gfs*103) in Families 1 and 4, c.759+1G>A in Fam-

ily 3, and c.853C>T (p.R285*) in Family 5) were found

to be known truncating mutations,6,11,21 while the three

compound heterozygous variants ((c.1442G>A (p.R481Q)

in Family 6, c.1493C>T (p.P498L) in Families 2 and 6,

and c.1852C> T (p.R618W) in Family 2) were defined as

novel, likely-pathogenic missense mutations. A combined

total of 33 rare CAPN1 mutations were detected between

our cohort and previously reported cases.5,6,11-24 Notably,

seven mutations (c.182_183insC, c.759+1G>A, c.853C>T,
c.1015C>T, c.1142C>T, c.1176G>A, and c.1534C>T) were
shared in ≥2 pedigrees, and in particular the nonsense

mutation c.1176G>A (p.W392*) was most prevalent,

recorded in four pedigrees.

In agreement with previous reports of HSP, the clinical

features of the CAPN1-associated SPG76 patients also

showed inter- and intra-family variability.5,15,18 Compre-

hensive analysis of all available clinical information for

our cohort combined with that available in previous stud-

ies showed that lower limb spasticity, manifesting as stiff-

ness, hyperreflexia, and Babinski signs, developed in

about 94% of patients, followed by ataxia, dysarthria, and

cerebellar atrophy.5,6,11-24 Meanwhile, the clinical overlap

is extensive between complicated form HSP and HSP

mimic diseases (e.g., adrenoleukodystrophy, spinocerebel-

lar ataxia type 3, etc.).30,31 Remarkably, the variability and

fluidity of the ataxia-spasticity disease spectrum suggest

that spastic paraplegia and ataxia share not only overlap-

ping phenotypes and causal genes, but also disease-speci-

fic underlying mechanisms (e.g., common cellular

pathways or regulatory networks, etc.).9 This dilemma

presents a highly challenging obstacle for correct clinical

diagnoses of HSP. Moreover, an increasing suite of HSP-

causative genes, including PNPLA6 (SPG39), KIF1C

(SPG58), CAPN1 (SPG76), ATP13A2 (SPG78), and

UCHL1 (SPG79), have been associated with hereditary

ataxia.9,24

To clarify the causes of phenotypic heterogeneity in

CAPN1-associated SPG76 disease, we performed a com-

prehensive analysis of the parental kinship, gender, age at

onset, disease duration, and mutation type between the

pure and complicated HSP forms. Clinically, we specu-

lated that mutations of CAPN1 are more likely to lead to

complicated HSP with cerebellar ataxia, especially for

female SPG76 patients, rather than pure HSP. In addi-

tion, the consanguinity and disease course potentially do

not substantially contribute to differences in clinical char-

acteristics. Genetically, all mutations have been scattered

along the conserved functional domains of calpain-1.

Moreover, both truncating and missense mutations can

be accompanied by either pure or complicated forms of

HSP. Thus, genotype does not ostensibly share a causative

relationship with specific SPG76 phenotypes. However,

on further review of the calpain-1linker structure, we

speculated that mutations in this location were more

likely to cause pure form HSP than mutations in the

above functional domains. Additionally, this heteroge-

neous SPG76 phenotypic spectrum could also rationally

be accounted for by as-yet-unknown genetic modifiers or

interacting proteins of CAPN1.27,32

In conclusion, our study extends the mutation spectra

and clinical profiles of CAPN1-associated SPG76 disease,

stressing that CAPN1 screening is warranted in both pure

and complicated forms of HSP. We demonstrated that

the factors of gender and calpain-1 linker structure may

potentially contribute to SPG76 phenotype, although the

extent of this contribution remains to be investigated.

Further study of a large patient cohort and the use of

patient-specific models (e.g., induced pluripotent stem

cells),33 will facilitate the elucidation of mechanisms

underlying this characteristic phenotypic heterogeneity

and variability for CAPN1-associated SPG76, as well as

for other disease-causing genes in both as pure or ataxic

HSP.
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