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Abstract
Prediction of drug response based on genomic alterations is an important task in the re-

search of personalized medicine. Current elastic net model utilized a sure independence

screening to select relevant genomic features with drug response, but it may neglect the

combination effect of some marginally weak features. In this work, we applied an iterative

sure independence screening scheme to select drug response relevant features from the

Cancer Cell Line Encyclopedia (CCLE) dataset. For each drug in CCLE, we selected up to

40 features including gene expressions, mutation and copy number alterations of cancer-re-

lated genes, and some of them are significantly strong features but showing weak marginal

correlation with drug response vector. Lasso regression based on the selected features

showed that our prediction accuracies are higher than those by elastic net regression for

most drugs.

Introduction
Elucidating the relationships between genetic alterations and cancer vulnerabilities is a major
task for current cancer genome projects. As is known, cancers are induced by the accumulation
of genetic alterations within a cell, including inherited genetic mutations chromosome translo-
cations, and copy number alterations [1,2]. Association analysis between genetic alterations
and anticancer drug sensitivity could provide new insights for biomarker discovery and drug
sensitivity predictions. However, the huge diversity of different cancer types, even tumors from
the same tissue, makes the above aim very challenging.

In recent years, many efforts on elucidating biomarkers for some kinds of anticancer drugs
have been seen in literatures ever since the outcome of high-throughput genomic technique,
and most of them are based on expression profile data. For example, Staunton et al. proposed a
weighted voting classification strategy to predict a binary response (sensitive or resistant)
based on the NCI-60 gene expression data [3]. Based on the same data, Riddick et al. built an
ensemble regression model using Random Forest [4], and Lee et al. developed a co-expression
extrapolation algorithm to infer drug signature by comparing differential gene expression
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between sensitive and resistant cell lines [5]. However, due to the diversity of different cancers,
biomarker of a certain drug for different cancer types may be different, so other researches
focused on some specific type of cancer. For example, Holleman et al. investigated gene-
expression patterns in drug-resistant acute lymphoblastic leukemia cells, and found combined
drug-resistance gene-expression score is significantly associated with the risk of relapse [6]. Be-
sides gene expression, some researchers focused on the possible relationships between chemical
therapy sensitivity and some epigenetic modifications such as phosphorylation and methyla-
tion. For example, Shen et al. used CpG island methylation profile to predict drug sensitivities
in NCI-60 cancer cell line panel [7]. They got a list of methylation markers that predicted sensi-
tivity to chemotherapeutic drugs, e.g., hyper-methylation of the p53 homologue p73 and asso-
ciated gene silencing was strongly correlated with sensitivity to alkylating agents. Menden et al.
[8] utilized cell line features including microsatellite instability status and copy number vari-
ances of 77 oncogenes as well as physicochemical properties of drugs to train a neural network
model for drug sensitivity prediction. However, despite the success in finding some drug bio-
markers, these kinds of methods still suffer from the limited number of samples (cell lines),
compared with the large number of expression genes and chemical compounds (>100,000). So
it is possible to over-estimate the gene signature for some compounds by chance.

Recently, researchers from the Broad Institute of Harvard and MIT and Sanger Institute
generated a large scale genomic data set for more than 1000 human tumor cell lines, including
mutation status, copy number variance, expression profile and translocation of a selected set of
cancer driver genes, as well as the pharmacological profiles for a large number of anticancer
drugs [9,10]. To elucidate the interaction between genomic instabilities and drug sensitivity,
they first screened all genomic features and discarded all irrelevant features whose Pearson cor-
relation coefficients (r) with drug response are weak (|r|< 0.1), and then applied a so-called
elastic net regression to estimate sensitivity from the selected genomic instability data. Al-
though achieving good performance for some certain drugs and samples, their model only
screens features by their marginal information (referred to as SIS by [11]), and thus suffers
from the following two inherent disadvantages. Firstly, genomic features, especially expression
profiles, are not independent with each other but form a very complicated association struc-
ture, which could not be grasped by the SIS method. Secondly, many marginally strong features
could have very high pairwise correlations, but they are jointly uncorrelated with the response
and thus not helpful in the subsequent model prediction. Moreover, these ‘redundant’ features
may dominant the final feature list for having higher priority to be selected by SIS than other
important features.

