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ABSTRACT: In the host of numerical schemes devised to calculate free energy differences by way
of geometric transformations, the adaptive biasing force algorithm has emerged as a promising route
to map complex free-energy landscapes. It relies upon the simple concept that as a simulation
progresses, a continuously updated biasing force is added to the equations of motion, such that in
the long-time limit it yields a Hamiltonian devoid of an average force acting along the transition
coordinate of interest. This means that sampling proceeds uniformly on a flat free-energy surface,
thus providing reliable free-energy estimates. Much of the appeal of the algorithm to the practitioner
is in its physically intuitive underlying ideas and the absence of any requirements for prior
knowledge about free-energy landscapes. Since its inception in 2001, the adaptive biasing force
scheme has been the subject of considerable attention, from in-depth mathematical analysis of
convergence properties to novel developments and extensions. The method has also been successfully applied to many
challenging problems in chemistry and biology. In this contribution, the method is presented in a comprehensive, self-contained
fashion, discussing with a critical eye its properties, applicability, and inherent limitations, as well as introducing novel extensions.
Through free-energy calculations of prototypical molecular systems, many methodological aspects are examined, from
stratification strategies to overcoming the so-called hidden barriers in orthogonal space, relevant not only to the adaptive biasing
force algorithm but also to other importance-sampling schemes. On the basis of the discussions in this paper, a number of good
practices for improving the efficiency and reliability of the computed free-energy differences are proposed.

■ INTRODUCTION

Although the statistical-mechanical foundations of free-energy
calculations were laid a long time ago,1−3 their practical
applications became possible only with the advent of modern
computers. From the inception of computer-based free-energy
calculations4,5 it has been clear to theorists that direct
Boltzmann sampling of rugged energy landscapes is inefficient.
The subsequent development of the field is a history of efforts
to remedy this problem.
In free-energy calculations, the quantity of interest is almost

always the free-energy dif ference between physical states of the
system rather than the absolute free energy of a given state.
From this standpoint, calculations can be categorized on the
basis of variables used to transform the system between states
of interest. Then, two main classes can be distinguished, namely

alchemical and geometrical transformations.6 They rely,
respectively, on changes of a parameter in the Hamiltonian or
a function of atomic coordinates. The first class encompasses
structural modifications of chemical species that rest upon the
remarkable malleability of the potential energy function in
molecular-mechanics-based simulations,7,8 reminiscent of the
fabled ability of alchemists to transmute base metals into noble
ones. Alchemical transformations are often associated with the
free-energy perturbation method2,3 on account of the
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progressive and perturbative nature of the change incurred by
the system of interest, although, strictly speaking, alchemical
free-energy calculations can be carried out by way of alternate
approaches, such as thermodynamic integration.1 The very first
application of alchemical transformations to a nontrivial
chemical problem was published nearly 30 years ago by
William Jorgensen, to whom the present contribution is
dedicated.9 In noteworthy agreement with experiment, this
pioneering simulation reproduced the relative hydration free
energy of methanol with respect to ethane.
The second class of transformations embraces virtually any

geometric modification in a molecule or a collection of
molecules by means of selected collective variables tailored to
address the problem at hand, which could vary from changes in
the internal degrees of freedom in a molecule to intricate
recognition and association phenomena.7 Such collective
variables form the transition coordinate, a low-dimensional
representation of a multidimensional mathematical object.
The distinction between the two types of transformations is

theoretically important. For geometric transformations, the
transition coordinate is, in effect, a generalized coordinate, the
evolution of which is usually described by Hamilton’s equations
of motion. In contrast, for a parameter in the Hamiltonian, no
equations of motion naturally exist, although it is possible to
extend the formalism of dynamics to include such a
parameter.10 As a consequence, a number of methods for
calculating free energy by way of geometric transformations
cannot be applied to alchemical transformations without such
extension. The adaptive biasing force method can serve as an
example.7

A considerable number of ingenious techniques have been
developed to improve the efficiency of mapping free-energy
landscapes associated with geometrical transformations along a
transition coordinate.11−25 A common feature of these methods
is their reliance on importance-sampling techniques. The
central idea of these techniques is to depart from sampling
from the Boltzmann distribution defined by the original
Hamiltonian and, instead, sample from another distribution
that favors regions of phase space that would be visited only
infrequently but are important to achieving reliable free-energy
estimates. Because this procedure is clearly biased, it is essential
to know how to correct, or unbias, it to recover the true
underlying distribution. Importance sampling is commonly
used not only in statistical mechanics of condensed phases but
also in other fields of science, usually as a variance reduction
technique most frequently combined with the Monte Carlo
method.
Probably the most popular, and also the oldest importance-

sampling technique used in free-energy calculations is umbrella
sampling.11 It relies on introducing a bias in simulations that
favors states corresponding to large values of the free energy
along the transition coordinate. Local elevation,15 conforma-
tional flooding,16 metadynamics,20,24 and the Wang−Landau
algorithm26,27 are examples of more recent importance-
sampling algorithms, united by the common denominator
that a memory-dependent potential disfavors regions of
conformational space that have already been frequently visited.
In a sense, the adaptive biasing force method19 rewove the

fabric of free-energy calculations of geometrical transforma-
tions, as it is characterized by both conceptual and practical
simplicity and requires, at least in principle, little intervention
from the end user. In spite of apparent similarities with the
local-elevation and conformational-flooding strategies in its aim

to sample efficiently all values of the transition coordinate, its
theoretical underpinnings are quite different, as we will argue
further in this paper. Furthermore, in contrast with seemingly
similar strategies, the adaptive biasing force algorithm requires
no prior knowledge of the free-energy landscape at hand.
At its core, the adaptive biasing force method is an adaptive

importance-sampling strategy in which the quantity being
adjusted is the average force acting along the transition
coordinate. It helps the system under study escape from kinetic
traps in which it would otherwise have remained for a very long
time. The method constitutes a highly efficient route to
estimating free energies, which, since its inception, has been
used to tackle a number of challenging problems of chemical
and biological interest, such as mechanical proteins,28 transport
phenomena,29−31 or protein−ligand and protein−protein
recognition and association.32 More generally, it is a versatile,
adaptive, importance-sampling strategy that can be utilized in
many fields, whenever sampling of a probability measure is
thwarted by metastability of the sampling dynamics.
In this self-contained contribution, the multiple facets of the

adaptive biasing force algorithm are discussed in an exhaustive
manner, tackling a number of issues that have not been
addressed so far, or only rarely so. In the following section, we
present the theoretical foundations of the method, discussed in
the context of other free-energy approaches. Next, we briefly
address a number of practical issues related to a proper choice
of the transition coordinate. Then, an analysis of the
convergence properties of the method and approaches to
calculating and controlling statistical errors associated with the
calculated free-energy values are presented. The discussion of
convergence and errors continues with the focus on non-
ergodicity scenarios, and ways to identify and circumvent them.
Subsequently, we examine for the first time how the adaptive
biasing force algorithm is used in conjunction with geometrical
restraints, which have to be enforced in many problems of
interest. Finally, we discuss some new strategies for combining
thermodynamics and kinetics in importance-sampling simu-
lations, before closing with recommendations for ”good
practices” in applying the adaptive biasing force method and
an outlook toward further promising statistical mechanical and
algorithmic developments.

■ THE ADAPTIVE BIASING FORCE ALGORITHM
In this section, the essential idea behind the adaptive biasing
force algorithm is first explained in terms appealing to physical
intuition, followed by the theoretical underpinnings of the
method presented in a more formal language. Then, the reader
is guided through the common expressions for the mean force,
and the adaptive algorithm, both of which are at the core of the
method. Finally, the method is compared with related
importance-sampling schemes.

The Adaptive Biasing Force in Plain Language. The
adaptive biasing force method is aimed at improving the
efficiency of molecular dynamics simulations in which the
potential energy surface is sampled ineffectively due to free-
energy barriers. In practice, these barriers appear as bottlenecks
in the dynamics of certain privileged coordinates that describe
the transitions between physically important states (transition
coordinates). They also cause the system to become trapped in
some states for durations exceeding the time scale of the
simulation, resulting in incomplete sampling.
The free energy along a transition coordinate can be seen as

a potential resulting from the average force acting along the
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coordinate (i.e., the negative of the gradient of this potential),
hence the name potential of mean force. In the formalism of
thermodynamic integration, on which the adaptive biasing force
is based, the average force is the quantity that is calculated
directly. Subsequently, this force is integrated to yield the
potential. The instantaneous force acting along the coordinate
may be decomposed into the sum of the average force (which
depends only on the value of the transition coordinate) and a
random force with zero average, reflecting fluctuations of all
other degrees of freedom. Hence, in a low-dimensional view of
the process, the transition coordinate evolves dynamically in its
time-independent potential of mean force, and this evolution is
driven by the random force. In many instances, the random
force can be satisfactorily approximated as diffusive, leading to a
simple physical picture in which the system diffuses along the
transition coordinate in the potential of mean force.
The idea behind the adaptive biasing force algorithm is to

preserve most characteristics of this dynamics, including the
random fluctuating force, while flattening the potential of mean
force to remove free-energy barriers, and thus accelerate
transitions between states. This is done adaptively, without any
prior information about the potential of mean force. To
accomplish this, the instantaneous force acting along the
coordinate is calculated, and its running time average is
recorded, thus providing an on-the-fly estimate of the derivative
of the free energy at each point along the pathway. At the same
time, an external biasing force is applied, exactly canceling the
current estimate of the average force. Over time, as the estimate
converges to the average force at equilibrium, the total, biased
average force stabilizes at values very close to zero. Then, the
system experiences a nearly flat potential of mean force and
displays accelerated dynamics along the transition coordinate.
The fact that the biasing force is exactly equal to the mean force
is actually not crucial. What is important is that the biasing
force yields sufficiently uniform sampling of the transition
coordinate that the remaining barriers can be easily traversed in
response to thermal fluctuations.
Theoretical Backdrop. Let us now define the adaptive

biasing force algorithm in a formal way. The adaptive biasing
force algorithm is not inherently tied to any specific type of
dynamics but does rely on sampling of the canonical ensemble.
In explicit-solvent simulations, Langevin dynamics with
sufficiently soft damping and small stochastic forces becomes
a mere perturbation of Hamiltonian dynamics and may be used
as one simple way to achieve canonical sampling. For
convenience, but without loss of generality, we will base our
description below on Langevin dynamics. Langevin dynamics
can be written as

γ γβ

=

= −∇ − +

−

− −

⎧
⎨⎪
⎩⎪

t

V t t W
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where (xt, pt) denotes the positions and momenta of the
particles at time t, M is the mass tensor, V : → N3 is the
potential energy function, γ is the friction coefficient, Wt is the
Wiener process that underlies the random force (white noise),
and β−1 = kBT, where kB is the Boltzmann constant and T is
temperature. The dynamics of eq 1 is ergodic (under mild
conditions on V) with respect to the canonical measure Zp

