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Abstract: Cancer belongs to a class of highly aggressive diseases and a leading cause of death in the world. With more than
100 types of cancers, breast, lung and prostate cancer remain to be the most common types. To identify essential network
markers (NMs) and therapeutic targets in these cancers, the authors present a novel approach which uses gene expression
data from microarray and RNA-seq platforms and utilises the results from this data to evaluate protein–protein interaction (PPI)
network. Differentially expressed genes (DEGs) are extracted from microarray data using three different statistical methods in R,
to produce a consistent set of genes. Also, DEGs are extracted from RNA-seq data for the same three cancer types. DEG sets
found to be common in both platforms are obtained at three fold change (FC) cut-off levels to accurately identify the level of
change in expression of these genes in all three cancers. A cancer network is built using PPI data characterising gene sets at
log-FC (LFC)>1, LFC>1.5 and LFC>2, and interconnection between principal hub nodes of these networks is observed.
Resulting network of hubs at three FC levels highlights prime NMs with high confidence in multiple cancers as validated by
Gene Ontology functional enrichment and maximal complete subgraphs from CFinder.

1 Introduction
Cancer gene discovery is an important challenge clinically and
computationally in a comprehensive genetic context, where a wide
variety of omics data are available. Over the last decade, an
extensive research is headed towards close-fitting the divergence of
molecular and cellular processes in case of human cancer. Different
cancer types have been investigated in studies using different
clinical or in-silico data types such as gene expression using DNA
microarray and RNA-seq technology, pathway and regulatory data,
protein–protein interaction (PPI) data and their meta-analysis [1–
5]. Numerous researchers have published interesting results in the
identification of biomarkers as a result of bioinformatics analysis,
which can yield deep insight in understanding the biological
processes of cancer oncology [6, 7]. A high number of deaths
attributable to breast cancer in women, prostate cancer in men, and
lung cancer across both men and women, are observed worldwide
(Cancer facts and figures 2017 and WHO cancer country profiles).
Hence, detection of differentially expressed genes (DEGs) is
essential to understand the complex functional changes that occur
in the disease. Enormous cancer data from microarray and RNA-
seq technology is available in public on Gene Expression Omnibus
(GEO) [8] and The Cancer Genome Atlas (TCGA) [9]. Recent
experimentation involves analysis of cancer data from both these
platforms to compare or combine their results for gene
identification. Such cross-platform comparison produces high
reproducibility among biological replicates [10]. To focus on the
difference, rather than similarity, between RNA-seq and microarray
technologies, a comparison was presented using RNA samples
from a human T-cell activation experiment [11]. Benefits of RNA-
seq were identified which are, a broader dynamic range for
detection of more number of DEGs with higher fold change (FC), a
high correlation between gene expression profiles and detection of
low abundance transcripts. Also, RNA-seq was found to be more
accurate in identifying DEGs relative to microarray analysis [12].
Still, microarrays continue to be a more common choice of
researchers in gene profiling experiments due to RNA-seq being
new, expensive and complex in data storage and analysis. A similar
analysis on both platforms produced strongly concordant and
highly correlated results [13]. A common set of DEGs evident in

three cancers was derived using such cross-platform analysis and
heterogeneity across the cancers was identified [14]. Recently,
network-based studies are performed on complex diseases
including cancer, to unravel the dysregulation of pathways and
processes involved [15]. In addition to such cross-platform
identification of genes, there is a need to identify the implications
of the level of FC on the disease network, at the interaction level.
Capturing statistical variability at the genetic level along with
biological variability in terms of FC helps in identifying the
relationship between hub nodes of PPI network at the protein level.

Hence, we present a FC-based approach to extract DEGs from
microarray and RNA-seq datasets of said three cancer types at
three different FC levels. We then evaluate the effects of FC at the
interaction level with a prime objective to discover a FC-based
signature of common network markers (NMs) in multiple cancer
types (breast, lung and prostate). A network shared by the three
cancers is constructed with the view of FC-based regulation and
relation of genes. The findings demonstrate the usefulness of our
approach in understanding the biological implications of FC in the
pathways of three cancers.

