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Two-photon time-lapse microscopy of BODIPY-
cholesterol reveals anomalous sterol diffusion in
chinese hamster ovary cells
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Abstract

Background: Cholesterol is an important membrane component, but our knowledge about its transport in cells
is sparse. Previous imaging studies using dehydroergosterol (DHE), an intrinsically fluorescent sterol from yeast,
have established that vesicular and non-vesicular transport modes contribute to sterol trafficking from the
plasma membrane. Significant photobleaching, however, limits the possibilities for in-depth analysis of sterol
dynamics using DHE. Co-trafficking studies with DHE and the recently introduced fluorescent cholesterol analog
BODIPY-cholesterol (BChol) suggested that the latter probe has utility for prolonged live-cell imaging of
sterol transport.

Results: We found that BChol is very photostable under two-photon (2P)-excitation allowing the acquisition of
several hundred frames without significant photobleaching. Therefore, long-term tracking and diffusion
measurements are possible. Two-photon temporal image correlation spectroscopy (2P-TICS) provided evidence for
spatially heterogeneous diffusion constants of BChol varying over two orders of magnitude from the cell interior
towards the plasma membrane, where D ~ 1.3 μm2/s. Number and brightness (N&B) analysis together with
stochastic simulations suggest that transient partitioning of BChol into convoluted membranes slows local sterol
diffusion. We observed sterol endocytosis as well as fusion and fission of sterol-containing endocytic vesicles. The
mobility of endocytic vesicles, as studied by particle tracking, is well described by a model for anomalous
subdiffusion on short time scales with an anomalous exponent α ~ 0.63 and an anomalous diffusion constant of
Dα = 1.95 x 10-3 μm2/sα. On a longer time scale (t > ~5 s), a transition to superdiffusion consistent with slow
directed transport with an average velocity of v ~ 6 x 10-3 μm/s was observed. We present an analytical model
that bridges the two regimes and fit this model to vesicle trajectories from control cells and cells with disrupted
microtubule or actin filaments. Both treatments reduced the anomalous diffusion constant and the velocity
by ~40-50%.

Conclusions: The mobility of sterol-containing vesicles on the short time scale could reflect dynamic
rearrangements of the cytoskeleton, while directed transport of sterol vesicles occurs likely along both,
microtubules and actin filaments. Spatially varying anomalous diffusion could contribute to fine-tuning and local
regulation of intracellular sterol transport.
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Background
Intracellular organelles contain very different amounts
of cholesterol, but our knowledge about how these dif-
ferences are established and maintained during continu-
ous inter-compartment membrane traffic is very limited
[1,2]. The dynamics of these processes can, in prin-
ciple, be adequately addressed only by imaging-based
approaches. This, however, is limited by the poor beha-
vior of most fluorescent cholesterol analogs (reviewed in
[3-6]). Ultraviolet (UV)-sensitive wide field (UV-WF)
and multiphoton microscopy of the intrinsically fluores-
cent sterol dehydroergosterol (DHE) as a close analog of
cholesterol and ergosterol has provided new insight into
cellular sterol trafficking [7]. By this approach, it has
been demonstrated that vesicular, ATP-dependent, and
non-vesicular, ATP-independent, transport contribute to
targeting of DHE from the plasma membrane to the en-
docytic recycling compartment (ERC) in various mam-
malian cells, although the relative contribution of each
uptake mode differs between cell types [8,9]. Dynamics
of intracellular vesicles containing DHE has been asses-
sed by particle tracking of time-lapse sequences recor-
ded on an UV-WF set-up. Calculation of the mean
square displacement (MSD) from the trajectories as well
as temporal image correlation spectroscopy (TICS) of
images acquired at a multiphoton microscope indicated
that diffusion of sterol vesicles in the cytoplasm is hin-
dered, probably by cytoskeletal structures [7,10]. The
poor fluorescence properties of DHE (UV emission, rapid
bleaching, and low quantum yield), however, limited the
availability of sufficient image data sets and thereby pre-
cluded an in-depth quantitative analysis of vesicular sterol
transport.
A promising new cholesterol probe for some applica-

tions is BODIPY-tagged cholesterol (BChol), in which
the borondipyrromethene fluorophore is situated in cho-
lesterol’s aliphatic side chain [11,12]. We recently com-
pared membrane partitioning and intracellular transport
of DHE with that of BChol [13]. We found that DHE
has a higher affinity for the liquid-ordered (lo) phase
than BChol, but BChol still preferred this phase over the
liquid-disordered (ld) phase (see Additional file 1: Figure
S1 for the structure of both fluorescent sterols compared
to cholesterol). We also showed that both sterols are tar-
geted to the ERC, a major cellular sterol pool, with iden-
tical kinetics [13]. Uptake of both sterols from the cell
surface was strongly reduced in baby hamster kidney
(BHK) cells overexpressing a dominant-negative clathrin
heavy chain, and co-internalization of BChol with fluor-
escent transferrin (Tf), a marker for this uptake pathway,
could be demonstrated [13]. Both observations suggest
that a large portion of plasma membrane sterol is inter-
nalized by clathrin-dependent endocytosis in these cells.
BChol has also been used to study sterol trafficking in
sphingolipid storage diseases [11] and to analyze lateral
and rotational sterol diffusion in model membranes [14].
Two-photon (2P) excitation microscopy offers several

advantages over the one-photon fluorescence micros-
copy approaches used so far to visualize BChol in living
cells. The intrinsic sectioning capability of this technique
combined with negligible bleaching propensity outside
the focal region and deeper specimen penetration due to
the long-wavelength-excitation enabled us to perform
long-term tracking studies of vesicles containing BChol
in live Chinese hamster ovarian (CHO) cells. In addition,
we used raster image correlation spectroscopy (RICS)
and TICS to map the diffusional mobility of BChol over
entire cells. Single particle tracking applied to sterol
vesicles was combined with mathematical modeling of
the trajectories to decipher the diffusion modes under
various conditions. We found evidence for anomalous
subdiffusion of vesicles containing BChol on short time
scales (t < ~5 s) with a transition to superdiffusion on
longer time scales. We demonstrate that the superdiffu-
sive mode is caused by directed transport along both
microtubules and actin filaments. Confined diffusion of
sterol vesicles might increase the likelihood for local
non-vesicular sterol exchange by collision of the vesicles
with surrounding organelle membranes.