−1

exp[−βpTM−1p/2] dp μ(dx), where μ(dx) = Zx
−1

exp[−βV(x)] dx. Ergodicity means that long-time averages
converge to canonical averages:
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s
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and that the law at time t of the stochastic process converges to
the canonical measure in the long-time limit:

∫φ φ μ φ∀ → =
→∞

   x: lim [ ( )] dN

t
t

3
(3)

where  is the expected value. The first limit in eq 2 is of
particular interest for practical applications because it allows for
computing canonical averages from trajectory averages.
For a typical potential V, the associated Boltzmann measure

μ is multimodal: high-probability regions are separated by low-
probability regions. The former correspond, for instance, to the
most likely conformations of a biological object, which are
typically separated by transition regions of very low probability.
For these reasons, estimating averages with respect to the
probability measure μ is, in general, a difficult task. In particular,
the ergodic properties of the dynamics of eq 1 are not sufficient
to devise reliable numerical methods, because under these
premises, the stochastic process remains trapped in large-
probability regions, and, as a consequence, the long-time
asymptotic regime t → ∞ is very difficult to reach in the
ergodic limits in eqs 2 and 3. The fact that the system remains
for a very long time in some region of phase space before
hopping to another region is called metastability, and the
corresponding states of the system are called metastable. The
inability to reach the ergodic limit is often called quasi
nonergodicity; the system appears nonergodic on the time
scales of the simulations. A typical example of a metastable state
is a local free-energy minimum in the conformational space of a
protein.
The adaptive biasing force method relies on modifying the

potential V in such a way that the energy landscape is flattened
along a given transition coordinate ξ: → N3 . Here, we
restrict ourselves to a one-dimensional transition coordinate,
leaving generalization to high-dimensional transition coordi-
nates for the section Expressions for the Mean Force. More
precisely, the potential V is changed to x → V(x) − At[ξ(x)]
and At is updated in such a way that it converges to the free
energy A, defined (up to an additive constant) by

∫β β δ− = − ξ −A z V x xexp[ ( )] exp[ ( )] (d )zx( ) (4)

where the measure δξ(x)−z (dx) is supported by the subset {x,
ξ(x) = z} and is such that δξ(x)−z (dx) dz = dx.
In practice, the bias is only applied in a window [zmin, zmax] as

explained in the section Justification of a Stratification Strategy.
Notice that, by the definition of A, the canonical measure
associated with the biased potential V(x) − A[ξ(x)] is such that
∫ exp(−β{V(x) − A[ξ(x)]})δξ(x)−z (dx) = C, where C is a
constant independent of z. Therefore, if the biased potential
V(x) − A[ξ(x)]1ξ(x)∈[zmin,zmax] is used, the marginal along ξ is a

uniform law over [zmin, zmax]. Here, 1ξ(x)∈[zmin,zmax] is an indicator
function, which is one when ξ(x) ∈ [zmin, zmax] and zero
otherwise. Let us recall that the marginal law is defined as
follows: if x is distributed according to a probability distribution
μ, then the law of ξ(x) is called the marginal of μ along ξ. If we
knew the free energy A, it would be a good idea to use −A◦ξ as
a biasing potential, because sampling along ξ would be easier.
This is illustrated in simple two-dimensional examples in
Figures 1 and 2. Notice in particular that the free energy seems
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to be a good biasing function for efficient sampling of both
energetic barriers (Figure 1) and entropic barriers (Figure 2).

The main ingredient that we now need is an update rule for
At such that limt→∞At = A. This is based on the following
formula,33−35 which defines the mean force, namely, the
negative of the derivative of the free energy. More general
formulas can be derived, which give rise to many variants of the
adaptive biasing force method (see section Expressions for the
Mean Force),

∫
∫

β δ

β δ
′ = −

−

−
ξ ξ

ξ

−

−
A z

F Vx x x

x x
( )
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z

z

x

x
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where the instantaneous force is defined by
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2
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Equation 5 is a consequence of the definition of the free
energy in eq 4 and of the co-area formula (which is a
generalization of the Fubini theorem); see for instance ref 8.
From eq 5 it follows that A′ is the conditional average of the
instantaneous force, Fξ, with respect to the canonical measure
conditioned to a fixed value of the transition coordinate: A′(z)
= μ [Fξ(x)ξ(x) = z]. An important observation is that eq 5
remains true if the potential V is changed to V − At◦ξ: for any
function At

∫
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In other words, a biasing potential At depending solely on ξ
leaves averages conditioned by ξ unchanged. This is the
intuition behind the adaptive biasing force dynamics, which can
be written as

ξ γ γβ

ξ

=

= −∇ − ◦ − +

′ = =ξ

−

− −

⎧
⎨
⎪⎪

⎩
⎪⎪ 

t

V A t t W

A z F z

x M p

p x M p

x x

d d ,

d ( )( ) d d 2 d

( ) [ ( ) ( ) ]

t t

t t t t t

t t t

1

1 1

(8)

Indeed, if (xt, pt) were at equilibrium with respect to the
biased canonical measure Zp

−1 exp(−βpTM−1p/2) dp Zt
−1

exp[−β(V − At◦ξ)(x)] dx, then At′ would be equal to A′. In
practice, of course, the sampling is not sufficiently fast for the
process to be instantaneously at equilibrium with respect to the
time-varying biased potential V − At◦ξ, and this is why this
heuristic is not sufficient to fully understand the convergence of
the adaptive biasing force dynamics (see the section
Convergence and Error Analysis). However, this simple
reasoning is sufficient to check that if At converges to some
limit A∞, then necessarily, A∞′ = A′.
From a practical viewpoint, the conditional expectation in eq

8 can be computed using two procedures: either time averages
over a single long trajectory or averages over many replicas run
in parallel. These procedures will be discussed in ample detail in
the section Multiple-Walker Strategies below.
Intuitively, the adaptive biasing force dynamics thus consists

of adding a force At′[ξ(x)]∇ξ(x) that exactly compensates the
average of the original force, −∇V(x), along a given transition
coordinate. If ξ is well-chosen, the hope is to observe a fast
convergence (at least compared to the original dynamics
embodied in eq 1 at equilibrium) of At′ to the mean force A′.

Expressions for the Mean Force. Given a transition
coordinate ξ(x), the mean force is a well-defined quantity, yet
its expression as an ensemble average of an instantaneous force
Fξ is not unique, as we will see below. In adaptive biasing force
simulations, the choice of a convenient expression for Fξ is
driven by practical considerations, notably ease of implementa-
tion and numerical behavior, such as variance.
The classic expression for the instantaneous force involves an

explicit coordinate transformation Ξ from Cartesian to

Figure 1. Upper row: (A) original two-dimensional, double-well
potential displayed as level sets; (C) time trajectory of the first
coordinate x in the stochastic process, showing oscillations between
the two metastable wells. Lower row: (B) level sets of the same
potential biased by the free energy associated with the transition
coordinate ξ(x,y) = x; (D) time trajectory of the transition coordinate
x in the adaptively biased dynamics, showing no metastability.

Figure 2. Upper row: (A) the original two-dimensional potential is
zero inside the hourglass shape, and +∞ outside; (C) time trajectory
of the first coordinate x in the stochastic process, showing oscillations
between the two metastable wells. Lower row: (B) free energy along
the transition coordinate ξ(x,y) = x, featuring a purely entropic barrier;
(D) time trajectory of the transition coordinate x in the free-energy-
biased dynamics, showing no metastability.

The Journal of Physical Chemistry B Article

dx.doi.org/10.1021/jp506633n | J. Phys. Chem. B 2015, 119, 1129−11511132



generalized coordinates, which include the transition coordinate
ξ. That is, Ξ : → N N3 3 , with Ξ1 = ξ and components Ξi for i
> 1 are generalized coordinates of no particular physical
significance, but necessary to the mathematical framework. A
valid expression for the instantaneous force is then12

β= −∇ ·∂ Ξ + ∂ | |ξ
− −F V Jln1

1 1
1 (9)

which in the physics literature is more commonly written as

ξ
β

ξ
= −∇ · ∂

∂
+

∂ | |
∂ξ

−F V
Jx ln1

(10)

where |J| is the determinant of the Jacobian matrix (∂iΞj
−1)(i,j).

From the arbitrary choice of Ξi,i>1 is derived a (somewhat
arbitrary) function Fξ, whose ξ-restricted ensemble average
nevertheless yields the uniquely defined mean force (eq 5).
Equation 10 provides an intuitive view that different choices of
Ξ and Fξ correspond to different ways of projecting the
Cartesian forces, −∇V, onto the transition coordinate. The
direction along which the forces are projected in this expression
is the vector ∂1Ξ−1, which we call “inverse gradient”.36 As the
gradient of ξ can be seen as the changes in ξ corresponding to
infinitesimal changes in x, the inverse gradient is the vector
along which a change in ξ is propagated in Cartesian
coordinates, other generalized coordinates (Ξi,i>1) being
constant, hence the dependence of the inverse gradient on
the explicit coordinate transformation. The alternate notation
for the inverse gradient, ∂x/∂ξ, has the drawback of hiding this
dependence on the choice of Ξ.
Numerically, eq 10 is impractical for two reasons. One is that

defining Ξi,i>1 explicitly can be exceedingly difficult, especially if
ξ is a collective coordinate (e.g., the radius of gyration of a set
of particles). Supposing that this step is done, the second
difficulty comes with the numerical computation of the
Jacobian derivative, as it involves second derivatives of Ξ−1

whose analytical derivation and numerical implementation may
be cumbersome, again, depending on the nature of the
transition coordinate.
To circumvent this issue, the original adaptive biasing force

method was introduced with an instantaneous force estimator
based on a constraint force that is calculated iteratively, but
never applied.19 In the initial implementation of the adaptive
biasing force algorithm37 in the popular molecular dynamics
program NAMD,38 eq 10 was used because the small set of
implemented coordinates made it practical. As this set was
greatly extended in the framework of the collective variables
module,39 more versatile expressions of the instantaneous force
were required.36

Den Otter put forward the idea that the inverse gradient can
be replaced with an arbitrary vector field (satisfying certain
requirements).40 In other words, changes in ξ may be
propagated along an arbitrary direction in Cartesian coor-
dinates, without explicitly defining a complete set of generalized
coordinates. That idea was extended to a multidimensional case
by Ciccotti et al.41 Consider a vector transition coordinate (ξi),
in the presence of a set of constraints of the form σk(x) = 0. For
each coordinate ξi, let vi be a vector field → ( )N N3 3

satisfying, for all j and k:

ξ δ·∇ =vi j ij (11)

σ·∇ =v 0i k (12)

The ith partial derivative of the free energy can then be
calculated as the conditional average of the following
instantaneous force:

β= −∇ · +ξ
−F V v vdiv( )i

i i
1

(13)

of which eq 6 is a special case, limited to a single coordinate and
choosing v = ∇ξ/|∇ξ|2, which satisfies the condition (eq 11)
above. Note that this estimator still requires the calculation of
second derivatives, in the form of the divergence of the vector
field v, although the relative freedom in choosing v can be taken
advantage of to make the divergence calculation practical. The
choice v = ∇ξ/|∇ξ|2 is always valid, and as such, convenient for
theoretical purposes, but certainly not always optimal when
implementing specific generalized coordinates. Expressions that
were chosen in practice for those coordinates implemented in
the collective variables module are listed in ref 39.
Darve et al. described an estimator that does not require

second derivatives, but rather first derivatives with respect to
time and space, and is valid for multidimensional adaptive
biasing force calculations.42 This estimator resembles a
statistical form of Newton’s equation of motion: instead of
relating acceleration to the potential energy gradient, it relates
the mean acceleration to the gradient of the free energy. In a
considerable simplification, only the first derivative of the force
with respect to ξ needs to be derived. The time derivative is
calculated numerically in the same fashion and at the same level
of accuracy as time derivatives of other quantities in molecular
dynamics. Other ways of simplifying calculations of instanta-
neous forces will be discussed in the context of extended
adaptive biasing force simulations, or eABF, in the section The
Extended Adaptive Biasing Force Method.