In this work, we apply an iterative sure independence screening (ISIS) [11,12] to overcome
the inherent disadvantages of SIS and further improve the prediction accuracy. Through exe-
cuting SIS and lasso regression interactively, the ISIS scheme could detect combination effects
of some marginally weak features with the response variable. In each iteration step, SIS is car-
ried out first to reduce the dimension of predictors from “p” which is much larger than the
sample size “n” to “d”, a determined positive integer smaller than “n”. Then “lasso” [13], a
moderate dimensional method, is applied to the “d” predictors for further variable selection
and regression fitting. ISIS computes residuals based on the model fitted using the recruited
features, and then uses the residuals as the response variable to continue recruit new features. It
works by iteratively performing feature selection and can overcome the aforementioned draw-
backs of SIS. ISIS scheme has been widely used in many applications such as gene selection and
disease classification to deal with the so-called ultrahigh dimensional feature selection [14,15].
For each drug in the CCLE dataset, we selected up to 40 features by ISIS from more than
30,000-D feature space including gene expression, copy number variance and mutation of can-
cer related genes. Regression results showed that our approach achieved improved accuracy for
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nearly all drugs compared to the elastic net model and some important marginally weak fea-
tures for drug sensitivity discovery were detected.

Material and Method

Data sources
The cancer genomic and drug response data used in this work are available from the Cancer
Cell Line Encyclopedia (CCLE). This dataset consists of a large scale of genomic data, i.e., gene
expression, mutation status and copy number alteration for 947 human cancer cell lines, as well
as 8-point dose-response curves for 24 chemical compounds across 479 cell lines. We used the
area under dose-response curves (termed as Activity area in [9] to evaluate the sensitivity of
drug to a given cell line. Compared to the IC50 and EC50, activity areas could capture the effica-
cy and potency of a drug simultaneously. These data allow systematical discovery of biomarkers
or signatures able to characterize, classify, and prognosticate clinical behavior of human tumors.

Feature selection through iterative sure independence screening
All genomic features including expression profile of 20069 genes, mutation status of 1667
genes and copy number status of 21217 genes are integrated as the feature vector to represent
one cell line. Similar to the elastic net model, we also assume a linear model between drug re-
sponse and the genomic features of a cell line. Since the number of features is much larger than
the sample size, the classical methods such as ordinary least squares fail to fit the linear regres-
sion model. Also, it is assumed that only a few of the features are really associated with the
drug response. So, we should first identify the features that are responsible for the response of a
given drug to reduce the number of effective features. In this paper, an iterative sure indepen-
dence screening (ISIS) scheme is conducted for this purpose. To avoid confusion, we hereby
clarify that the “DISIS” in the paper title emphasizes the iterative sure independence screening
for the prediction of drug response, while in the following content we use “ISIS” to highlight
the method itself.

The whole procedure of ISIS is explained in Fig. 1. Assume that we aim to select d features
from the entire feature vector of p-dimension for a drug D in the CCLE dataset. In the first
step, we obtain k1 features by screening all features via SIS, giving the set of the indices of the
recruited features A1. In more details, we use the pairwise Pearson correlation coefficients
(PCCs) of features and the response of drug D as the criterion to rank all features, and the top
k1 features with the highest absolute correlations are retained. Then we do the variable selection
with the lasso penalty based on a linear regression model to obtain a subsetM1 of A1, by mini-
mizing the objective function

Lðb0; bj;j2A1
Þ ¼

Xn

i¼1
ðyi � b0 �

X
j2A1

bjxijÞ
2 þ l

X
j2A1

jbjj;

where xij is the j-th component of the feature vector xi, yi is the response of sample i to drug
D. β0 and βj are lasso estimators, n is the number of samples and λ is the penalty factor for re-
ducing the number of effective features associated with drug response. HereM1 refers to the in-
dices set of features with the nonzero coefficients. The numbers of features inM1is denoted by
|M1|. We then build the linear regression model of the response over the predictors ofM1 and
get the residuals. After this step, we treat the residuals as a new response and applied SIS to get
the indices set A2 of d-|M1| features from the features of the indices {1,2,. . .p}\M1. Then we use
the lasso method again to minimize

Lðb0; bj;j2M1UA2
Þ ¼

Xn

i¼1
ðyi � b0 �

X
j2M1UA2

bjxijÞ2 þ l
X

j2M1UA2

jbjj:
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The non-zero coefficients gives the new indices setM2 of features. The above process of feature
filtering and selection is repeated until |Ms| = d or |Ms| = |Ms-1|. To make sure the ISIS can be

taken iteratively and not stop at the first iteration, we use the suggestion of k1 ¼ 2d
3

� �
in [11].

We refine the estimates of coefficients at the final step by fitting the linear model of response
over the features inMs.