Results and discussion
Comparison of diffusivity and availability of BChol in
various cellular regions
Two-photon microscopy is, combined with fluorescence
fluctuation techniques, ideally suited to determine the
distribution of BChol with high spatiotemporal accuracy.
In fluorescence fluctuation experiments the information
is extracted from the small stochastic deviations of
intensity, for example due to molecular diffusion or
conformational changes, from the equilibrium intensity
(mean value) in the focal volume. In 2P excitation one
finds an intrinsic sectioning capability which stems from
the non-linear excitation likelihood, i.e., that the photon
densities required for 2P excitation are significant only
in the focal spot. In confocal one-photon excitation mi-
croscopy, a pinhole in front of the detector rejects out-
of-focus emission light, thereby greatly reducing the
depth of field in the emission path. In contrast, excita-
tion of the fluorophores takes place over a much larger
distance along the optical axis than in 2P excitation mi-
croscopy, which increases the likelihood for photo-
bleaching. We found that especially the photobleaching
of sterol probes along the optical axis and the relatively
lower sensitivity of our analog photomultiplier tubes
make fluctuation experiments of BChol in one-photon
excitation less reliable than in 2P excitation microscopy
(not shown). Intensity fluctuations of the sterol caused
by intracellular diffusion can be quantified by TICS and
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RICS in various cellular regions [15]. RICS uses the in-
formation contained within a single frame and correlates
the rapidly scanned laser beam with intensity fluctua-
tions during one scan over the sample. Thus, RICS has
the advantage of being able to measure diffusion times
in the range 10-5 s to 10-0 s [16-18]. First, we applied
RICS to determine the diffusion coefficient in three
38.44 μm2 areas of the cell shown in Figure 1. The areas
were selected to include 1) the outer rim of the cell
Figure 1 Analysis of sterol mobility by raster image correlation spect
a chase to obtain the steady-state distribution. The cells were placed on a
maintained at 35 ± 1°C, and images were acquired without pause at a fram
analyzed with raster image correlation spectroscopy (RICS), panel A. The ar
with no apparent BChol vesicles (box 2), and an area close the ERC (box3).
autocorrelation function in these areas and the residuals of the fit. The ana
slower than in the membrane. Nevertheless, the molecules in the central p
(scale bar = 5 μm), which show the correlation between the cell at time t =
respectively (colored green). The intracellular dynamics is especially appare
likely being dominated by lateral diffusion of the sterol
in the plasma membrane, 2) a region with intermediate
thickness missing discernible vesicular structures and 3)
the tubovesicular network emanating from the perinuclear
ERC pool (see boxes numbered 1 to 3 in Figure 1A). This
analysis yielded diffusion coefficients D1 = 1.267 μm2/s,
D2 = 0.923 μm2/s, and D3 = 0.095 μm2/s, for boxes 1, 2
and 3, respectively. From the RICS correlation functions
calculated for each box, and plotted with the residuals of
roscopy (RICS). CHO cells were pulse-labeled with BChol followed by
temperature-controlled stage of a home-built 2P-microscope
e rate of 0.52 s. Three areas of a cell incubated with BChol were
eas were selected to include the membrane (box 1), the cytoplasm
Inlet 1–3 show fits of the Brownian diffusion model to the RICS
lysis showed that diffusion near the ERC was a factor of two
art of the cell were still mobile. This is illustrated in panels B-D
0 (colored red) with images at time t = 0.52, 5.2 and 10.4 s,
nt in panel B’-D’ showing the dynamics in the ROI in panels B-D.
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the fit of the diffusion model (Figure 1A), one can infer
that the fit quality is better for box 1 and box 2 compared
to box 3. The lower fit quality in box 3 is likely a conse-
quence of the dynamic properties of the sterol-containing
tubules deviating from purely Brownian motion. Although
diffusion in the central area of the cell is significantly
slower than in the periphery of the cell, the molecules are
not immobile. This is illustrated in Figure 1B-D which
show a color overlay of the first frame (t = 0, in red) and
the frames recorded after 0.52, 5.2, and 10.4 s (in the
green channel of an RGB merge in ImageJ), respectively.
In that representation, coincidence of vesicles will appear
orange, while for increasing displacement of vesicles over
time, separate red and green spots will appear. Figure 1A’-
C’ show a zoom on the central area of the cell where in-
creasing displacement over time is apparent. To assess the
heterogeneity of diffusion in a more systematic way, we
performed a 2P-TICS analysis on the same image se-
quence mapped over the entire cell. In TICS, the time
autocorrelation function is determined as a measure of
the average spatial correlation between images in a time
series. The images can be subdivided into local regions of
interest (ROIs) over which the averaging is performed. In
this way, spatially heterogeneous probe dynamics can be
resolved. The local diffusion coefficient of BChol deter-
mined for 32 x 32 pixel ROIs (10.24 μm2) using 2P-TICS
varied from 0.05– 0.5 μm2/s adjacent to the ERC toward
1.5 μm2/s in the periphery of the cell (Figure 2A). Thus,
RICS and TICS performed on the same data set provide
comparable diffusion constants for BChol. To gain insight
into the molecular mechanisms underlying spatially vary-
ing sterol diffusion, we performed a number and bright-
ness (N&B) analyses. N&B is a statistical method for
investigating intensity fluctuations in fluorescence micros-
copy image sequences based on the experimentally deter-
mined distribution of emitted photons [15,19,20]. While
photon arrival times are Poisson distributed, intensity fluc-
tuations due to monomers or probe aggregates moving
through the laser focus result in broadening of the histo-
gram [19,20]. The first and second moment of a Poisson
distribution are equal (i.e. mean is equal to variance), such
that the apparent brightness defined as the ratio of the 2nd