Adaptive Algorithm. The final, essential ingredient of the
theory underlying the adaptive force method is an algorithm for
deriving the current estimate of the average force as simulations
progress. In its generic, one-dimensional implementation, the
transition coordinate, ξ, connecting two end points, is divided
into M equally sized bins of width δξ in which forces are
accrued in the course of the simulation. In a naıv̈e approach, the
approximation to the average force, F̅ξ(Nstep, k) in bin k after
Nstep molecular dynamics steps is just the simple, unweighted
average of all force samples in this bin

∑̅ =ξ
μ

μ
=

F N k
N

F( , )
1
k

N
k

step
step 1

k
step

(14)

provided that the bin has already been visited at least once.
Nstep

k is the number of samples accrued in bin k after Nstep steps
and Fμ

k abbreviates the μth force sample in this bin. This
approach would work well for large Nstep

k . However, when only
a few samples are available in a given bin k, the running average
might be a poor estimate of the actual average force in this bin.
Moreover, adding additional samples might markedly change
F̅ξ(Nstep,k). Large fluctuations in the running estimate of the
average force are undesirable, as they may drive the system
away from equilibrium, thus slowing the convergence of the
algorithm and reducing the efficiency of the method. To
control these effects, a procedure is needed to reduce variations
in early estimates of F̅ξ(Nstep,k). A number of schemes can be
applied for this purpose. In current implementations, the
biasing force in bin k at time t is applied in full only if the
number of samples Nt

k is above a threshold, Nfull. It is ramped
up smoothly as Nt

k varies from 0 to Nfull. In one
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implementation,42 the ramp is linear and the force is
proportional to Nt

k/Nfull; in another,36,37 the biasing force is
zero for Nt

k < Nfull/2 and is ramped linearly above that value,
proportionally to 2Nt

k/Nfull − 1. Both implementations have
proven to be efficient in a number of applications, but other,
more advanced schemes are possible. So far, there have been no
systematic studies on the efficiency of different adaptive
algorithms, but it is anticipated that it may be strongly
system-dependent.
For a sufficiently large Nstep, F̅ξ(Nstep,k) approaches the

correct average force in each bin. Then, the free-energy
difference, ΔAξ, between the end point states can be estimated
simply by way of summing the force estimates in individual
bins.

∑ δξΔ = − ̅ξ ξ
=

A F N k( , )
i

M

1
step

(15)

If the average force is a rapidly changing function of ξ, a more
sophisticated integration algorithm may be required. It might
be also possible to develop binless integration algorithms,
similar to those proposed for some other free-energy
calculation methods.43,44

A common trait of importance-sampling algorithms is the
discretization of the transition coordinate, ξ, in bins of width δξ
in which statistical information is accrued in the course of the
simulation.7 In the umbrella-sampling scheme,11 for instance, a
histogram is constructed, corresponding to the biased
probability of occurrence of the molecular assembly of interest
at the different values of the transition coordinate. In the
adaptive biasing force algorithm,19 bins are utilized to store
instantaneous values of the thermodynamic force that acts
along the transition coordinate. As has been observed in
practice previously for diffusive dynamics, the instantaneous
force in any given bin obeys a normal distribution.37 At
thermodynamic equilibrium, by definition, its average is exactly
equal to −A′(z), that is, the gradient of the free energy along
the transition coordinate. Insisting upon being at thermody-
namic equilibrium is pivotal here, as application of a poorly
estimated time-dependent bias, i.e., from a distribution out of
equilibrium, will not yield a Hamiltonian bereft of a mean force
acting along the transition coordinate.
The adaptive algorithms described above contain two

adjustable parameters: bin width, δξ, and the number of
samples, Ninit, below which R(Nstep

k ) is not equal to 1 or,
equivalently, averaging does not follow eq 14. The choice of
these parameters should be done with some care.
At constant δξ, large values of Ninit yield better estimates of

the average force once the number of samples collected in a
given bin reaches this threshold value and conventional
averaging begins, at the price of delayed application of the
full averaging and slow, initial progress along the transition
coordinate. Small values of Ninit, in turn, tend to drive the
system out of equilibrium. Typically, setting Ninit in the range
between 200 and 500 appears to be a good compromise that
allows for avoiding both types of problems.
At constant Ninit, large values of δξ prevent capturing

variations of the average force on short length scales. This may
have adverse effects on the accuracy of integration in eq 15. On
the other hand, small values of δξ require longer simulation
times to collect sufficient force statistics in every bin. If the
transition coordinate is a distance in an atomistic system, the

choice of δξ as 0.1 or 0.2 Å usually represents a satisfactory
trade-off.

Differences with Other Importance-Sampling Algo-
rithms. In the last four decades a number of strategies have
been developed for computing free-energy changes as a
function of geometrical transformations, each endowed with
advantages, as well as limitations.11−25,45 To a large extent,
umbrella sampling, whether in its original formulation or
variants thereof,11,18,46 remains one of the most widely utilized
routes to address rare events in molecular simulations. In its
original form, umbrella sampling referred to incorporating an
external biasing potential in the simulation, i.e., an umbrella,11

ideally the negative of the free energy, which would yield a
broad, if not uniform exploration of the transition coordinate.
In other words, in ideal circumstances, the system would evolve
in the collective-variable space on a flat free-energy hyperplane,
as is also the case for the adaptive biasing force method. Under
most circumstances, however, the form of the optimal umbrella
is unknown. Thus, for any qualitatively new problem, the end-
user must resort to an educated guess regarding the shape of
the biasing umbrella potential, usually on the basis of prior
knowledge of this and related problems. This may constitute a
daunting task.47 Poorly predicted biasing potentials yield
nonuniform probability distributions across the transition
coordinate. This decreases the efficiency of umbrella sampling,
which, in extreme cases, may reduce rather than improve the
efficiency compared to results with unbiased calculations. This
common shortcoming led to the development of an adaptive
variant of the umbrella-sampling algorithm,18 wherein the initial
guess of the biasing potential is progressively refined in light of
a series of short simulations.
Adaptive umbrella sampling is one member of a broader

family of techniques called adaptive biasing potential
methods.48 Local elevation,15 conformational flooding,16 or its
more recent avatar, metadynamics,20,49 adaptive biasing
molecular dynamics,23 and the Wang−Landau algorithm26,27

belong to the same family. In the former methods, the idea is to
penalize the already visited states by changing the potential V to
V − At◦ξ, At(z) being related to the occupation time of the
value z of the transition coordinate up to time t. The longer the
time spent in a bin {x, ξ(x) ∈ [z0, z1]}, the larger the biasing
potential At(z), z ∈ [z0, z1]. The local elevation technique and
metadynamics are based on a similar idea. The biasing potential
At is built as a sum of Gaussian kernels that are periodically
added to the Hamiltonian along the ξ variable. This pushes the
system away from states that have already been visited and, by
doing so, improves sampling. It ought to be noted that the
potential At, rather than its derivative, is computed in these two
cases, hence, the name adaptive biasing potential methods. One
important downside of the adaptive biasing force algorithm,
compared to the class of adaptive biasing potential methods,
lies in its inability to handle discrete transition coordinates, for
instance, coordination numbers. This drawback can be
understood by considering that the free energy is now a map
from integers to reals, and, thus, has no derivative and, hence,
no mean force.
From a mathematical viewpoint, the adaptive biasing force

method, just like adaptive biasing potential methods, is an
adaptive importance-sampling procedure. There is, however, a
salient difference between these two techniques. In the latter,
the potential of mean force or, equivalently, the corresponding
probability distribution along the transition coordinate is being
adapted. In contrast, the former relies on biasing the force, i.e.,
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the gradient of the potential. This difference is more important
than it might appear at first sight, as potentials and probability
distributions are global properties whereas gradients are defined
locally. In terms of probability distributions, it means that the
count of samples in the neighborhood of a given value of the
transition coordinate is insufficient to estimate probability.
Knowledge of the underlying probability distribution over a
much broader range of ξ is required. This may considerably
impede efficient adaptation. In contrast, all that is needed to
estimate the gradient is the knowledge of local behavior of the
potential of mean force. Other regions along the transition
coordinate do not have to be visited. Thus, in many instances,
adaptation proceeds markedly faster. Using a common
metaphor, the difference between the adaptive biasing potential
and adaptive biasing force methods can be compared to
inundating the valleys of the free-energy landscape as opposed
to plowing over its barriers to yield an approximately flat
terrain, conducive to unhampered diffusion.
There are also a number of important technical differences

between these two methods. For example, in metadynamics
and its ancestors, the widths and weights of Gaussian functions
and the frequency with which the biasing potential is updated
have to be carefully chosen, which often requires considerable
experience. In the adaptive biasing force method, estimating the
biasing gradient happens automatically by way of a simple
algorithm, described in the previous subsection. Another
technical concern about adaptive methods is to ensure that
adaptation vanishes once At approaches the converged free
energy.50 There are a number of ways to fulfill this condition
more-or-less automatically,51,52 but adaptive biasing force and
adaptive biasing potential techniques remain intrinsically
different from this point of view. In the adaptive biasing force
algorithm, if the correct free energy is given as an initial guess
(namely if V is replaced by V − A◦ξ in eq 8), then the biasing
force will not be updated (At′ in eq 8 will be constant over
time). This is not the case for an adaptive biasing potential
strategy. Moreover, if the derivative of the biasing potential is
needed (for example to bias the Langevin dynamics as in eq 8),
the advantage of the adaptive biasing force algorithm is that At′
is directly computed, whereas in adaptive biasing potential
algorithms, one needs to differentiate the evaluated biasing
potential At, which may lead to very noisy results because At is
estimated along a stochastic trajectory.
Because the basic quantity calculated, and subsequently