2 Materials and methods
2.1 Datasets

We used three cancer datasets: breast, lung and prostate, for both
microarray and RNA-seq platforms from GEO. Accession numbers
(number of tumour samples/number of normal samples) are
GSE45827 (149/11) [16], GSE48984 (3/9) [17], GSE26910 (6/6)
[18], GSE19804 (60/60) [19], GSE10072 (57/50) [20], GSE55945
(12/7) [21], GSE26910 (6/6) for microarray data and GSE62944
(2120/213) [22] for RNA-seq data. Total samples analysed are 442
(293 tumour/149 normal) for microarray and 2333 (2120
tumour /213 normal) for RNA-seq. Robust multichip average was
used for expression normalisation of microarray data as it showed
good differential change detection, stable variance and less number
of false positives [23].
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2.2 Identification of DEG sets

2.2.1 Microarray data: Selection of an appropriate method for
extracting best results from microarray analysis is challenging due
to the arguments on their inconsistency. It is thus recommended to
acknowledge DEGs that lie within an intersection of DEG sets
obtained by different methods, preferably, linear modelling
methods for microarray analysis (LIMMA), significance analysis
of microarray (SAM) and T-test [24]. Thus, to address the issue of
result inconsistency in extraction of DEGs, three different methods
were used. These are LIMMA [25], SAM [26] and FC rank
ordering statistic (FCROS) [27]. LIMMA which uses emperical
Bayes statistic shows advantages in terms of statistical power,
false-positive rate, execution time and ease of use [28, 29]. SAM is
a repeated permutation-based method which assigns a score to each
gene on the basis of change in expression relative to the standard
deviation. As our objective was to emphasise FC for identification
of DEGs, we used a rank-based approach, FCROS, that associates
a statistic with the ranks of the FC values for each gene, and then
uses the resulting probability to identify the DEGs within an error
level. It shows advantages of being deterministic, fast and it
overcomes multiple testing problems associated with microarray
datasets. It is known that compared to methods using mere
statistical parameters, results obtained from FC-based methods are
more reproducible and biologically relevant, irrespective of the
technology used [27]. Therefore, FC was chosen as a crucial
condition for gene selection.

Fig. 1 shows complete pipeline for DEG extraction from
microarray data. The parameters used for the three methods are
listed as, LIMMA: P-value<0.05 using Benjamini–Hochberg (BH)
correction; SAM: delta = 0.05 with number of permutations = 100;
and FCROS: F-value for TopN = 10,000 (cutoff for number of
DEGs to be extracted using fvalTopN function). The parameter N
for FCROS was experimented upon for different values and a
suitable value of 10,000 was selected. The results of
experimentation are provided in Supplementary Table 1. The
pipeline was executed for all three methods to find common DEGs
in three cancers at three cutoff levels, log-FC (LFC)>1 (2-FC),
LFC>1.5 (3-FC) and LFC>2 (4-FC). LIMMA produced FC values
in a log scale whereas SAM and FCROS produced non-log FC
values. These FC values of LIMMA were hence transformed to
non-log scale so as to be comparable across three methods. Thus,
an intersection over the obtained DEG lists could be performed
having FC values on the same scale. With three executions of the
pipeline for three methods, gene lists using LIMMA (ML1, ML1.5
and ML2), SAM (MS1, MS1.5, MS2) and FCROS (MF1, MF1.5, MF2)
were obtained at LFC>1, LFC>1.5 and LFC>2. 