and 1st moment equals one. This situation corresponds to
immobile excited fluorophores emitting photons by a sto-
chastic Poisson process. If all fluorescent probes exist as
monomers and are mobile, their apparent brightness
becomes slightly larger due to the additional fluctuations
in the photon counts, broadening the photon count distri-
bution (i.e., increasing the variance). The brightness distri-
bution over the analyzed image region will still consist of
a single population. If additional aggregates of the fluo-
rescent molecules form, a second population with higher
values of the apparent brightness will be observed. Thus,
the measured intensity fluctuations of BChol relate to the
brightness and number of the fluorescent sterols in the
focal volume (see Eq. 6 and 7 in Materials and Methods).
N&B analysis has also been applied to determine spatial
variations in concentration and degree of aggregation of
fluorescent proteins in living cells [19,21-23]. Recently, we
used N&B analysis to provide evidence against lateral
domains of DHE in the plasma membrane of HepG2 cells
[7]. Here, we apply the method to intensity fluctuations
of BChol (Figure 2). The average fluorescence intensity
(‘average’), apparent number of molecules of BChol
(‘Number (N)’), and their apparent brightness (‘Brightness
(B)’) are shown in Figure 2 B, C, and D, respectively. The
high coincidence of the average and N-map indicates that
intracellular regions with high BChol fluorescence contain
proportionally many molecules. Most BChol molecules
are located in the ERC and in its associated vesicles sur-
rounding the ERC [13]. The B-map provides information
about potential clustering or mobile assemblies of a fluor-
ophore, since probe aggregates would have proportionally
higher brightness for a given fluorescence fluctuation
[19,20]. The B-map of BChol is relatively uniform, espe-
cially in the plasma membrane, which indicates the ab-
sence of sterol domains. We obtained the same result in a
separate set of experiments carried out with HeLa cells
(Additional file 1: Figure S2). In both cell types, CHO and
HeLa cells, only one population of B-values was mea-
sured in the plasma membrane with a mean value of
B ~ 1.01-1.05 (not shown). This is characteristic for mobile
monomers, as previously demonstrated for monomeric
enhanced green fluorescent protein (eGFP) expressed in
CHO cells [19]. For BChol, bright fluorescent spots were
only observed in the area surrounding the perinuclear re-
cycling endosome (Figure. 2D). These spots are likely due
to slowly moving BChol enriched vesicles (compare
Figure 1B’-D’). Immobile vesicles would not give an in-
crease in the B-maps, according to theory (see above and
Supplemental Information). We also ruled out spatially
varying photobleaching of BChol as cause for the observed
brightness differences, since BChol showed no photo-
bleaching under 2P excitation during our measurements
(Additional file 1: Figure S3). Since BChol exists as fluor-
escent monomers and as part of vesicles in the cytoplasm,
we performed a stochastic simulation of Brownian diffu-
sion with transient binding to slowly moving vesicle-like
structures (see Additional file 1: Figure S4). Subsequent
analysis by TICS as well as N&B analysis revealed a strong
similarity between the simulated and experimental data
(compare Figure 2 and Additional file 1: Figure S5). To
test other scenarios, we performed additional simulations
(Additional file 1: Figure S6-S8). First, sterol containing
vesicles and sterol monomers were considered with an
equilibrium distribution based on the first simulation but
without any exchange between both sterol pools. This
resulted in homogeneous N- and B-maps with no sign of



Figure 2 Analysis of sterol mobility by temporal image correlation spectroscopy (TICS). Cells were labeled and imaged as described in the
legend to Figure 1. The intracellular transport of BChol was examined by temporal image correlation spectroscopy (TICS) and number and
brightness analysis (N&B). Panel A shows a map of diffusion constants (D) in the cell ranging from ~1.5 – 0 μm2/s. Panels B-D show the average
fluorescence intensity, the apparent number of molecules (N) and the apparent brightness (B), respectively. From a comparison of the average
intensity and the apparent number of molecules we infer that the majority of BChol is found in the ERC. Although, the brightness map is
relatively uniform (notice that the white areas are outside the cell) we still see signs of aggregation. This is most likely due to BChol binding
transiently to intracellular structures (see text for discussion). Finally, Panel E shows the relationship between N, B and the diffusion constant of
BChol. By comparison of N and D, it can be seen that the diffusion constant is inversely dependent on the number of molecules. As the
brightness is constant over the ROI, we conclude that the decrease in diffusion constant is caused by molecular crowding rather than by
aggregation of BChol.
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clustering of sterol monomers around the slowly moving
sterol vesicles (Additional file 1: Figure S6). Second, we
kept the binding/dissociation rate constants fixed but
increased the diffusion constant of the sterol monomers
in the cytoplasm (compare Additional file 1: Figures S5
and S7). At non-physiologically high diffusion constants of
monomers of 300 μm2/s, the simulated sterol monomers
could escape the binders/vesicles and therefore no sterol
accumulation in vesicles was found. Finally, increasing the
binding strength of sterol monomers to vesicles by a fac-
tor of 10 compared to the first simulation resulted in
large sterol clustering and a structured B-map (compare
Additional file 1: Figures S5 and S8). Together, the simula-
tions provide one explanation being congruent with the
experimental data, namely that the spatially heterogeneous
diffusion and concentration of BChol is caused by transi-
ent sterol binding to immobile or slowly diffusing macro-
molecular structures in the cytoplasm. Further work in
our laboratory is set out to directly test this hypothesis
and to validate the model. For a detailed description of the
model/simulation as well as the MatLab code for the
simulation program, see the Supplementary Information.
The relationship between the N-map, B-map and diffusion
coefficient, D, is shown for the experimental data of BChol
in a 62x62 pixel ROI (38.44 μm2) composed of area D6,
D7, E6, and E7 (Figure 2A) in the periphery of the cell
where molecules are scarce. In this area, the measured dif-
fusion coefficients show an inverse relationship to the N-
map, the apparent number of particles. This can be clearly
seen in the 3D plots of Figure 2E, where only the region
with a higher number of molecules in the left corner, close
to the origin (area D6, compare with Figure 2A) has a low
diffusion constant. Since the B-map is homogeneous for
all four regions, the slowed diffusion in area D6 means
that there are proportionally more BChol molecules, likely
due to a contribution from plasma membrane and cyto-
plasm. The other three quadrants in Figure 2E (i.e., area
D7, E6, and E7; compare with Figure 2A) resemble mostly
the plasma membrane, which has the highest sterol diffu-
sion coefficients. Since diffusion is slower in areas with
increased N-values (Figure 2E), we cannot rule out some
contribution from molecular crowding in areas of the cell
where the concentration of molecules is high.

Dynamics of vesicles containing BChol reveal anomalous
diffusion characteristics
To determine the mobility of sterol-containing vesicles,
we employed multiple particle tracking on image se-
quences obtained by 2P microscopy. CHO cells were
pulse-labeled with BChol followed by a chase to obtain
the steady-state distribution. It has been shown by others
that esterification of BChol using a cyclodextrin-based la-
beling protocol and chase times up to 2 h in various cell
types including CHO cells is negligible (i.e., below 1% of
total cell-associated BChol) [11]. The cells were placed on
a temperature-controlled stage of a home-built 2P-micro-
scope maintained at 35 ± 1°C, and images were acquired
without pause at a frame rate of 1.05 s. The high spatio-
temporal resolution of BChol in 2P-time-lapse microscopy
allowed us to observe fusion of two sterol-containing vesi-
cles adjacent to the plasma membrane (Figure 3A). An-
other example from the same data set can be found in
[24]. In addition to fusion, we also observed splitting of
one sterol vesicle into two (Figure 3B) and shuttling of a
small carrier vesicle between two larger vesicular struc-
tures (Additional file 1: Figure S9), all containing BChol.
Together, we occasionally observed fusion and fission of
sterol-containing endocytic vesicles as well as shuttling of
small vesicles containing BChol between larger vesicles
(together about 10 such events were found in more than
300 observed/tracked vesicles). The low incidence of such
events, however, makes a major contribution to intracellu-
lar sterol sorting unlikely.
By visual inspection as well as detailed tracking ana-