integrated, in the adaptive biasing force method is the force,
this approach belongs to the thermodynamic integration class
of methods. However, in contrast to conventional implementa-
tions of thermodynamic integration and its generalizations,
such as the blue-moon ensemble approach,12 the adaptive biasing
force algorithm does not rely on constrained molecular
dynamics, but instead is based on unconstrained simulations;
i.e., the free-energy difference is not determined at discrete
values of the transition coordinate through solving constrained
equations of motion. Sampling of the transition pathway
proceeds in a continuous, unhampered fashion, guided by the
diffusion properties of the system of interest, obviating the need
for re-equilibration at fixed, predefined values of the transition
coordinate, even in stratified simulations. As will be discussed
further in this paper, this may improve ergodic behavior of the
system.
It is also of interest to compare the adaptive biasing force

method with reconstructions of free-energy landscapes from
nonequilibrium trajectories that represent repeated pulling

experiments.53−55 The latter are based on the groundbreaking
Jarzynski identity,56 or its extension to bidirectional trans-
formations,57 combined with steered molecular dynamics. Even
though both approaches involve molecular dynamics trajecto-
ries that are initially away from equilibrium, there is a
fundamental distinction between them. In the adaptive force
method, only the average, or systematic force is removed to
erase the ruggedness of the free-energy landscape, preserving
the random force responsible for diffusion. Once a good
estimate of the average force becomes available, the equilibrium
behavior of the system is restored. In pulling experiments, the
transformation always proceeds away from equilibrium at
constant velocity and, therefore, the instantaneous force acting
along the transition coordinate is nil. The random force actually
appears in the formalism after averaging over the ensemble of
pulling experiments. Moreover, achieving convergence in
calculations based on Jarzynski’s identity usually requires
large numbers of independent realizations,21 which comes at
a significant computational cost. Taken together, when a
geometrical transformation can be undertaken at equilibrium, it
is not clear whether there is any practical advantage of handling
the problem at hand by means of nonequilibrium work
experiments rather than the adaptive biasing force method.
An important advantage of gradient-based methods7,8 is the

possibility of formally decomposing the free-energy change into
physically meaningful contributions,58,59 thereby helping to
dissect qualitatively the nature of the intermolecular inter-
actions at play. It is worth noting that different energy terms
contribute to the mean force both explicitly through force
terms and implicitly through the Boltzmann weights in the
canonical average; contributions can only be separated
numerically at the former level, not at the latter. Decomposition
of the free energy is generally handled a posteriori through
computing the thermodynamic force between, for instance,
groups of atoms of interest. This force is then projected onto
the transition coordinate determined for each stored config-
uration, prior to the construction of a histogram from which the
average force is inferred. Integration of the latter yields the
desired contribution to the total free-energy change across the
entire transition pathway.
Among many options for reconstructing free-energy land-

scapes along a transition coordinate, which one is the best?
Considering that the efficiency of different methods strongly
depends on their implementation in software packages and,
very likely, on a system of interest, attempts to answer this
question appear somewhat misguided and unproductive. That
said, one aspect of the adaptive biasing force algorithm pleading
in its favor is its simplicity.36,37 How the algorithm operates is
physically intuitive,7,42 requiring, in principle, very little prior
knowledge of the free-energy landscape, or input from the end-
user, even for qualitatively new problems.

■ TRANSITION COORDINATE

Central to geometric transformations is the concept of a
transition coordinate. In this section, this concept is illuminated
in the context of free-energy calculations aimed at tackling rare
events. Specifically, we will discuss how the transition
coordinate is explored with the adaptive biasing force algorithm
and delve into the practical aspects of defining this coordinate.
Stratification,60 a common technique for improving the
efficiency of free-energy calculations by partitioning the
reaction pathway into ranges of the transition coordinate, will

The Journal of Physical Chemistry B Article

dx.doi.org/10.1021/jp506633n | J. Phys. Chem. B 2015, 119, 1129−11511135



be discussed with the focus on the justification for and
limitations of this strategy.
Transition Coordinates and Rare Events. For any

transition from a macrostate, A, to another macrostate, B, of
the same system there exists an exact one-dimensional
transition coordinate: the committor probability.61−64 In most
cases, this coordinate is difficult to calculate and usually offers
very limited insight into the nature of the process of interest.
For these reasons, it is often more useful to employ a transition
coordinate that is only an approximation to the committor
probability but is physically more meaningful and easier to
handle. Sometimes it might be helpful to extend the reduced
representation of the transition to a transition coordinate that
extends beyond one dimension. Not only physical significance
but also efficiency of sampling, given a transition coordinate, is
of concern. These two factors are often closely related.
As in any enhanced sampling method based on a reduced

representation, adaptive biasing force sampling relies on
stochastic exploration along the transition coordinate, ξ,
enhanced by the adaptive bias, combined with equilibration
of other, orthogonal degrees of freedom. Equilibration in the
orthogonal space is critical in two respects: It affects the
mobility along ξ (see Figure 1B for a diffusive example), and it
determines the rate of convergence of A′(z) = ⟨−Fξ(x)⟩ξ, which
is an average over the orthogonal degrees of freedom. In the
ideal situation of time scale separation, all slow degrees of
freedom are captured by the transition coordinates, and
relaxation in the orthogonal space is comparatively fast. In
other words, the adaptive biasing force algorithm removes
metastability along the transition coordinates, provided that
other degrees of freedom are not metastable. Complex systems
such as biological macromolecules, however, possess many
slow, coupled degrees of freedom, making time scale separation
difficult or impossible to achieve.
Fortunately, empirical results suggest that time scale

separation is not an absolute requirement of adaptive biasing
force sampling. One reason behind it might be that enhanced
diffusion in the transition coordinate space reduces meta-
stability in the orthogonal space, by letting the dynamics
sidestep orthogonal barriers rather than cross them, making
some “multichannel” cases (see the section Hidden Barriers and
Other Challenges to Obtaining Accurate Results) tractable with
standard adaptive biasing force simulations. More encouraging
still, convergence in such multichannel cases can be markedly
accelerated by multiple-walker formulations of the adaptive
biasing force algorithm (see the section Multiple-Walker
Strategies).
Yet, not all intuitive choices of the transition are appropriate.

As will be extensively discussed further in this paper, the end-
to-end distance of the α-helical deca-alanine peptide provides a
good example of an inadequate transition coordinate. Depend-
ing on the range of values, the coordinate exhibits completely
different behavior. For values corresponding to the stable α-
helix (14 Å) and larger, separation of time scales is obeyed and
the adaptive biasing force converges well.37 In contrast, smaller
values of the end-to-end distance correspond to a rich set of
metastable, compact states that are not resolved by the
transition coordinate.36 As a result, adaptive biasing force
dynamics becomes trapped in these states, and the free-energy
estimator does not converge in accessible simulation times.65

Attempts to resolve these metastable states by two- and three-
dimensional coordinates give improved results, allowing the
exploration of all metastable basins, yet those basins are not all

resolved even in three dimensions. Furthermore, the adaptive
biasing force dynamics retains some metastability.36 These
difficulties are not due to specific deficiencies of the adaptive
biasing force method, but rather, to shortcomings of the
reduced representation, which would constitute an obstacle to
any sampling method.

Practical Design of a Transition Coordinate. In practice,
finding an effective reduced representation is still a process
largely guided by physical intuition about the process of
interest, as well as trial-and-error. More systematic and robust
approaches for this dimension reduction step are an area of
active research.66 A limiting factor is often the availability of
usable numerical implementations of the generalized coor-
dinates of choice. The collective variables module39 is an
attempt to overcome this limitation, by providing a rich and
flexible toolbox to define many types of coordinates, in
particular those useful for the description of biological
macromolecules. In this module, the adaptive biasing force is
implemented, among other algorithms.
Once an intuitive understanding of the relevant generalized

coordinate has been obtained, some technical choices remain to
be made to express this coordinate as a function ξ of atomic
Cartesian coordinates. Though these decisions may seem
ancillary, they have a strong influence on the accuracy,
convergence, and computational performance of the adaptive
biasing force algorithm.
When objects of interest are composed of many atoms, there

are often several nearly equivalent ways to define the transition
coordinate. In sufficiently long simulations, different definitions
produce nearly identical potentials of mean force, but the
efficiency might vary considerably. For example, the distance
between two proteins could be defined by selecting one central
atom in each protein, or by selecting the centers of mass of
large groups of atoms. The largest contribution to the
instantaneous force on each atom in a molecule is due to
rapidly oscillating bonded interactions; more generally, in all
applications, forces on the particles will contain some
background noise. If many atoms contribute to the projected
force (e.g., the first right-hand-side term in eq 13),
contributions from those noisy terms average out, which
lowers the variance of the instantaneous force estimator.
In the initial stage of an adaptive biasing force simulation,

nonequilibrium effects occur if the biasing force applied to
some degrees of freedom varies faster than coupled degrees of
freedom can relax. This can be mitigated by defining “smooth”
collective variables that involve many Cartesian coordinates
with smoothly varying contributions to the gradient (hence, to
the biasing force vector). At equilibrium, a smooth motion may
be described by a nonsmooth variable and this may make the
convergence of the adaptive bias more difficult. In the deca-
alanine stretching toy example, the geometric process of
interest involves all atoms in the peptide, yet our classic
approach uses the end-to-end distance as a biasing coordinate,
with the implicit assumption that biasing forces exerted on the
terminal atoms propagate, and that the entire peptide relaxes
rapidly, so that the biased trajectory remains close to
equilibrium. A more robust approach is to replace that
coordinate with the radius of gyration of the peptide. The
gradient of the radius of gyration has components on each atom
proportional to its distance from the center of the group, so
that atoms close to the center also experience moderate biasing
forces and do not lag behind the terminal atoms when the
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biasing force varies rapidly over time. A more elaborate
discussion of this problem can be found in ref 42.
In some cases, however, coordinates involving large

collection of atoms will have less resolution than more local
ones. A biophysical example is permeation through an interface,
such as a lipid bilayer. The common choice of transition
coordinate is the distance of the permeant molecule to the
center of the bilayer center, projected onto the bilayer normal.
In such a case, the physically relevant phenomenon is
interaction of the permeant with the membrane surface, on a
local scale. If the bilayer patch is large enough, it will experience
fluctuations away from planarity, thus the local position of the
interface will fluctuate with respect to the bilayer center. In
turn, this will cause spurious fluctuations in the transition
coordinate. A comparable situation arose in a study of glycerol
permeation through the water channel protein GlpF.30