According to the construction of ISIS, the residuals from the (q-1)-th iteration are uncorre-
lated with the variables selected in the (q-1)-th iteration. This fact could, on one hand, signifi-
cantly drop the priority of those unimportant variables that are highly correlated with the
response by their associations with xj,j ϵMq-1, and on the other hand, could give those impor-
tant predictors that are missed in the previous steps possible another chance to survive. In con-
clusion, two problems of simple SIS specified in the Introduction part could be overcome using
ISIS. Also, we want to point out that at the last iteration of ISIS, although the lasso regression
gives the coefficients estimates, due to the well accepted fact that lasso method cannot simulta-
neously achieve the selection consistency and optimal estimation [16,17], in this paper the or-
dinary least squares (OLS) is then used to get the final regression coefficient estimates based on
the selected features.

Fig 1. Workflow of the iterative sure independence feature screening. The sure independence feature screening (SIS) is iteratively operated on the
entire feature space or residual space to get a set of candidate features, and the selected features are then input to a lasso regression to get the final
effective features.

doi:10.1371/journal.pone.0120408.g001
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Cross-validation and evaluation criteria
The 10-fold cross validation was used to determine the parameter in our model, i.e., the num-
ber of features d. In order to reduce the generalization error of a machine-learning problem,
the number of features should be much less than the number of samples. To this end, we con-
strained the number of selected features d not more than 40. For each d in {2,4,6,. . .,40}, we
performed 10 iterations of a 10-fold cross-validation based on the ISIS scheme and the OLS
method to refine the final regression coefficients estimates. So, the drug response for D of each
sample was predicted 10 times against the training sets. Finally, the Pearson correlation coeffi-
cient between the true response vector and the averaged response of the 10 predicted values
was used to evaluate the performance of the model. For each drug, the final d was selected by
maximizing the Pearson correlation coefficient of the predicted values and the response obser-
vations via the 10-fold cross validation.

T-test for the significance of regression coefficients
After d was determined by the cross validation, the ISIS was implemented to the whole dataset.
Then the OLS was used to get the final coefficients estimates based on the linear model formed
by the selected features via ISIS scheme. It is well known that in the multiple regression models,
all the features explain the response (drug sensitivity) jointly, and the explanatory effect is not
the simple summation of the marginal explanatory effects. It is reasonable and possible that
some features may have weak marginal importance or equivalently speaking their Pearson cor-
relation coefficients with the response are low, but become important combined with other fea-
tures. We find some features whose Pearson correlation coefficients with response are weak
(|r|<0.1) which are deleted by the elastic net model [9] in the beginning, but are recruited by
the ISIS. The selection results by ISIS have meant that they are important. While in the consid-
eration of the OLS used to refine the coefficients estimation, we want to find more evidence of
the importance of these marginally weak features under the theory frame of OLS. To check the
importance of these features, the t-test method for the significance of regression coefficient was
employed. If the coefficient is significantly different from zero, it means that the feature is im-
portant jointly with other features. Thus the testing problem stated as follows was treated.

H0 : bj ¼ 0; H1 : bj 6¼ 0 ð1Þ

The subscript j was in the set J = {i: |r(xi,y)|<0.1, i = 1,. . .d} where r(xi,y) represented the
Pearson correlation coefficient of the i-th feature and the response y. The significance level was
set to be 0.01 hereby. When the p-value of the testing is not greater than 0.01, the correspond-
ing coefficient is thought to be significantly different from zero. The testing problem (1) is also
inherently equivalent to the model testing,

H0 : y ¼ b0 þ b1x1 þ . . . bj�1xj�1 þ bjþ1xjþ1þbdxd;

H1 : y ¼ b0 þ b1x1 þ . . .þ bdxd:

So when we reject H0, it means that the model inH1 with xj can explain the response better
than the model in H0, and the existence of the feature xj is meaningful.

Results
We first explore the prediction performance for each drug of our method with respect to differ-
ent top features selected by ISIS. Pearson correlation coefficients (PCCs) between real and pre-
dicted drug sensitivities (in terms of the activity area) for four example drugs are shown as

Prediction of Drug Response via ISIS

PLOS ONE | DOI:10.1371/journal.pone.0120408 March 20, 2015 5 / 13



Fig. 2, and results for other drugs are shown as S1–S5 Figs. We could observe that, for most
drugs, the predicted PCCs do not show significant variance with the increase of selected fea-
tures, that is to say, only a few number of features are enough to reflect the general pattern of
the feature signature. So for each drug, we just selected less than 40 features and highlighted
them by a triangle in Fig. 2.