2.2.2 RNA-seq data: LIMMA with voom function was chosen to
formally identify DEGs from RNA-seq data of three cancers (P-
value<0.05 with BH correction). Normalisation function voom is

introduced in LIMMA R package specifically for RNA-seq data. It
performs a locally weighted scatterplot smoothing (LOWESS)
regression to translate the mean-variance trend into precision
weights using same linear modelling as for microarrays. Benefits
of using LIMMA are best explained in [30]. It was shown that
LIMMA had comparable, and by some measures improved
performance to the other models, which were adapted for RNA-seq
analysis. The advantages include low number of false positives,
high correlation between signal-to-noise ratio versus P-value for
genes detected in one condition, support for multi-factored
experiments and low runtime. It was shown that LIMMA
demonstrates close to ideal modelling and is well suited for
detecting DE genes. Moreover, it has a capability to analyse both
RNA-seq and microarray data with very similar pipelines [29]. Fig.
2 shows complete pipeline for DEG extraction at three FC cutoff
levels. Thus, three gene lists (R1, R1.5 and R2) comprising common
DEGs in three cancers were obtained at LFC>1, LFC>1.5 and
LFC>2. 

2.2.3 Collective DEG sets shared by microarray and RNA-
seq: To obtain consistent DEG sets across three cancer conditions,
DEG lists obtained from analysis of each cancer at three FC cutoff
levels were evaluated. The gene lists evident from microarray
analysis using LIMMA, SAM and FCROS were intersected upon
with the gene lists obtained from RNA-seq analysis. Multiple
union and intersection operations were performed on the DEG lists,
to agree upon the most consistent set of DEGs prevalent in the
cancers.

2.3 FC based construction of PPI network

To observe the effect of 2-FC (LFC>1), 3-FC (LFC>1.5) and 4-FC
(LFC>2) in expression of significant genes over regulation of
cancer pathways and cellular functions at the protein level, three
different PPI networks were constructed. STRING interactions
(confidence score>500) for gene list with LFC>1, LFC>1.5 and
LFC>2 were used to construct the networks. NetworkAnalyst
(http://www.networkanalyst.ca) was used for this purpose [31]. The
topological analysis was conducted further to identify hub genes
based on degree and betweenness centrality (BC) of the nodes.
Lists of significant hub genes from all the networks were combined
to construct a common cancer network involving prime
interactions. This network was further analysed topologically to
distinguish hub genes. Functional enrichment analysis was
conducted to verify their association with three cancers.
Additionally, communities with different clique sizes were plotted
and studied.

Fig. 1  Pipeline for identification of DEGs in three cancer types from microarray data using LIMMA (and SAM and FCROS)
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3 Results and discussion
3.1 Overlap of gene signature across microarray and RNA-
seq results

From microarray data analysis nine lists of DEGs (three from each
method), and from RNA-seq data analysis three lists of DEGs were
obtained. The number of DEGs in all individual lists is given in
Supplementary Table 2. In order to extract gene list evident from
both data platforms and to compare the results with respect to
number of DEGs obtained using different analysis methods, we
performed an intersection of the obtained gene list. The results are
illustrated in Fig. 3. Strong concordance was observed between
microarray FCROS and RNA-seq results. It was also important to
observe from Fig. 3a that eight DEGs from MS1 ∩ R1 were a subset
of 40 DEGs from ML1 ∩ R1. This was also true for the results of
Fig. 3b. This proved that DEG lists using LIMMA were a superset
of DEGs from SAM. At the same time, to compare the lists from
LIMMA and FCROS, 40 genes from ML1 ∩ R1 were a subset of list
of 383 genes from list C1 of Fig. 3a. Similarly, seven genes from
ML1.5 ∩ R1.5 were a subset of 107 genes from list C1.5 of Fig. 3b.
These subsets were obtained as a result of intersection operation
performed over the sets and the results are shown in
Supplementary Fig. 1. This proves that FCROS is able to capture a
superset of DEGs from microarray platform among the three
cancer types. Also, no significant DEGs were observed from
microarray data at LFC>2 using LIMMA and SAM, whereas

FCROS could capture 16 genes which were common to RNA-seq
platform. This list is denoted as C2 shown in Fig. 3c. 