Interaction of the permeant with the protein depended on
distances to neighboring pore-lining residues, which fluctuated
with respect to the bulk of the protein. Therefore, the global
coordinate measured between the protein and glycerol
molecule had insufficient resolution on a local scale, and a
more local coordinate had to be defined to resolve the structure
of the free-energy profile in the constricted region of the
selectivity filter.
Performance. Depending on system size and implementa-

tion details, choices of coordinates may impact performance
noticeably. A common application case is a biomolecular
simulation performed with the NAMD package,38 with the
adaptive biasing force algorithm implemented36 in the
collective variables module.39 NAMD is highly parallelized
and can simulate large systems on supercomputers with nearly
linear scaling. The current implementation of the adaptive

biasing force algorithm is not parallelized and runs on one
node, leading to two potential bottlenecks: (1) Poor serial
performance on the master node: for the most expensive
variables (e.g., those involving sums on atom pairs), the bias
calculation on the master node might take longer than the force
calculation on other nodes. (2) Scaling may suffer even for
computationally simple coordinates, if too many atom
coordinates and forces have to be communicated across
nodes, increasing latency. This second case may affect any
highly parallel application with coordinates defined on many
atoms. In practice, one often has to find an acceptable trade-off
between variance and performance by selecting a reasonable
number of Cartesian coordinates that are most representative of
the quantity of interest. To describe conformational fluctua-
tions of a protein, for example, the root-mean-square deviation
of α carbon coordinates is often a good compromise.

Justification of a Stratification Strategy. To increase the
efficiency of exploring the transition coordinate in adaptive
biasing force19 or umbrella sampling,11 it is common to break
down the transition path into a series of sequential strata or
windows. This idea60 arises from the intuition that the time to
convergence grows as the square of the range of the transition
coordinate. Simple considerations provide the rationale for this
strategy.
Consider a transition path of length . Convergence of the

free energy over the entire range is achieved after t0. Let us
now divide the transition path into N nonoverlapping windows
of lengths , ..., N1 , for which convergence is attained after t1′,
..., tN′ . As shown in the Supporting Information, t0 > Σiti′.
We illustrate this result in a simple example of a tagged water

molecule diffusing in a bulk environment over a stretch of 20 Å.
The transition coordinate is the projection of the distance

Figure 3. Stratification strategies for the translationally invariant toy model of a tagged water molecule diffusing in a bulk aqueous medium. The
transition path spans 20 Å and is handled in a single window (A), in two 10 Å windows (B), in four 5 Å windows (C), and in eight 2.5 Å windows
(D). For each stratification strategy, a potential of mean force calculation is carried out until the root-mean-square deviation with respect to the
accurate zero free-energy profile is less than 0.1 kcal/mol.
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separating the centers of mass of the tagged water molecule and
the simulation cell along a given direction of Cartesian space.
Translational invariance due to the isotropic nature of the
liquid imposes the condition that the free-energy change along
the transition coordinate be zero. For this system, the potential
of mean force was determined in a single, 20 Å long stratum,
two 10 Å strata, four 5 Å strata, and eight 2.5 Å strata. The
simulations continued until the root-mean-square deviation
between the computed potential of mean force and the
reference zero free-energy profile was less than 0.1 kcal/mol.
As can be observed in Figure 3, t0, the time necessary to

attain convergence within this preset tolerance without
stratification is on the order of 100 ns. When the transition
coordinate is divided into two strata, convergence in each 10 Å
stratum is reached in approximately 40 ns, i.e., in 80 ns over the
full 20 Å range. The effect of stratification increases further, as
the reaction coordinate is decomposed into four and eight
windows. In these cases, convergence is achieved in
approximately 6 and 2 ns per window, respectively, which
corresponds to 24 and 16 ns for the complete 20 Å range.
Both theoretical considerations and a simple example given

above appear to suggest that extensive stratification should be
always preferred. This, however, does not have to be the case.
First, simulations in each window require initial equilibration,
which may erase benefits gained from stratification into many
windows. Perhaps more importantly, extensive stratification
may impede ergodic sampling of the phase space. This
behavior, shared with the standard thermodynamic integration,
will be discussed in section Addressing Nonergodicity
Scenarios.
In contrast to umbrella sampling and its adaptive variants, the

adaptive biasing force algorithm does not require that
consecutive windows of a dissected transition coordinate
overlap. Provided that convergence has been achieved in each
window, the gradient, ∇A(ξ), can be reconstructed merely by
joining the gradients from individual windows at the
boundaries. This improves efficiency, as the requirement for
overlap between windows may frequently add as much as 50%
to the total simulation time. If the gradient between consecutive
windows is not continuous to within statistical error, this is
usually a sign of difficulties with ergodic sampling. Again, this
problem will be considered in section Addressing Non-
ergodicity Scenarios.
Convergence and Error Analysis. In this section, we

examine the convergence properties of the adaptive biasing
force algorithm and the reliability of the computed free-energy
estimates. First, the reader is invited to follow a demonstration
that the numerical scheme formally converges. Then, we
discuss how statistical errors associated with the reconstructed
free-energy landscapes can be measured and managed.
Formal Convergence of the Adaptive Biasing Force

Algorithm. The aim of this section is to explain convergence
properties of the adaptive biasing force algorithm. For more
details, the reader is referred to the Supporting Information.
We restrict ourselves to the following simple setting. We

consider the overdamped Langevin dynamics,

β= −∇ + −V t Wx xd ( ) d 2 dt t t
1

(16)

where xt is defined in the N-dimensional torus N (namely, in
[0, 1]N with periodic boundary conditions) and ξ(x1,...,xN) = x1.
We direct the reader to refs 67 and 68 for extensions to more
general situations of the results presented below.

Starting from eq 16 and using the above choice of the
transition coordinate ξ, the adaptive biasing force dynamics can
be represented as

β= −∇ + ′ +
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where xt
1 denotes the first coordinate of the vector xt, e1 is the

vector with coordinates (1, 0, ..., 0), and ∂1V denotes the partial
derivative of V(x1,...,xN) with respect to x1.
As explained in the section Theoretical Backdrop, it is clear at

least formally that the only possible stationary state for At is the
free energy (up to an additive constant). Indeed, if At converges
to some stationary state A∞, then the law of xt converges to
Z∞

−1 exp(−β{V(x) − A∞[ξ(x)]}) dx, which implies that
(∂1V(xt)xt

1=x1) is A′(x1). Yet, this does not provide a proof
of the convergence of At′ to A′, and it does not explain why the
adaptive biasing force dynamics of eq 17 indeed converges
faster to equilibrium than the original, unbiased dynamics of eq
16.
One way to understand this convergence is to look at the

way the law of xt evolves. Let us denote ψ(t,x) the density of xt.
For the original dynamics of eq 16, the density ψ satisfies the
Fokker−Planck equation:

ψ ψ β ψ∂ = ∇ + ∇−Vdiv( )t
1

(18)

For the adaptive biasing force dynamics, the density ψ satisfies

∫
∫
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It ought to be noted that eq 19 is a nonlinear partial
differential equation (PDE), which makes the study of its long-
time behavior much more complicated than for the linear
Fokker−Planck PDE (18).
Using appropriate mathematical tools (namely, entropy

techniques, see the Supporting Information), one can show
that if the transition coordinate is well chosen, the convergence
to equilibrium for the adaptive biasing force dynamics of eq 19
is much faster than for the original unbiased dynamics of eq 18.
Roughly speaking, the assumption on the transition coordinate
is that the canonical measure Z−1 exp[−βV(x)] dx is “more
multimodal” than the conditional measures at a fixed value x1 of
the transition coordinate

β
β

−
−

V x x x
V x x x x x

x x
exp[ ( , ,..., )]

exp[ ( , ,..., )] d ... d
d ... dN

N N
N

1 2

1 2 2
2

This is typically the case for the simple illustrative two-
dimensional potentials in Figures 1 and 2 if ξ(x1,x2) = x1. This
can be fully quantified, and it actually gives a way to measure
the quality of the transition coordinate.
In the analysis outlined above, it is assumed that the

conditional expectation appearing in the adaptive biasing force
dynamics is computed exactly. This analysis is therefore well
adapted to discretizations that involve many replicas in parallel,
which indeed converge to the adaptive biasing force dynamics
with the exact conditional expectation; see ref 69. Analysis of
the adaptive algorithms (adaptive biasing force or adaptive
biasing potential) with estimates of the conditional expectations
based on trajectory averages along a single path are much more
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complicated. See refs 70 and 71 for preliminary results for the
Wang−Landau algorithm.
Distinguishing Sources of Error. Just like any experimental

measurement, free-energy calculations, of either alchemical or
geometrical nature, ought to be reported with the associated
error bars. In the absence of an error estimate, a free-energy
difference is generally of limited utility, making direct
comparison with experiment difficult and speculative. Although
much effort has been devoted in recent years to the
characterization of errors that are associated with free-energy
calculations,7,8,72−81 estimating the reliability of such calcu-
lations remains an intricate task. This explains why it is not
unusual that calculated free energies are still being published
without error estimates.
Ideally, any free-energy difference should be determined

from a series of N independent simulations. If this were, indeed,
the case, the best possible estimate of the target free-energy
difference would be the expected value over the N simulations,
i.e., Δ ̂ A( ), where ΔÂ denotes the estimate of the exact
quantity, ΔA, inferred from one individual free-energy
calculation. Then, the associated mean-square error can be
written as

∑δ ε

σ

= Δ ̂ − Δ

= Δ ̂ + Δ − Δ ̂ Δ

= + Δ ̂ − Δ
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The first term of eq 20, σΔÂ
2 = Δ ̂ − Δ ̂ A A( ) ( )2 2, is the

variance, or the precision82 of the free-energy calculation. In
other words, it is a measure of its statistical error. The second
term, Δ ̂ − Δ A A[ ( ) ]2, is the square of the bias of the free-
energy estimator, i.e., the square of the difference between the
expected value of the estimator and the actual free-energy
change, ΔA. The bias, also referred to as the accuracy82 of the
free-energy calculation, is a measure of systematic error of the
latter.
How to estimate statistical error for the adaptive force

method will be discussed in the next section. Unfortunately, a
similar, formal treatment does not exist for systematic error.
One important source of bias arises from incomplete sampling
in finite-length simulations due to quasi nonergodic behavior of
the system. Although this behavior cannot be quantified, in
many instances it can be detected. Then, a number of remedial
tools are at our disposal. How to recognize and remedy
problems with quasi nonergodicity will be discussed in section

Addressing Nonergodicity Scenarios. Other common sources of
bias are inaccurate treatment of intermolecular interactions and
algorithmic artifacts arising primarily from imprecise numerical
integration of the equations of motion. These contributions to
bias, which are common to all simulation methods, will not be
discussed here.