lysis (see below), we found that the majority of vesicles
containing BChol were moving within an area of 1 ×
1 μm without major directed displacement. Diffusion in
a limited cellular domain could indicate anomalous sub-
diffusion due to some barriers. Tracking of lipid granules
as well as inert tracer particles in yeast, mammalian
cells, and bacteria has shown that particles of similar size
to endocytic vesicles move by anomalous subdiffusion
[25]. This is partly caused by the ability of the cytoskel-
eton to capture the particles, and partly by molecular
crowding by other macromolecules [26-29]. Experiments
on semi-dilute solutions of actin revealed an entangled
network of semi-flexible polymers with an average mesh
diameter of the order 100 nm to 1 μm, in which col-
loidal tracer particles moved by anomalous subdiffusion
[30]. This anomalous diffusion was caused by local
jumps between micro-environments driven by elastic
forces of the actin network [30]. Particles smaller than
the average mesh size moved by normal diffusion but
with reduced diffusion constant due to the local viscosity
and crowding effects. Based on these observations, we
wanted to estimate how likely it is that vesicular sterol
transport is hindered by the cytoskeleton meshwork
resulting eventually in anomalous diffusion. We fitted a
two-dimensional Gaussian function to images of the
vesicles and thereby determined the size of BChol vesi-
cles in the cytosol (Figure 4A-D). We found values for
the full width at half maximum (FWHM) ranging from
0.2 – 0.7 μm with an average value of 0.45 ± 0.1 μm
(Figure 4D). In independent experiments, we estimated
the FWHM for sub-resolution quantum dots with our
multiphoton set up to be ~0.28 μm as the estimated
width of the point spread function [7]. Accordingly,
a significant fraction of vesicles containing BChol are



Figure 3 Two-photon time-lapse imaging of fusion and fission
of vesicles containing BChol. CHO cells were pulse-labeled with
BChol followed by a chase to obtain the steady-state distribution.
The cells were placed on a temperature-controlled stage of a
home-built 2P-microscope maintained at 35 ± 1°C, and images were
acquired without pause at a frame rate of 1.05 s. We observed
vesicle fusion (A’): one vesicle (white arrow) moved with a directed
motion toward another vesicle (black arrow) over a period of 18 s.
Further observation of the fused vesicle over 100 s did not show
subsequent fission of the vesicle. We also observed vesicle fission
(B, B’): over a period of ~1 min the vesicle was heavily stretched
and deformed before it finally separated into two vesicles with
lower fluorescence intensity.
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larger than the resolution limit of the microscope, and
their size can, therefore, be measured exactly. Previous size
measurements from microscope images gave comparable
values for GLUT4 storage vesicles (FWHM=0.36 μm) in
3 T3-L1 cells [31] and secretory granules in chromaffin
cells (FWHM= 0.38 μm) [32]. With an average diameter of
0.45 μm, the size of the BChol vesicles is on the order of
the mesh size of actin filaments (see above). Thus, it is likely
that diffusion of sterol vesicles is hindered by the cytoskel-
eton, causing deviation from pure Brownian motion.
To examine this notion, we analyzed the mobility of

sterol-containing vesicles by multiple particle tracking
and subsequent analysis of their average MSD. Figure 4E
shows examples of vesicle trajectories from vesicles in
control cells at 37°C. Various types of vesicle trajectory
shapes were observed ranging from almost isotropic tra-
jectories, i.e., without a preferred direction of displace-
ment, to stretched or elongated trajectories, the latter
characteristic for directed motion (compare the upper
right corner and lower trajectory in Figure 4E). Directed
motion results in correlations between the displacements
in x- and y-direction which manifests in non-zero off-
diagonal elements in the diffusion tensor [33]. For pure
Brownian motion, the MSD of the trajectory is directly
proportional to time and subsequent steps are not
correlated. Anomalous diffusion, on the other hand, is
described by an anomalous exponent, α, where the MSD
is proportional to tα. For 0 < α < 1 subdiffusion, occurs
with more restricted mobility as α decreases. Anomalous
subdiffusion of tracer particles and lipid granules as a
consequence of particle confinement has been described
by fractional Brownian motion (FBM) [34,35]. The main
difference between Brownian motion and FBM is that in
the latter the steps are correlated, while in the former
mode of motion, they are not. For example, in restricted
or confined diffusion, a step is more likely to be in the
opposite direction of the former step. This (anti)-correl-
ation is described for FBM by a power law where the
value of α determines the type of motion (i.e., subdiffu-
sion, α < 1 or superdiffusion with α > 1). Since we also
observed vesicles with fast directional displacement (see
the lower trajectory in Figure 4E for an example), we
extended the subdiffusive FBM model to include an add-
itional ballistic term describing the transition from sub-
diffusion to directed transport:

→x2 tð Þ� �
f0
→ ¼ →x2 tð Þ� �

0þ →x2 tð Þ� �2
f0
→

¼ 4Dαt
α þ v2t2; ð1Þ

Here, Dα is the anomalous diffusion constant, α is the
anomalous exponent, defined above, v is the velocity of

the directed transport and the subscript f0
→

indicates the
presence of a pulling force (see Materials and Methods,
Eqs. 3 and 4 for details). Fitting Eq. 1 to the average MSD
of 210 vesicle trajectories from 17 control cells monitored
at 37°C yielded an anomalous diffusion constant, Dα =
1.95 × 10− 3μm2/sα, an anomalous exponent α = 0.62 and a