ISIS could remove the redundancy between identified features
The final selected features for each drug are shown in S1 Table. As aforementioned, one advan-
tage of the ISIS method is the removal of redundancy between selected features. To demon-
strate this, the mean redundancy score [18], measured by the PCC and the mutual information
(MI) [19], was used to assess the redundancy between identified features. In addition, we also
implemented the simple top features (STF) method by ranking the features through the

Fig 2. PCCs between predicted and real drug sensitivities (DS) at different numbers of recruited features.

doi:10.1371/journal.pone.0120408.g002
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marginal Pearson correlation coefficients with the drug responses, where the number of fea-
tures in STF is the same as that in ISIS. The MRSs for the 24 drugs through ISIS and STF are
listed in S2 Table. The mean of MRSs (PCC) by ISIS is 0.1924, whereas that by STF is 0.4963,
suggesting that the feature redundancy is significantly removed by ISIS compared with STF
(p-value<10-8 by paired t-test). Moreover, if measured by MI, the means of MRSs by ISIS and
STF for the 24 drugs are 0.0753 and 0.1394 respectively, also showing significant difference by
t-test (p-value<10-3). All above results confirms that ISIS could remove the redundancy be-
tween selected features.

ISIS could detect weak features that jointly correlate to drug response
It is shown that a lot of selected features (S1 Table) are consistent with the literature reports
and have significant overlap with that by elastic net regression. Also similar to elastic net re-
gression, most selected features by our algorithm are gene expression data rather than muta-
tion and copy number alteration status, which is expected since expression profile constitutes
the majority of original feature source. Among the selected features, a lot of them are well-ac-
cepted indicators for drug response. For example, the selected mutation features for AZD6244
and PD.0325901 include BRAF and NRAS, which are known to be the predictor of sensitivity
to MEK inhibitors. Mutation of BRAF and EGFR are also ranked as the top feature for
PLX4720 (BRAF inhibitor) and Erlotinib (EGFR inhibitor), respectively. These strong fea-
tures are also successfully selected as drug response predictors by elastic net regression
(ENR) [9].

Besides the above-mentioned genes, we also detected many other cancer related genes
which are deleted by Barretina et al. 2012 due to their very small marginal correlations with
drug response, but are significant for the regression model according to the t-test of regression
coefficients (S1 Table). Interestingly, many of them are biologically relevant with the tumori-
genesis. For example, the expression of GREM2 and LGI1 are predicted as strong features with
weak marginal effect for an MEK inhibitor AZD6244, their correlations with drug responses
are only 0.017 and 0.094, respectively. It is found that the later gene, LGI1, is predominantly ex-
pressed in neural tissues and its expression is reduced in low grade brain tumors and signifi-
cantly reduced or absent in malignant gliomas [20,21]. The BCL2L13 (official name BCL1) is a
selected weak-marginal gene expression feature for an Src inhibitor AZD0530. This gene has
three alternative splicing results and one of them (isoform 1) could enhance cell survival by in-
hibiting apoptosis while the other two gene products promote apoptosis and are death-induc-
ing [22]. RASSF2 and RASA3 are also weak-marginal features for Erlotinib and RAF265,
respectively. Both genes were reported to have potential regulatory impact on RAS, where
RASSF2 seems to modulate some of the growth inhibitory response mediated by RAS and may
serve as tumor suppressor [23,24], and RASA3 may act as a suppressor of RAS function and
thereby controls the cellular proliferation and differentiation [25].

ISIS achieved higher Pearson correlation coefficients with real
sensitivities for most drugs in CCLE dataset
Based on the selected features in the above procedure, we performed 10 iterations of 10-fold
cross-validation to validate our algorithm. In detail, all cell lines treated by one drug were split
into roughly 10 groups, and one of them was treated as the test dataset to measure the consis-
tence of the predicted drug responses (ActiveArea) with their real values, with the model and
parameters trained by the rest 9 groups. The above procedure was repeated for 10 times, and
the average predicted drug responses were compared to the real one to get the Pearson
correlation coefficients.