Measure of the Statistical Error. The adaptive biasing force
method is typically applied to nanoscale molecular processes
under physiological conditions, a realm dominated by thermal
noise. Thus, estimating free-energy differences using adaptive
biasing force requires careful consideration of statistical error.83

Within the adaptive biasing force framework, free-energy
differences are determined by integrating the estimated mean
force of the system exerted along the transition coordinate.
Namely, a free-energy difference on the interval za ≤ ξ ≤ zb can
be expressed as83

∫Δ = − = − ⟨ ⟩ξ→A A z A z z F( ) ( ) da b b a
z

z

z
a

b

(21)

where ⟨Fξ⟩z is the average of the instantaneous force on the
transition coordinate ξ at the position ξ(x) = z.
Thus, to determine the statistical error of the free-energy

differences, we must delve into the statistics of the mean system
force. We assume that the transition coordinate, ξ, is discretized
and instantaneous forces calculated during the course of the
simulation are collected in appropriate bins along ξ. As derived
in the Supporting Information, one way to estimate the error of
the mean force in bin i is given by

τ
⟨ ⟩ =

Δ
⟨Δ ⟩ξ ξF

n t
FErr[ ]i

i

i
i

2

(22)

where ΔFξ(xt) = Fξ(xt) − ⟨Fξ⟩i is the random component of the
instantaneous force, ni is the number of samples accrued in bin
i, Δt is the time step of the simulation, and τi and ⟨ΔFξ2⟩i are
the autocorrelation time and variance of ΔFξ(xt) in bin i.
Given a reliable estimate of the error of the mean force in

each bin, we are prepared to analyze how these estimates are
propagated to yield free-energy differences. On a discrete grid
along the transition coordinate, the integral in eq 21 becomes

∑δξΔ = − ⟨ ⟩ξ→
=

A Fa b
i i

i

i
a

b

(23)

where ia and ib are bin indices delimiting the ξ-interval [za, zb].
Assuming independent behavior in each bin, the error of a sum
of mean forces is approximated from from the Bienayme ́

Figure 4. Coordinate dependence of sampling and the system force distribution in reversible folding of deca-alanine. (A) Samples in each bin for a
10 ns adaptive biasing force calculation on the domain ξ ∈ [4, 32] Å (black curve) and a 100 ns calculation on the domain ξ ∈ [4, 32] Å (red curve).
Note the logarithmic scale on the vertical axis. (B) Distribution of the ξ-component of the instantaneous system force for different ranges of ξ. (C)
Standard deviation of the ξ-component of the instantaneous system force as a function of ξ.
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formula as equal to the square root of the sum of squares of the
errors of these mean forces,84

∑δξ
τ
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Δ
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A notable property of this formula is that the error increases
with the size of the interval over which the free-energy
difference is calculated.83

Application to the Toy-Model Deca-alanine. For concrete-
ness, we now consider the error in free-energy differences for
the reversible folding of deca-alanine in vacuum. We define the
transition coordinate of interest ξ as the end-to-end distance of
the peptide, specifically the distance between the carbonyl
carbon atoms of the first and the tenth residue. Below we
discuss the behavior of the three quantities that enter eq 22,
namely. The number of samples in each bin ni, the standard
deviation of the random force (⟨Fξ

2⟩i)
1/2, and the autocorre-

lation time of this force τi. See the Supporting Information for
further comments on calculating these quantities.
The black curve in Figure 4A is the number of samples in

each bin of width δξ = 0.1 Å for the adaptive biasing force
calculated in the range from 12 to 32 Å (the red curve will be
discussed later in the paper). The number of samples, ni, in this
range varies from 17 000 to 36 000. Thus, as expected from the
adaptive biasing force algorithm, the number of samples in each
bin approaches uniformity. In this case, nonuniformity of
sampling exceeds only slightly a factor of 2, which corresponds
to the variations of the biased free energy not exceeding 0.5
kcal/mol. For comparison, the unbiased free energy changes in
the same range by approximately 30 kcal/mol.
In Figure 4B, we show the distribution of instantaneous

forces in four different bins. The forces in each bin are
approximately normally distributed, with similar standard
deviations of about 20 kcal mol−1 Å−1. This point is
underscored in Figure 4C, which illustrates that, for deca-
alanine in vacuum with Langevin dynamics emulating buffeting
of the molecule by solvent, the standard deviation of the force
acting along the transition coordinate changes very modestly,
even though the peptide explores structures that are as
disparate as can be imagined. The peptide courses through
different compact forms for ξ < 10 Å, remains mostly α-helical
for 10 < ξ < 16 Å, and forms extended structures with
diminishing helical fractions as ξ increases beyond 16 Å.85 The
approximate uniformity of ⟨Fξ

2⟩i
1/2 seen here is also character-

istic of many other systems. For example, it has been previously
found86 that the standard deviation of the instantaneous force
on the center of mass of a water molecule is about 2 kcal mol−1

Å−1, irrespective of whether the molecule lies in the bulk
aqueous phase or in the hydrophobic core of a lipid bilayer. On
the other hand, the transfer of a solute across a liquid−vapor
interface is an example of a transition for which ⟨Fξ

2⟩i
1/2 is

expected to vary considerably with ξ.
Note that ⟨Fξ

2⟩i
1/2 is considerable. Because this term enters

prominently the expression for statistical error in eq 22, there
are significant merits in reducing the dispersion of instanta-
neous forces. We have already pointed out two potential paths
toward this goal. First, because the expression for the ensemble
average of instantaneous force is not unique we can, in
principle, choose one that reduces ⟨Fξ

2⟩i
1/2. Second, variation of

forces can be also reduced by a thoughtful choice of the
transition coordinate.

The third variable in eq 22, the correlation time of the
instantaneous system force τi, is also the most difficult to
calculate. The sampling in a single bin is rarely sufficient to
obtain a converged autocorrelation function of the system
force; thus, in Figure 5A we plot the autocorrelation function

averaged over 40 bins along different regions of ξ. The
correlation time for each region, τ, is determined by fitting an
unscaled exponential function e−t/τ to the positive values of the
autocorrelation function. Figure 5B reveals only modest
variations in correlation time for different regions.
Using the calculated values of ni, ⟨Fξ

2⟩i and τi, we now
estimate the uncertainties of free-energy differences between
deca-alanine structures with different end-to-end distances. The
mean system force, with uncertainties calculated by eq 22, is
shown in Figure 6A. Because only free-energy differences

between two points along ξ, rather than free energies at single
points, have a clear physical meaning, we focus on errors
associated with these differences. To compute the error in the
free-energy difference at points za and zb, we must accumulate
the uncertainties of the force between these two points, in
accord with eq 24. If stratification is used and points za and zb
are in different windows, then the Bienayme ́ formula needs to
be used across all windows separating these points.
In Figure 6B we show the estimated error of ΔA between the

α-helical minimum free-energy state (za = 14) and other states
within the interval zb ∈ [12, 32] Å. If we want to calculate, for
instance, the difference in free-energy between the minimum
and ξ = 16 Å, we obtain 3.6 ± 1.8 kcal/mol. Larger distances in

Figure 5. Coordinate dependence of correlations in the system force
in reversible folding of deca-alanine. (A) Autocorrelation functions of
the random component of the instantaneous system force for different
ranges of ξ. The functions are normalized by the variance ⟨ΔFξ2⟩i so
that correlation at t = 0 is unity. (B) Correlation time for ξ-ranges in
panel A.

Figure 6. Propagation of error in the mean force to the error of free-
energy differences. (A) Mean system force on ξ for a 10 ns adaptive
biasing force calculation, with error bars determined according to eq
22. (B) Error of free-energy differences A(ξ) − A(za) with the
reference position za = 14 Å. This position is denoted by a violet
dashed line.
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ξ yield larger error: the free-energy difference between the
minimum and the plateau at 25.5 Å is 19 ± 4 kcal/mol.
It is expected that, for sufficiently long total simulation time,

t, statistical errors of both the average forces and free-energy
differences will decay proportionally as t1/2.42 The same
dependence on t should apply to deviations from nonuniform
sampling. If force statistics is collected in M bins, then the root-
mean-square deviation from the uniform distribution can be
defined as the square root of the variance, Var(t),

∑= −
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⎝⎜
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1
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where Nstep
k and Nstep are the number of samples in bin k and

the total number of samples at time t, respectively. For large t,
the variance is expected to be proportional to 1/t or,
equivalently to 1/Nstep. In other words, Nstep × Var(t) should
be constant. An example of how Var(t) behaves in a typical
simulation is shown in Figure 7. This is the expected behavior

for diffusive motion. Errors that clearly deviate from such
behavior are a sign of insufficient sampling. If the problem
persists with increasing t, and especially if errors exhibit large
fluctuations, then most likely problems with quasi nonergodic
behavior have been encountered.

■ ADDRESSING NONERGODICITY SCENARIOS
A common manifestation of pathological free-energy calcu-
lations, in particular those of geometrical nature, is quasi
nonergodicity, wherein sampling along the selected transition
coordinate appears to be hampered. Here, we inspect closely
the effects that impede accurate results to be obtained from
free-energy methods, including the adaptive biasing force
scheme (notably hidden barriers in the slow manifolds), and
discuss how to identify these effects and outline possible
remedies, by increasing the dimensionality of the transition
coordinate, improved stratification, or sampling aided by
multiple-replica strategies.
Hidden Barriers and Other Challenges to Obtaining

Accurate Results. The primary objective of importance-
sampling schemes is to facilitate exploration of the transition

pathway with a uniform probability.7,8 Among these schemes,
as has been previously emphasized, the adaptive biasing force
algorithm uses a local estimate of the gradient, A′, acting along
the transition coordinate, to erase progressively the original
ruggedness of the free-energy landscape. As has already been
discussed in section Formal Convergence of the Adaptive
Biasing Force Algorithm, this feature is valid from a theoretical
standpoint. How true is this in practice? In most instances,
satisfactorily uniform sampling is achieved quite efficiently.
Occasionally, however, the adaptive biasing force algorithm
does not perform as expected. The reminder of this section is
devoted to explaining and identifying these special, yet
important cases.
Potential difficulties in applying the adaptive biasing force

algorithm are intimately related to the choice of transition
coordinate. A basic, yet seldom verified assumption that
underlies this choice is the separation between time scales of
motions along the transition coordinate and orthogonal degrees
of freedom (see section Transition Coordinates and Rare
Events). For complex, rugged free-energy landscapes, notably
those formed by parallel valleys separated by considerable
barriers in the direction orthogonal to the transition coordinate
(Figure 8),88 assuming time scale separation may turn out to be

unwarranted. Because the adaptive biasing force algorithm
exerts no direct action in the orthogonal space, it will not
improve sampling at constant ξ. Returning to the foundational
expression for the adaptive biasing force method, eq 8, which
relates the gradient of the free energy to an ensemble average at
constant value of the transition coordinate, the inability to cross
hidden barriers in the orthogonal space is tantamount to
incomplete ensemble averages and, hence, poor estimates of
free-energy changes.
What are common symptoms of quasi nonergodic behavior?