3.2 Construction of common cancer network and
identification of NMs with FC implications

Effect of level of FC of the identified common DEGs was studied
at protein level by constructing PPI network. Three gene sets C1,
C1.5 and C2 for LFC>1, LFC>1.5 and LFC>2 were chosen to
construct three PPI networks using NetworkAnalyst tool. Since
C1 ⊃ C1.5 ⊃ C2, interactions of 276 genes of C1, 91 genes of C1.5 and
16 genes of C2 were extracted from the STRING database [32]. For
276 genes, a PPI network with 3162 nodes-5371 edges (denoted as
NetworkFC1), for 91 genes, network with 1801 nodes-2468 edges
(denoted as NetworkFC1.5) and for 16 genes, network with 82 nodes
and 83 edges (denoted as NetworkFC2) were obtained. The
corresponding PPI networks are illustrated in Supplementary Figs.
2–4, respectively. Degree and BC of each of the nodes was
measured to perform topological analysis of the three networks.
BC was considered to be important as an indication of its
occurrence in large number of shortest paths between the nodes,
which in turn points towards its involvement in many biological
processes and functions. With large number of nodes in
NetworkFC1, nodes with high degree (≥40) were selected. These
nodes were also observed to show high BC values. Similarly, hubs
with degree ≥10 were selected from NetworkFC1.5 and hubs with
degree ≥5 were selected from NetworkFC2, and their BC values

Fig. 2  Pipeline for identification of DEGs in three cancer types from RNA-seq data using LIMMA
 

Fig. 3  Overlap of DEGs between microarray and RNA-seq results
(a) Overlap of gene lists at LFC>1, (b) Overlap of gene lists at LFC>1.5, (c) Overlap of gene lists at LFC>2
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were recorded. The list of these genes along with their degree and
BC values is provided in Supplementary Table 3. Combined list of
hubs from both networks highlighted 81 genes (after removing
duplicates) which were used to construct a cancer network of hub
genes with FC implications. This was denoted as NetworkFC1 − 1.5 − 2

with 7199 nodes-11,787 edges. The network is shown in Fig. 4. 
Topological analysis of this network was conducted to identify

hubs with degree ≥10 which resulted in a list of 108 significant
markers. It was important to note that UBC was the node with
highest degree (6020) and highest BC (25064309) values. Also, it
was the only common interacting hub between the nodes of
NetworkFC1, NetworkFC1.5 and NetworkFC2. Due to this
interconnection between the nodes of the three FC networks
through UBC, the BC values of the hub genes of all three networks
was seen to increase in the combined network. Fig. 4 highlights
UBC in red and all other hub nodes in blue. The small pink nodes
are those nodes whose degree is comparatively small as compared
to the hub nodes in the network. Also, the small purple nodes are
those nodes whose degree is one, i.e. these are kind of leaf nodes of
the graph. The impact of level of FC of DEGs is postulated at the
protein level in this network by the degree of interactions shared by
the hub nodes. As this network points towards the significant
interacting partners of the FC-based DEGs, it discovers a set of
NMs sharing a previously unknown relation at the protein level.

This interconnection between the NMs at varied FC levels may be
responsible for decision making, triggering of biological processes,
regulation of cancer pathways or execution of phenotype.

3.3 Significance evaluation of NetworkFC1 − 1.5 − 2 in cancer

The cancer network obtained was evaluated with respect to known
cancer genes, functional enrichment analysis and complete
subgraph enrichment within communities. The findings adhere to
the predictions of this network showing high relevance to cancer.
The observations are as follows.

3.3.1 Overlap with known cancer genes: Three known cancer
genes gene lists were downloaded from Bushman Lab [33],
COSMIC [34], NCG [35], and an overlap of our 108 NMs was
performed. The results are shown in Fig. 5. It is observed that all
three lists comprised of different oncogene sets agreeing upon 12
of our NMs. Similarly, 35 NMs were already known, while 61 are
reported to be novel. The list of genes for all the overlaps is
provided in Supplementary Table 4. 