Figure 4 Estimation of vesicle size and example trajectories of vesicles containing BChol. After cells were labeled and chased with BChol,
as described in the legend to Figure 3, vesicles were found throughout the cytoplasm with the majority of vesicles in the perinuclear region (A).
The average vesicle size was determined by fitting a 2D Gaussian function to images of the vesicles. Panel B shows a vesicle from the ROI in
panel A (image size 2.4 x 2.4 μm) while panel C shows a fit of the 2D Gaussian to the vesicle. The vesicle sizes had a distribution with diameters
ranging from 0.2 – 0.7 μm with an average size of 0.45 ± 0.1 μm (panel D). To monitor their mobility, vesicles were tracked and their trajectories
analyzed. Panel E shows examples of vesicle trajectories. Bar, 5 μm.
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velocity v = 5.52 x 10-3 μm/s (see Materials and Methods
for a description of the fitting procedure). Figure 5B shows
the MSD for vesicles in control cells (black dots) and the
curve for the fit of Eq. 1 with error bars showing the
standard error. The dashed and dotted lines show the con-
tributions of subdiffusion and directed transport, respec-
tively (compare Eq. 1 with Eqs. 3 and 4). On short time
scales, the MSD plot is curved downward due to the
anomalous subdiffusion (dashed line, corresponding to
the first term on the right-hand side (RHS) of Eq. 1). On
longer time scales, superdiffusion consistent with active
transport results in an upward curved MSD plot given by
the dotted line and the second term on the RHS of Eq. 1
(see above and Figure 5B-D).
Anomalous subdiffusion is frequently observed for

various cargo molecules in cells and is generally ascribed



Figure 5 Quantitative analysis of all trajectories of vesicles containing of BChol. CHO cells pre-incubated in the absence or presence of
Cytochalasin D, to disrupt the actin cytoskeleton, or nocodazole, to disrupt microtubule, were pulse-labeled with BChol followed by a chase in
the presence or absence of the drugs to obtain the steady-state distribution. The cells were imaged as described in the legend to Figure 3.
Vesicles were tracked as described in Materials and Methods and their mobility was analyzed by the average mean square displacement (MSD)
averaged over all vesicle trajectories per condition. Disruption of microtubule (panel A, red) or actin filaments (panel A, blue) significantly reduced
vesicle mobility compared to the mobility of vesicles in control cells (panel A, black). Vesicle mobility was analyzed by a model describing the
transition from anomalous subdiffusion to directed motion (Eq. (1)). Panels B, C, and D show the regression of this model (red line) to the MSD
for vesicles in control cells (panel B) and in cells with disrupted microtubule (panel C) or disrupted actin filaments (panel D). Also shown are the
contribution from anomalous subdiffusion (dashed lines) and superdiffusion consistent with directed motion (dotted lines). Disruption of both
microtubule and actin filaments reduced the anomalous diffusion constant and the velocity of the directed motion. Notice that as the anomalous
diffusion constant, Dα, depends on the anomalous exponent the comparison in panel E is only valid as we find α to be constant. Data is given as
mean ± SD being calculated as described in Eq. 5 in Materials and Methods.
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to the dynamics of the cytoskeleton with typical values
of α ranging from α ~ 0.65-0.75, [26,36-38]. Thus, the
anomalous exponent we find for sterol-containing vesi-
cles is slightly smaller than that reported for other
vesicle cargo, but since the anomalous exponent was
found to vary between different cell types, the value we
find here is still within the expected range. The ave-
rage transport velocity of endosomes and other vesicles
along microtubules has been estimated to range from
0.25 μm/s to 2 μm/s [39-43]. Thus, the average velocity
we find here for BChol-containing vesicles in CHO cells
(i.e., 5.52 x 10-3 μm/s) is roughly a hundred times slower,
indicating that directed transport plays a minor role in
vesicular sterol trafficking in CHO cells. In references
[44,45], the velocity of vesicle transport was determined
by selectively measuring the velocity of vesicles being
actively transported. Here, on the other hand, we deter-
mine the average mobility of a large population of vesi-
cles containing a small but significant subpopulation of
vesicles being actively transported through the cyto-
plasm. Thus, the much slower average velocity we find
here is likely due to a different experimental approach.
Visual inspection of the data showed that few vesicles
were almost entirely subject to directed transport, while
the majority of vesicles containing BChol showed no
directional transport over the observation time; see
Figure 4E for examples of trajectories. Thus, it is likely
that two differently mobile vesicle populations transport
BChol in CHO cells. Analysis of the end-to-end distance
of vesicle trajectories indicates that the population of



Figure 6 Suggested model for diffusion of sterol-containing
vesicles. (A) Log-Log plot of the average MSD of vesicles tracked in
control cells at 37°C. Initially, the MSD has a slope described by
anomalous subdiffusion (dashed line) with an eventual transition to
a slope described by superdiffusion consistent with active transport
(dotted line). From this, we suggest the model presented in panels
B-E. On short time scales the vesicles are caught in the meshwork
formed by the cytoskeleton, which is composed of microtubule and
actin filaments. This meshwork of filaments undergoes thermal
fluctuations and is interconnected by motor proteins, which are
constantly pulling on the filaments. Thus, the cytoskeletal network is
constantly rearranging, causing the vesicles to appear to move by
anomalous subdiffusion. On longer time scales directional motion
caused by motor proteins moving along a filament dominates, thus
causing a directed vesicle motion on longer time scales.
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vesicles with predominantly active transport is very small
(Additional file 1: Figure S10). In fact, the majority of
vesicle trajectories have an end-to-end distance of less
than 1 μm, and out of the 210 vesicles tracked at 37°C in
control cells, only eight vesicles had an end-to-end dis-
tance of more than 1 μm, up to ~3.2 μm; (see Additional
file 1: Figure S10). We cannot rule out that these vesicles
carry out special functions in intracellular sterol traffick-
ing. Long-range active transport of endocytic vesicles
primarily occurs along microtubules while actin fila-
ments have been shown to support local short-distance
vesicle movements [44,45]. Furthermore, as discussed
above, the filaments of the cytoskeleton should impact
or even determine the diffusion modality of sterol vesi-
cles (normal versus anomalous diffusion). Therefore, we
proceeded to uncover the effects of disrupting either the
microtubule or the actin filaments. Microtubule disrup-
tion was induced by treating the cells for 1 h with
33 μM nocodazole while actin was disrupted by incuba-
tion with 20 μM cytochalasin D for 1 h [46]. Figure 5A
shows the MSD after microtubule disruption (red,
n = 132 vesicles from 15 cells) and actin disruption (blue,
n = 111vesicles from 15 cells) compared to the MSD of
vesicles in the control cells (black). It is evident that
both treatments significantly reduced vesicle mobility. A
fit of Eq. 1 to both MSDs showed that neither micro-
tubule nor actin disruption altered the degree of anom-
aly significantly. In both cases, we found α = 0.65, while
in control cells with an intact cytoskeleton the anoma-
lous exponent was α = 0.62. Interestingly, the lowered
MSD upon disruption of microtubules or actin filaments
was caused by both a decrease in diffusion constant and
by a decreased velocity. After microtubule disruption,
the anomalous diffusion constant was reduced by 39%
and the velocity by 52%. Similarly, the anomalous diffu-
sion constant and the velocity were reduced by 40% and
33%, respectively, after disruption of the actin filaments;
see Figure 5E, F. We infer that sterol-containing vesicles
are transported along both microtubules and actin fila-
ments although disruption of microtubules seems to have
a slightly larger effect on active transport.