Several of them can be readily identified. Their presence is a
guaranteed sign of flawed free-energy calculations, but their
absence is not a sufficient condition to ensure that such
calculations converged to the correct value. As has been

Figure 7. Nstep × Var(t) as a function of the number of molecular
dynamics steps, Nstep. This quantity was calculated for the permeation
of K+ through a transmembrane hexametric channel of a peptaibol,
trichotoxin in a window along the normal to the membrane spanning
the range between z equal to −15 and −9 Å. z = 0 is located in the
middle of the membrane.87 Note that for Nstep between 0.6 × 106 and
2.3 × 106, Nstep × Var(t) differs from its average value in this range by
no more than 10%. The inset: the number of force samples along z in
the window as a function of Nstep.

Figure 8. Common free-energy landscape featuring parallel valleys,
collinear to the transition coordinate, ξ. These valleys are separated by
substantial free-energy barriers in the direction ζ, orthogonal to ξ. ζ
can be interpreted as a slow degree of freedom coupled to ξ and
hampering progression along the latter direction. Excessively stratified
reaction pathways preclude spontaneous crossing of high barriers,
typically ΔA1. Wider windows should allow diffusion toward values of
ξ, where the barrier separating valleys in the direction ζ is smaller,
typically ΔA2.
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discussed previously, sampling along the transition coordinate
in well-behaved simulations should approach uniformity with
time, and the statistical error associated with the biasing force
or, equivalently, the free-energy differences should decrease in a
predictable fashion. If this is not the case, difficulties in
equilibrating the system along orthogonal degrees of freedom
are, most likely, at play. To illustrate this point, we return to the
toy model of deca-alanine reversibly folding in vacuum and to
Figure 4A. In the range of ξ between 12 and 32 Å, sampling is
fairly uniform even in 10-ns simulations. In contrast, in the [0,
12] Å range, sampling remains quite nonuniform, even after
100 ns (red curve). As has already been pointed out in the
section Transition Coordinates and Rare Events, there are a
number of metastable states in this region, all corresponding to
similar values of ξ. Difficulties in properly averaging over these
states markedly impedes equilibration along ξ. In the context of
stratified simulations, the presence of hidden barriers along
degrees of freedom orthogonal to ξ often leads to
discontinuous biasing forces between adjacent windows.
Another strategy for exposing apparent nonergodic behavior

is to carry out bidirectional calculations, i.e., initiate the adaptive
biasing force simulation from both end points along the
transition coordinate. Just as in free-energy perturbation
calculations,81 the resulting hysteresis is a good indicator
(although not necessarily a measure) of error. If the hysteresis
markedly exceeds statistical error, the calculated free-energy
values are, most likely, poorly converged. In such a case, simply
combining data from both directions is not likely to improve
accuracy significantly, as their proper weighting remains
unknown.
When quasi nonergodicity scenarios are encountered,

additional simulation strategies, such as multiple walkers or
multidimensional transition coordinates, should be brought to
bear. Also, the chosen stratification scheme might require
reevaluation. These issues are discussed in more detail below.
Balancing Ergodic Sampling and Efficiency in

Window Sizes. Formally, the adaptive biasing force algorithm
does not prescribe a particular window size nor does it require
that consecutive windows along a stratified transition
coordinate overlap. Provided that convergence has been
achieved in each window, the gradient, ∇A(ξ), can be
reconstructed merely by joining the gradients from individual
windows at the boundaries. As we have already argued, from
the efficiency point of view it might appear that using small
windows is always beneficial. This is, however, not necessarily
true. One concern about extensive stratification is that efficient
sampling of rugged landscape along orthogonal degrees of
freedom may require temporary excursions beyond the
window’s boundaries, where the barrier separating adjacent
valleys is smaller. This is illustrated in Figure 8. The barrier
between the minima along the orthogonal degree of freedom, ζ,
may be difficult to cross at ξ in the range of [0, 0.2], but not in
the [0.8, 1] range. In this case, stratification will create kinetic
traps, most likely reducing rather than improving efficiency.
A similar problem was observed in simulations aimed at

determining the potential of mean force for a small, proline-rich
peptide, p41, bound to the SH3 domain of Abl kinase using the
root-mean-square deviation (RMSD) with respect to the native
conformation as the transition coordinate. There, a second
minimum was only discovered through creation of a window
that did not encompass the native state (see Figure 2A in ref
89). This second minimum represents a shift in register of the
peptide in its binding site, and although it would occur

spontaneously given sufficiently long time, its probability can be
enhanced by first driving the peptide to higher values of RMSD,
which disrupts some of the bonds characteristic of the native
state, and then letting it come back.
Because it is often not possible to predict orthogonal barriers

a priori, determining an appropriate windowing scheme
typically requires an adaptive procedure. The basic criterion
here is the continuity of the biasing force across consecutive
windows. If one is concerned about quasi nonergodicity, a good
strategy is to start with large windows. If the continuity of
forces appears to be satisfactory, one might attempt to improve
efficiency through further stratification. The advantage of this
strategy is that the approximation to the biasing force acquired
from the large-window simulation can be used in smaller
windows. If no windowing scheme yields continuous forces,
then other strategies, described in the next section, should be
employed.

Multiple-Walker Strategies. Simulations involving multi-
ple replicas are perhaps the most powerful strategies to
accelerate ergodic sampling along degrees of freedom
orthogonal to the transition coordinate. Beyond the “embar-
rassingly parallel” strategy of running independent simulations
to obtain more sampling than is possible with a single
simulation in the same real time, a number of schemes have
been devised that significantly enhance sampling, at the cost of
transferring information between replicas. In a prototype
example of multiple-replica algorithms, originating with
Monte Carlo simulations,90−92 replicas are run at different
temperatures and exchanges of system configurations are
attempted periodically between replicas, so as to maintain a
canonical ensemble at each temperature.93 The advantage of
this method is that replicas at higher temperatures cross
energetic barriers more quickly and can pass the resulting
configurations to replicas at lower temperatures, preventing the
latter from remaining in metastable states. Exchange of replicas
with different umbrella-sampling potentials, known as Hamil-
tonian exchange, has also been widely successful.94−96

With the adaptive biasing force method, each replica can be
thought of as a “walker” exploring the transition coordinate
space. Multiple-walker strategies range from simply running
similar independent adaptive biasing force calculations in
parallel, to more complex ones, involving communication
between replicas.85,97 Here we consider two communication
strategies that can be used in concert. In the first strategy, which
we refer to as shared adaptive biasing force, the instantaneous
forces sampled from each walker are collected in a single shared
buffer as the simulations progress simultaneously. In the current
implementation, the shared buffer is merely conceptual: each
walker retains its own buffer, which is synchronized with all the
others at fixed intervals. Regardless, shared adaptive biasing
force can result in significantly faster exploration of the
transition coordinate and improved convergence of the free
energy, as compared to the case for independent walkers.85,97 A
second strategy, complementary to the first, is the application
of so-called walker selection rules. These selection rules
eliminate replicas with values of the transition coordinate that
are already well sampled, while duplicating replicas in relatively
unexplored regions, enforcing more uniform sampling.
Selection rules may be implemented using a so-called

resampling procedure and weights that are associated with
each replica.8 There are many ways to choose the weights and
to implement this idea in practice. The basic requirement is
that the selection mechanism automatically vanishes at

The Journal of Physical Chemistry B Article

dx.doi.org/10.1021/jp506633n | J. Phys. Chem. B 2015, 119, 1129−11511142



equilibrium, namely when the biasing force is the mean force.
Here, we calculate the weight of each walker in a somewhat
simpler way than in previous studies,48,97 while obtaining
similar results. The weight assigned to each walker is the
inverse of the number of samples accrued in a neighborhood of
bins near the walker. Specifically,
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where j is the bin occupied by walker i at the time of application
of the selection rules, nj(t) − nj(tlast) is the number of samples
that have been accrued in bin j since the last selection and
resampling step, and h defines the number of bins surrounding j
that are included in the sum. The walkers are resampled on the
basis of these weights, and the selection mechanism is switched
off when the smallest and largest ni(t) differ by less than 20%,
i.e., when [max(1/wt

i) − min(1/wt
i)/min(1/wt

i) < 0.2].
Application to the Toy-Model Deca-alanine. We

consider reversible unfolding of deca-alanine as a model system
for testing different multiple-walker strategies. In Figure 9A we

compare the results of adaptive biasing force calculations of 8
ns total simulated time to a converged free-energy profile. A
single, 8-ns long simulation gave the poorest results, whereas 16
short, independent calculations perform somewhat better, even
though the region 31.4−32 Å has not been sampled at all. In
contrast, shared adaptive biasing force yields complete and
more uniform sampling, and a smoother, more reliable free-
energy profile. The best free-energy profile, almost indistin-
guishable from the converged one, was obtained from shared
adaptive biasing force combined with walker selection. Note
that, as expected, the free energies converge to the same values
for sufficiently long simulations, irrespective of the multiple-
walker strategy, as demonstrated in Figure 9B. An implementa-
tion of the shared adaptive biasing force algorithm with the
selection rules used here is expected to be available in future
releases of the molecular dynamics program NAMD.