Prediction of Drug Response via ISIS
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In theory, ISIS could improve the prediction of drug responses by the combination effect of
the marginally weak features and other strong features. To verify this, we compared the predic-
tion results of ISIS with Elastic net regression (ENR) and the simple top features (STF) method,
with the same numbers of selected features as ISIS. The Pearson correlation coefficients be-
tween real and predicted drug responses by ISIS, ENR and STF are reported in S3 Table and
showed by a bar chart in Fig. 3. We could conclude that our prediction was slightly better than
ENR and STF for most drugs. For example, 19 of 24 drugs in CCLE dataset achieve the Pearson
correlations higher than 0.4 by ISIS, but the number is merely 12 for ENR. Three drugs in
Fig. 3, i.e., AZD0530, LBW242 and Nutlin-3, are shown to have very weak correlations (< 0.2)
of the real and predicted drug sensitivities by ENR (Supplementary Figure 10 of paper [9]), but
all of them are predicted to have higher correlations than 0.2 by our algorithm. In addition, the
predicted correlations by ISIS are better than those by ENR, with the paired t-test statistic
2.2658 (p-value = 0.0166). The paired t-test statistic increases to 4.9925 (p-value<10-4) if the
exception of Nilotinib is removed. Also, ISIS gives higher predicted correlations than STF
(paired t-test statistic 7.8938, p-value<10-7), and the performance of ENR and STF is compara-
ble as expected, with p-value = 0.6227 by a two-sided t-test. Similar t-test results are obtained
when Nilotinib is removed. Combining all of these results, we summarized that the ISIS meth-
od could identify some marginally weak features, and beat the other two methods through the
combination effects of all detected features including the weak ones.

Scatter plots of the observed and predicted responses for some typical drugs are shown as
Fig. 4. We could conclude from these examples that the resulting correlation was fairly

Fig 3. Comparison of ISIS with elastic net regression and simple top features method in drug sensitivity prediction. Pearson correlation coefficients
between predicted (mean of 10 iterations of 10-fold cross-validations) and real drug sensitivities by ISIS (blue), Elastic net (red), simple top features (green).

doi:10.1371/journal.pone.0120408.g003
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reasonable and not overestimated by a few outliers. Moreover, our predictions were in great
consistence with those by ENR model, given the overall correlation of 0.81 (Fig. 5). In particu-
lar, if we discarded the only one outlier, Nilotinib, the overall Pearson correlation increased
from 0.81 to 0.94. As is known, Nilotinib is a special compound for treating chronic myeloge-
nous leukemia (CML) [26], which was successfully selected as the strongest feature for sensitiv-
ity of Nilotinib according to the CCLE paper [9]. So it is reasonable that this top feature
dominated the model building and prediction, and brought a high prediction correlation by
ENR. While we did not take this lineage information into consideration since we focused only
on mining genomic information to explain the drug sensitivity. Except this only outlier, ISIS
brought much higher predicted correlations using fewer features than ENR for most drugs,
which confirmed the efficiency of ISIS in feature selection.

Fig 4. Scatter plots of the true and predicted sensitivities for some drugs.

doi:10.1371/journal.pone.0120408.g004
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Discussion and Conclusion
Inference of drug response with respect to large scale of genomic data including gene expres-
sion, copy number alteration and mutation status of cancer-related genes is a very fundamental
problem in research of individual medicine. However, the huge number of genomic features
compared with the relatively limited number of samples makes it an illness problem. To make
full use of the marginally weak features with the drug response vector and further improve the
prediction accuracy, in this paper, we used an iterative sure independence screening feature se-
lection scheme and lasso regression to the prediction of drug response based on CCLE data. By
cross validation on CCLE dataset, we reported that our algorithm could not only find many
strong biomarkers which were reported in previous literatures, but also detect many marginally
weak genomic features (mostly are gene expression profile) that are shown to have strong com-
mination effects to drug response. Based on the selected features, we conducted the linear
model fitting to refine the regression coefficients estimates and get the Pearson correlation co-
efficients between real and predicted drug sensitivities. We found that, even using only very

Fig 5. Consistence between correlations of true and predicted drug responses by elastic net and ISIS.
Dotted line indicates equal predictions.

doi:10.1371/journal.pone.0120408.g005
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small number of features (less than 40), our algorithm still got much higher correlations than
the elastic net regression.

Additionally, we want to point out that the results of the paper could be further improved
from other directions. For example, optimal features could be selected by a so called ‘minimum
redundancy and maximum relevance’ scheme [27], or a novel optimization criterion which si-
multaneously minimized the number of selected features and cross validation error [28]. In
our paper, we used cross validation to select the tuning parameter λ in the objective function of
lasso, under the assumption that λ with the smallest prediction error by cross validation is the
optimal parameter. However, selecting parameter by cross validation is actually not a direct
way to optimize the prediction, since the objective function of lasso is the regression fitting
error with penalty function added, not the prediction error. So it is helpful to consider optimiz-
ing the cross validation error using the above two strategies.
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with drug sensitivities.
(XLSX)

S2 Table. Mean redundancy score for 24 drugs by ISIS and STF.
(XLSX)

S3 Table. Pearson correlation coefficients of predicted and real drug sensitivities by ISIS,
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