Conclusions
In summary, we propose the model shown in Figure 6
for the mobility of BChol-containing vesicles in CHO
cells. On short time scales (t < ~5 s), the vesicles are
caught in the cytoskeleton either in cages or directly
attached to a given filament, resulting in anomalous sub-
diffusion of vesicles (Figure 6 B-D). We used a frame
rate of ~1 Hz for our tracking studies, which is compa-
rable or even faster than many other vesicle tracking
studies with fluorescent probes [39,47,48], even though
some vesicle tracking studies use much higher frame
rates up to 30 Hz [49]. In our previous work on tracking
of sterol vesicles using DHE on a WF microscope, much
lower frame rates of ~0.015-0.03 Hz were used to catch
significant vesicle displacements in the presence of the
unavoidable photobleaching of that sterol probe [3,10].
We found the time resolution of ~1 frame/s used here
sufficient to accurately describe motion characteristics of
BChol, and we would predict that finer temporal sam-
pling only minimally affects estimation of the diffusion
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parameters given the low displacement distances we ob-
serve in the subdiffusive mode for (t ≤ 5 s). The observed
subdiffusive motion of the vesicles is likely a conse-
quence of dynamic rearrangements of the cytoskeleton
sampled with a similar time resolution as we used here
[50], which behave as an elastic polymer network, as re-
cently suggested by Brangwynne et al. [51]. In CHO
cells, we found an anomalous exponent, α ~ 0.63, which
is slightly smaller than the anomalous exponent for lipid
droplets in yeast [26]. Anomalous subdiffusion would
also be possible in a static meshwork. Here, the vesicles
could be caught in cages formed by the cytoskeleton,
but they would still be able to move by confined diffu-
sion. However, based on the results presented here this
is not likely for two reasons. First, we find that the ave-
rage vesicle size corresponds to the average distance
between filaments in the cytoskeleton. Therefore, it is
likely that in a static meshwork the vesicles would not
have space for diffusion but could only move by active
transport along filaments. Second, the anomalous expo-
nent for vesicle motion closely resembles the anomalous
exponent observed for the mobility of a dynamic cyto-
skeleton [36-38,52]. This further strengthens that ano-
malous subdiffusion of the vesicles on short time scales
is likely due to rearrangements of the cytoskeleton. On
longer time scales, the vesicles have a probability of
being transported by one or several motor proteins
which pull the vesicles across cytoskeleton barriers.
Thus, we find a switch to superdiffusive motion along a
given filament (illustrated in Figure 6E by a large dis-
placement) as inferred from fitting Eq. 3 to the last third
of the MSD (i.e. large t). This analysis gives an anomal-
ous constant of 1.6 (see dotted-dashed line in Figure 6A
after transforming data and fitting to a log-log plot).
Interestingly, while most of the literature regarding trans-
port of endocytosed vesicles has focused on transport
along microtubules, we find that transport of sterol-
containing vesicles is reduced by disruption of either
microtubules or actin filaments. This suggests that actin
filaments are linked to transport of sterol-containing vesi-
cles, as suggested previously for DHE in vesicles contain-
ing the putative sterol transporter MLN64 [53]. However,
if this is due to vesicles being transported along actin fila-
ments or due to some restructuring of the cytoskel-
eton is yet to be determined.

Significance of the results for regulation of intracellular
cholesterol transport
It is well documented that different intracellular or-
ganelles contain very different amounts of cholesterol.
However, much remains to be understood about how
this spatiotemporal distribution is maintained. Using
two-photon microscopy of the fluorescent cholesterol
analog BChol, we found that diffusion of non-vesicular
sterol in cells is very heterogeneous with diffusion con-
stants ranging from 10-2 μm2/s close to the ERC to
1.3 μm2/s towards the plasma membrane. This non-
vesicular sterol diffusion is likely interrupted by transient
binding of BChol monomers to slowly moving vesicles
(see Figures 1, 2 and Additional file 1: Figures S5 to S8).
By particle tracking analysis we demonstrate that trans-
port of vesicles containing BChol is governed by anom-
alous subdiffusion on a time scale less than ~5 s with a
transition to superdiffusive motion consistent with direc-
ted transport on longer time scales. Both processes re-
quire an intact actin and microtubule network. The slow
transport velocity in the superdiffusive mode indicates
that active transport of vesicles containing sterols is not
a major factor in vesicular sterol transport. Rather, most
sterol vesicles move in small confined areas. This has
likely two consequences. First, the predominantly subdif-
fusive motion of sterol vesicles in small confinement
areas make inter-organelle vesicular sterol transport in-
cluding vesicle budding, shuttling to a target organelle
and fusion of the vesicle with the target organelle an in-
efficient transport mode. Budded vesicles will likely stay
close to the donor membrane for prolonged time, as
predicted for subddiffusive motion [54]. Second, anoma-
lous subdiffusion of sterol vesicles could increase the
time for local collisional sterol transfer to adjacent orga-
nelles. In fact, exchange of cholesterol monomers bet-
ween donor and acceptor liposomes has been shown to
be enhanced by frequent vesicle collisions [55]. We
propose that confined diffusion of sterol vesicles in small
subcellular domains increases the likelihood of local
non-vesicular sterol exchange, either due to collisions of
vesicles with adjacent membranous structures or by
transport via sterol carrier proteins. This of course as-
sumes that the sterol carrier proteins may pass through
the barrier that confines the vesicle. The proposed mech-
anism could be an elegant way of coupling vesicular and
non-vesicular sterol transport modes in mammalian cells.