3.3.2 Complete subgraphs using CFinder: Cliques or complete
subgraphs in PPI networks help in predicting protein complexes
and functional modules that are involved in important biological
processes. Hence, our network was also evaluated for finding
cliques involved in different communities detected by CFinder
[36]. The interaction of NetworkFC1 − 1.5 − 2 was given as input to
determine all significant communities for various clique sizes. The
results are illustrated in Table 1. A different number of cliques
were obtained in communities for different clique size (k). We find
the occurrence of gene UBC in all the cliques within each
community, so as to ascertain its importance in all complete
subgraphs within the network. It was found in 3143 cliques out of
the total 3936 cliques, which emphasises its functional utility in the
interaction between nodes at different FC levels. 

3.3.3 Gene Ontology (GO) functional enrichment: Functional
enrichment analysis of all the nodes of NetworkFC1 − 1.5 − 2 was
performed using GO. Significant biological processes (BP),
cellular components (CC) and molecular functions (MF) with large
number of hits and P-value<0.05 were selected by the
NetworkAnalyst tool. Enriched pathways were also mapped from
the KEGG database using KEGGMapper tool (http://

Fig. 4  NetworkFC1 − 1.5 − 2 obtained from combining hub genes of NetworkFC1, NetworkFC1.5 and NetworkFC2

 

Fig. 5  Overlap of NMs with known cancer gene lists where 12 NMs (KIT,
EZH2, MYH11, BUB1B, HSP90AA1, AKT1, EGFR, RHOA, HRAS,
HSP90AB1, MAPK1, H3F3A) are known cancer genes
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www.genome.jp/kegg/mapper.html). Details of all BP, CC, MF and
KEGG are given in Supplementary Table 5. Some important
pathways indicating relevance of the genes to cancer are listed in
Table 2. The shortlisted genes were found to be evident in thyroid
cancer, bladder cancer, pancreatic cancer and endometrial cancer
other than the three cancers of study which greatly indicate the
potential association of NMs with multiple cancer types. Also, the
most hit pathways were metabolic pathway and pathways in
cancer. Dysregulation of other significant pathways like MAPK
signalling pathway, cell cycle, ErbB signalling pathway, apoptosis
and p53 signalling pathway are well defined in cancer [37–41]. 

4 Conclusion
High-throughput sequencing technologies like RNA-seq are
rapidly replacing microarray technology. However, analysis of both
data platforms resulted in detection of crucial and valid gene sets,
independent of any technological bias. With the use of multiple
DEG extraction methods, the result inconsistency issue has been
reduced to minimal. Power of empirical Bayes using LIMMA
remains to be authentic as it produced concordant results for both

data platforms. However, FCROS produced DEGs based on ranks
of FC and showed good agreement to results of LIMMA from
microarray and RNA-seq analysis. Thus, a consistent result set in
terms of DEGs from two data platforms was identified. PPI
network constructed from FC-based analysis determined NMs
which show high relevance to cancer. The results are distinguished
as they reveal significant relation in terms of interconnection
between hubs at different FC levels. The presence of UBC showing
the connection between the hubs of two FC networks points
towards the underlying genetic alterations and molecular dynamics
common in multiple cancer types. Our approach of using FC-DEG
lists at protein level for evaluation of NMs points towards the need
to study relations among the genes. These relations may have a
significant biological perspective in the pathogenesis of the
disease. It may also have a direct association to the protein
complexes and modules formed for the synthesis of important
molecular functions. Hence, our approach for FC-based
identification of significant genes in terms of DEGs at genetic level
and NMs at protein level provides deep insight to understand
complexities common to three cancer types. In the recent decade,
various experimental and computational models have been
designed to identify novel lncRNA-disease associations and
miRNA-disease associations [42–44]. It is also shown that
miRNAs can function as oncogenes or tumour suppressors in
various types of cancers. Similarly, mutations and dysregulations
of lncRNAs are associated with the development and progression
of different cancer types, including the three cancers of study [45,
46]. With this background, our approach can be extended further
for computational modelling to predict novel cancer markers and to
establish FC-based expression and regulation relationships between
genes, miRNAs and lncRNAs with the known disease-gene
associations obtained from our results.
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