Methods
Cell culture and labeling
Chinese Hamster Ovary (CHO) cells were grown in
bicarbonate-buffered Ham’s F12 medium supplemented
with 5% heat-inactivated fetal calf serum and antibiotics
as previously described [8]. Fetal calf serum and cell cul-
ture medium were purchased from Gibco BRL (Life
Technologies, Paisley, Scotland), while all other chemi-
cals except BChol were from Sigma Chemical (St. Louis,
MO). Two to three days prior to experiments, cells were
seeded on microscope slide dishes. Lipid probes were
stored in ethanol at a concentration of 5 mM under nitro-
gen at – 80°C until use. BChol was synthesized and loaded
on methyl-β-cyclodextrin as described previously, affor-
ding a solution containing BChol/cyclodextrin complexes
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(BChol-CD) [13]. Cells were labeled with BChol-CD for
2 min at 37°C, washed with buffer medium containing
150 mM NaCl, 5 mM KCl, 1 mM CaCl2, 1 mM MgCl2,
5 mM glucose and 20 mM HEPES (pH 7.4) and chased
for 25 min at 37°C prior to imaging. Microtubule disrup-
tion was induced by treating the cells for 1 h with 33 μM
nocodazole while actin was disrupted by incubation with
20 μM cytochalasin D for 1 h [46].
Two-photon excitation microscopy
Fluorescence time lapse measurements of BChol were
performed using a custom-built setup constructed around
an Olympus IX70 microscope. The objective used was a
60x water immersion objective with a NA of 1.2. The exci-
tation light source was a femtosecond Ti:Sa laser (Broad-
band Mai Tai XF W25 with a 10 W Millennia pump laser,
80 MHz pulse-frequency, tunable excitation range 710–
980 nm, Spectra Physics, Mountain View, CA), and the
excitation wavelength used was 930 nm. To collect
BChol’s emission, a 540 ± 25 nm filter was used (Bright-
Line HC). The light was detected by a photomultiplier
tube (Hamamatsu H7422P-40) operated in the photon
counting mode. The data were acquired using simFCS
software developed by the Laboratory for Fluorescence
Dynamics, University of California, Irvine.
Image analysis
Image analysis was carried out using ImageJ (developed
at the U.S. National Institutes of Health and available
on the Internet at http://rsb.info.nih.gov/ij) or MatLab
(MathWorks Inc., USA). For spatial registration of image
stacks, “StackReg” developed by Dr. Thevenaz at the
Biomedical Imaging group, EPFL, Lausanne, Switzerland
was used [56]. Prior to multiple particle tracking, the
images were processed to enhance the signal to noise
ratio by the PureDenoise algorithm [57,58] for ImageJ
and a 0.5 Gaussian filter applied to the image sequences.
After removal of residual background, the image was
processed with the spot enhancing Mexican hat filter
implemented in the SpotTracker plugin for ImageJ by
Daniel Sage [59].
Multiple particle tracking
Tracking of vesicles was performed using the 3D trac-
king plugin for ImageJ by Sbalzarini and Koumoutsakos
[60]. In case of translational motion of the cell, this was
corrected for by image registration using the StackReg
plugin for ImageJ.For each vesicle the x- and y-
coordinates in each frame were saved for further analysis
in MatLab v. 7.9.0 (R2009B) using self-programmed
routines. The mean square displacement (MSD) was
calculated as:
MSD Δt ¼ nhð Þ ¼ 1
N � n

XN�n

i¼1

x ihð Þ � x ihþ nhð Þ½ �2 þ y ihð Þ � y ihþ nhð Þ½ �� �
ð2Þ

where N is the number of frames, h is the time step
between subsequent frames, and Δt is the time lag
corresponding to n frames.

Model for combined subdiffusion and active transport

In our model for the vesicle motion we combine subdif-
fusion, which could be of the type fractional Brownian
motion, with a constant velocity deterministic movement
due to pulling by the motor proteins. The MSD for the
subdiffusive motion is:

D
→x2 tð Þ

E
0
¼ 4Dαt

α: ð3Þ

The pulling of the motor proteins is assumed to shift
the average position by:

x→ tð Þ
D E

f0
→ ¼ v:t; ð4Þ

where the subscript f0
→

indicates the presence of the pull-
ing force. We take the diffusion and the force as inde-
pendent and, thus, the MSD in the presence of the force
is simply the sum of Eq. (3) and the square of Eq. (4)
giving Eq. (1) in the results and discussion section. Due
to the way the MSD is calculated it is statistically more
significant for small lag times. In fact, for a purely diffu-
sive process, the standard deviation of the MSD is pro-
portional to the MSD itself [33]. Thus, the MSD fit
was weighted by 1/(Stderr)2, where Stderr is the
standard error of the MSD see error bars in Figure 5.
In MatLab this yields a fit with an associated 95%
confidence interval corresponding to 1.96 standard
deviations. Thus, the standard deviation, Std, of the
fitted value is given by:

Std ¼ CI � x―

1:96
; ð5Þ

where CI is the upper 95% confidence interval and x― is
the mean fitted value.

Temporal image correlation spectroscopy (TICS)
TICS correlates an image series in time to determine the
dynamics, number densities, and fraction of immobile
fluorophores on the time scale of the measurement
[18,61]. The normalized temporal autocorrelation func-
tion of an image series as a function of time lag τ, when
ξ = η = 0 is given by [18,62]:

http://rsb.info.nih.gov/ij
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r 0; 0; τð Þ ¼ δi x; y; tð Þδi x; y; t þ τð Þh i
i x; y; tð Þh it i x; y; t þ τð Þh itþτ

; ð6Þ

where angular brackets denote spatial and temporal
averaging and τ is the timelag between subsequent
images. TICS analysis was performed using simFCS ana-
lysis software developed by the Laboratory for Fluores-
cence Dynamics, University of California, Irvine.

Number & Brightness (N&B) analysis
The distribution and degree of aggregation of BChol in
CHO cells was studied by number and brightness ana-
lysis (N&B) using ImageJ or simFCS [7,19]. The appar-
ent brightness, B, is given as the ratio of variance and
average of the intensity fluctuations, according to [19]:

B ¼ σ2

kh i ¼

X
i

ki � kh ið Þ2
X
i

ki
¼ εþ 1: ð7Þ

Here, ki is the number of photon counts at a particular
pixel position, while hki and σ2 represent the first and
second moment of the intensity distribution (i.e., the
average intensity and variance), respectively. The appar-
ent brightness is, thus, a measure of the intensity vari-
ance per pixel normalized to the average intensity. It is
related to the molecular brightness, ε, of the particles
and is independent of the number of particles. The ap-
parent number of particles, N, is calculated from the
same parameters according to:

N ¼ kh i2
σ2

¼ ε:n
εþ 1

: ð8Þ

N is directly proportional to the number of fluorescent
particles, n, in a given pixel location.

Raster image correlation spectroscopy
Raster image correlation spectroscopy (RICS) was first
described by Digman et al. as a method to measure the
dynamics of particles moving fast in solution or in cells
[16,17,61]. In raster scanning mode, the RICS autocor-
relation function is given by:

GS ξ; ηð Þ ¼ S ξ; ηð Þ:G ξ; ηð Þ; ð9Þ
where S(ξ,η) is the correlation function due to the scan-
ning of the laser beam and G(ξ,η) is the correlation func-
tion due to diffusion. In the temporal domain, the mean
end-to-end distance of a random walk performed by a
particle which is much smaller than the point spread
function (PSF) will be proportional to the square root of
time. Meanwhile, in the spatial domain the position of
the particle as a function of time is described by a
Gaussian distribution with a variance related to the dif-
fusion coefficient. This means that on a LSM operating
in the two-photon mode, where the laser is raster
scanned across the sample line-by-line the temporal cor-
relation function, S(ξ,η), has the following form:

S ξ; ηð Þ ¼ exp �
δr2

ω2
0

ξj j2 þ ηj j2� �

1þ 8D τp ξj jþτl ηj jð Þ
ω2
0

2
64

3
75; ð10Þ

where τp is the pixel residence time, τl is the line time
and δr is the pixel size. The spatial correlation function,
G(ξ,η), is given by:

G ξ; ηð Þ ¼ γ

N
1þ 8D τp ξj j þ τl ηj j� �

ω2
0

� 	�3=2

; ð11Þ

where γ is a factor describing the geometry of the laser
beam. In raster scanning mode, the correlation of the
succeeding images is related on three different time
scales. Along the horizontal direction the pixels are
separated by the pixel dwell time (microseconds) while
along the vertical direction the images are correlated by
the line time (i.e., the time it takes to record the inten-
sity of every pixel in a line plus the time it takes for the
microscope to move to the next line). The line time is
typically in milliseconds. Finally, the images are corre-
lated by the time between two succeeding frames (sec-
onds). Thus, RICS may be employed to measure the
dynamics of particles with a wide range of diffusion
coefficients. Diffusion maps and diffusion coefficients
determined by RICS were calculated using simFCS soft-
ware developed by the Laboratory for Fluorescence Dy-
namics, University of California, Irvine. [16,17].

Additional file

Additional file 1: Figure S1. Chemical structure of BODIPY-cholesterol
(BChol) and dehydroergosterol (DHE). A, structure of BODIPY-cholesterol
with the fluorophore (green, with light green underlay to highlight the
fluorescent group) at carbon 24 of the sterol side chain. B, structure of
DHE. Differences to cholesterol are indicated in green and red; i.e., an
extra methyl group and double bond in the alkyl side chain and two
additional double bonds in the steroid ring system. Only one additional
double bond in the second ring distinguishes DHE from ergosterol
(indicated in red). The three conjugated double bonds in the steroid ring
(indicated in light blue) give DHE its slight fluorescence. Figure S2:
Number and brightness analysis in HeLa cells labeled with BChol. Cells
were repeatedly imaged on a 2P microscope with a pixel dwell time of
10 μsec and 100 frames in total. The apparent number (N) and brightness
(B) of the BChol molecules were calculated from the intensity fluctuations
per pixel positions, as described in the main text. A, the first 5 frames of
the acquired sequence; B, N-map; C, B-map; D, intensity variance, (i.e., the
second moment (2nd mt.) of the photon count distribution, as it enters
in Eq. 6 in the main text. In addition, we calculated higher moments of
the photon counting histogram using a plugin to Image J, kindly
provided by Dr. Jay Unruh (Stowers Inst. for Microscopy, Kansas, USA).
The 3rd, 4th and 5th moment were scaled identically using a FIRE LUT in
the range of 0-950, and showed identical features. See text for further

http://www.biomedcentral.com/content/supplementary/2046-1682-5-20-S1.pdf
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explanations. Figure S3: Photobleaching of BChol in CHO cells imaged
with a wide field (WF) microscope (A) or a two-photon imaging system
(B). In both cases 600 frames were acquired. Arrowheads in A indicate
the BChol-labeled plasma membrane. The large central region in A is
mostly slowly bleaching autofluorescence. C, quantification of BChol’s
intensity for the WF sequence (light grey line, data and darkgrey line,
monoexp. fit) and of the 2P sequence (black line). D, quantification of
BChol’s intensity for another WF sequence with higher illumination
intensity (grey symbols, data and grey line, fit); and the 2P sequence of
Fig. 2 in the main text. Figure S4: Result of the reaction-diffusion
simulation with diffusing particles shown in blue and binders shown in
red. Figure S5: Analysis of the simulated data. Panel A shows the first
frame of the simulated image stack. Panels B, C and D shows the
diffusion map, the number of particles per pixel and the brightness of
each pixel, respectively. By comparison with Figure 2 (in the main text)
we can see that the simulation of Brownian diffusion with transient
binding faithfully resembles the experimental data. The diffusion constant
is lower in the areas with binding macromolecular structures, the
majority of diffusing molecules are found in the area with binders and
the brightness map shows a low degree of aggregation. Figure S6:
Distribution of diffusing particles with and without exchange between
the binders and the free particles with and without binding, A and D,
respectively. B and E are maps of the apparent number of molecules (N),
and C and F show maps of the apparent brightness (B). Figure S7:
Simulation with increased mobility of the free particles. The binding and
dissociation rate constants were kept at kon = 0.23 s-1 and koff = 0.5 s-1,
while the diffusion coefficient of the particles (simulating sterol
monomers was increased from 1 μm2/s to 300 μm2/s). Distribution of
diffusing particles is shown in A, while B and C are maps of the apparent
number of molecules (N), and the apparent brightness (B), respectively.
Figure S8: Simulation with stronger binding: All settings were as
described in Fig. S5 except for the unbinding rate constant, koff, which
was reduced from 0.5 s-1 to 0.05 s-1. Here 5573 particles were bound to
100 binders compared to 278 particles in the previous experiment.
Therefore, the bound particles (or vesicles) become more visible
Distribution of diffusing particles is in A, while B and C are maps of the
apparent number of molecules (N), and the apparent brightness (B),
respectively. Figure S9: 2P time-lapse sequence showing shuttling of a
small vesicle (in green) from a donor to an acceptor vesicle (from bottom
to top of the image frames). The lower donor vesicle becomes first
elongated, followed by formation and fission of a small vesicle which
shuttles to and fuses with a stationary acceptor vesicle. Images in this
example sequence were acquired every 4 s. The size of the frames is 1.73
x 2.59 μm. Figure S10: From the end-to-end distance of a trajectory one
may estimate the degree of directed motion. That is, if a vesicle is subject
to directed motion it is expected to traverse further away from the
starting point than a vesicle which is not subject to directed motion.
Panels A-C show the distribution of end-to-end distances in control cells
(A) and in cells with either disrupted microtubules (B) or actin filaments
(C). Also, shown in panel D is the mean end-to-end distance at each
condition which further emphasize the decreased vesicle mobility upon
disruption of the cytoskeletal filaments.
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