Multidimensional Adaptive Biasing Force Simula-
tions. Algorithmic Backdrop. There are several reasons to
perform adaptive biasing force calculations with a transition
coordinate of dimension greater than one. First, we may be
simply interested in how the free energy varies as a function of
more than one coordinate. For example, to study the
interaction between two molecules, it may be of interest to
obtain the free energy as a function of both their distance and
relative orientation. A second reason to use multiple
dimensions is practical. As described in section Hidden Barriers
and Other Challenges to Obtaining Accurate Results, sampling
along a single collective variable may be hampered by barriers
in orthogonal dimensions. If one can identify these orthogonal
dimensions, the application of adaptive biasing force along
them will remove the barriers and improve sampling.
By itself, obtaining a multidimensional free-energy landscape

requires more sampling than is needed to calculate a one-
dimensional profile. For example, if one uses N bins along
collective variable ξ and M bins along collective variable χ, each
component of the gradient over both collective variables, ∇A(ξ,
χ), requires MN bins. With one sample obtained per time step,
the time required to generate a statistically significant number
of samples in all bins will increase approximately proportionally.
Despite the additional, substantial computational effort, adding
a second or third dimension may improve efficiency, as it
accelerates convergence and increases uniformity in sampling
by allowing the system to more rapidly cross between multiple
parallel valleys.98 Subsequently, one can recover the potential of
mean force along a single dimension through integrating out

Figure 9. Improving the rate of convergence with multiple-walker
strategies. (A) Potentials of mean force obtained for different multiple-
walker strategies and total simulation times of 8 ns. For reference, the
black curve shows the result for a total simulation time of 128 ns.
“Single” refers to a single long 8 ns simulation, and “independent”
denotes the result of combining force samples for 16 walkers after they
ran independently for 0.5 ns. For the curves marked “shared” and
“selection”, force samples were synchronized among walkers every 20
ps. “Selection” also included the application of walker selection, as
described in the text, on the same interval. (B) Potentials of mean
force obtained for different multiple-walker strategies and total
simulation times of 128 ns.

Figure 10. Three-dimensional adaptive biasing force calculation. (A) Three reference structures of deca-alanine. The root-mean-square deviation of
selected atoms from their positions in each of the three reference structures defines each of the three transition coordinates. (B) Free-energy
isosurfaces as a function of the three transition coordinates. The violet, pink, and gray surfaces contain all points for which the free energy is less than
5, 10, and 20 kcal/mol, respectively. In all cases the tick marks represent a root-mean-square deviation of 1 Å. The minimum value of the free energy,
which occurs at (RMSDα RMSD310 RMSDω) = (0.3 2.6 2.7) Å, is defined to be zero. (C) Another view of the surface shown in panel B, with
representative structures shown for the two energetically favorable regions.
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the additional dimensions.99 However, when one wishes to
include a large number of dimensions, the generalized adaptive
biasing force algorithm (see section The Generalized Adaptive
Biasing Force Algorithm) may be more appropriate.
If the transition coordinate involves angular degrees of

freedom that span their full range (e.g., [0, 2π]), an additional
complication develops. The exact forces and free energies are
periodic in these variables, but this is not necessarily true for
these quantities burdened with statistical errors. One way to
restore the required periodicity is to approximate the free
energy as a function of angular variables with spline functions,
coefficients of which are computed to distribute errors
smoothly across the whole hyperspace spanned by these
variables. How to do this has been described by Darve et al.42

Application to the Toy-Model Deca-alanine. As an example
application of multidimensional adaptive biasing force, we
consider the free-energy landscape of deca-alanine as a function
of the root-mean-square displacement (RMSD) from three
reference structures. Figure 10A shows these reference
structures: an α-helix, a 310-helix, and a particular compact
conformation that we refer to as the ω conformation due to its
visual similarity to this Greek letter. In agreement with the one-
dimensional calculations, extensively discussed above, the free-
energy minimum occurs when the structure is close to the α-
helix, i.e., when RMSDα = 0.3 Å. In Figure 10B the three-
dimensional potential of mean force is represented by three
isosurfaces. Two low-energy regions can be seen in this figure.
The violet region on the left corresponds to the α-helix,
whereas the region on the right is closer to the ω conformation
than to the other two structures. The minimum in the latter
region is only 1.2 kcal/mol higher than the minimum for α-
helix and lies at (RMSDα RMSD310 RMSDω) = (4.3 5.0 2.7) Å.
In Figure 10C, examples of representative structures in these
two low-energy regions are shown. The multidimensional free-
energy landscape thus yields more insight into the corre-
spondence between the free energy and molecular conforma-
tions, revealing, in particular, a minimum for a compact
structure that was not identified when the one-dimensional
transition coordinate was used.
The Generalized Adaptive Biasing Force Algorithm.

Previously, we considered one particular approach to multi-
dimensional adaptive biasing force. Here we discuss two further
possibilities. First, it is easy to check that if the dimension of the
transition coordinate is larger than one, the biasing force cannot
be in general derived from a gradient (it is not conservative).42

On the other hand, this is of course true of the expected long-
time limit. A natural idea is, therefore, to project, using, for
example, the classical Helmholtz−Hodge projection: Change
the biasing force Ft to ∇φt where φt = arg minφ ∥Ft − ∇φ∥L2.
Because this is consistent with the expected stationary state, this
should not alter the convergence properties. Moreover, the
interest of this projection is that the variance of the force is
reduced, because the nonconservative part is set to zero. This
aspect is analyzed in ref 100.
Second, it would be interesting to develop efficient adaptive

biasing force techniques for higher dimensional transition
coordinates. The standard implementation of the adaptive
biasing force algorithm is currently limited to a dimension up to
3, because it relies on a Cartesian grid of the transition
coordinate values, whose complexity is exponential with respect
to the dimension of the transition coordinate. It would not be
very useful, however, to develop a technique that yields a flat
energy landscape along the transition coordinate if the

dimension is high, as mapping a high-dimensional cube
would be quite time-consuming. One alternative idea, explored
in ref 101, is to use a bias of the form ∑i=1

m At
i◦ξi, where (ξ1, ...,

ξm) denotes an m-dimensional transition coordinate. Under
appropriate assumptions, one can show the convergence of the
method, and preliminary numerical results are encouraging; see
ref 101. Another route would be to consider a bias of the form
∏i=1

m At
i◦ξi, or even following greedy algorithms and tensor

product approaches used in nonlinear approximation theory
(see, for instance, ref 102), ∑k≥1∏i=1

m At
i,k◦ξi, where the

functions (A1,k, ..., Am,k)k≥1 would be iteratively computed.
This method is currently under study.

■ COMBINING THE ADAPTIVE BIASING FORCE
ALGORITHM WITH GEOMETRICAL RESTRAINTS

The objective of this section is to assess the influence of
geometrical restraints on the free-energy landscape and how
such restraints ought to be treated in the context of adaptive
biasing force simulations. Toward this end, the nature of the
forces at play, either thermodynamic forces or forces arising
from external harmonic potentials, will be clarified, and the
current strategy for handling the latter, using an extended-
Lagrangian formalism, will be outlined.

Distinguishing the Thermodynamic Force from the
Restraint Force. One subtlety of the adaptive biasing force
algorithm that is often overlooked is its dependence on the
measure of the thermodynamic force, which is not necessarily
synonymous with the total force acting on the transition
coordinate. For most biomolecular simulations, this is due to
the imposition of various constraint and/or restraint forces. For
example, hydrogen-bond lengths are often constrained in a
simulation via the RATTLE algorithm.103 If only the heavy
atom of the bonded pair is involved in the transition
coordinate, then the adaptive biasing force algorithm will
include the constraint force emanating from the hydrogen in
addition to the thermodynamic force, thus contaminating its
estimate. A straightforward solution is to include both the
hydrogen and its parent atom in the collective variable(s)
defining the transition coordinate, causing the constraint forces
to cancel each other. In other words, if the constraint/restraint
force is zero in the collective variable’s center of mass, it will not
contribute to the measured potential of mean force.
Alternatively, if restraints nonuniformly affect atoms in the
collective variable(s) but are not accounted for in the
thermodynamic force used by the adaptive biasing force
algorithm, then convergence is impossible; the adaptive biasing
force scheme cannot remove forces that it does not measure.
Though it may seem apparent that one will always want to

calculate what the potential of mean force would be in the
absence of artificial restraints, there are cases in which externally
imposed restraints are meant to be included. A key example is
in calculating protein−ligand binding free energies, which
utilizes a staged procedure involving a series of geometrical
restraints.32,89 By design of the procedure, these restraints must
involve the same atoms also being biased at each stage and their
contributions are individually determined and tabulated at the
end. In this case, to ensure that all necessary forces are
included, a procedure such as extended adaptive biasing force is
required.

The Extended Adaptive Biasing Force Method. As
mentioned above, it may be cumbersome to write an analytical
expression for the instantaneous force in dimensions larger than
one or for complicated transition coordinates. One possible
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way around this issue is to extend configurational space with a
fictitious degree of freedom λ and define an extended potential,

λ ξ λ= + | − |V V
k

x x x( , ) ( )
2

( )ext 2
(27)

where k > 0 is a (large) force constant that couples λ to the
transition coordinate, and proceed utilizing the extended
transition coordinate, ξext(x,λ) = λ, instead of ξ. It can be
checked that the free energy associated with this extended
system is the convolution of the original free energy with a
Gaussian kernel, Aext(λ) = ∫ dz χk(λ−z) A(z), where χk(z) =
Z−1 exp[(−β/2k)|z|2] is the Gaussian kernel with variance kβ−1.
The constant k should thus be chosen sufficiently large to
ensure that Aext is a good approximation of A. This enables
quick convergence to equilibrium.
The adaptive biasing force algorithm can be applied to the

extended system,8 the potential energy being Vext and the
transition coordinate being ξext. Notice that the instantaneous
force on the extended degree of freedom, corresponding to free
energy Aext, is trivial to compute, because it is equal to the
harmonic spring force. The original free energy A can then be
recovered by using either deconvolution procedures104 or
simple unbiasing techniques based on formulas such as eq 34.
Provided that a good estimate of the biased marginal of the

transition coordinate, ρ̃(z), has been collected, the following
unbiased estimator of the free-energy derivative can be used,

β
ρ λ′ = − ̃ − − ⟨ ⟩A z

z
z

k z( )
1 d ln ( )

d
( )z

(28)

where ⟨λ⟩z is the conditional average value of λ for ξ(x) = z.
Here, the biased marginal of ξ is used as a correction to the
inaccurate biasing force. It should be noted that this is valid in a
more general context, including the absence of biases
(removing the second term of the right-hand side), in which
case one recovers the trivial histogram-based estimator of the
potential of mean force.

■ COMBINING THERMODYNAMICS AND KINETICS
Although the adaptive biasing force algorithm is often
considered merely a free-energy calculation technique, it is, at
its core, an importance-sampling scheme that can have
applications beyond obtaining free energies. One such
application is to calculate kinetic parameters, such as the
diffusivity along a transition coordinate, where an importance-
sampling scheme is often essential to obtain reliable estimates
in all regions of the coordinate, particularly near all-important
free-energy barriers. Together, the diffusivity and free energy as
functions of the transition coordinate can be used to construct a
kinetic model of a process of interest, which yields insight
beyond the static picture of molecular phenomena given by
free-energy calculations. In this section, we describe a recently
developed scheme leveraging adaptive biasing force to compute
simultaneously the free energy and diffusivity along a transition
coordinate. This scheme is just an example, as a number of
other approaches in which the adaptive biasing force is used to
improve kinetic descriptions of different systems are being
investigated. Also note that, although this scheme was designed
with the adaptive biasing force method in mind, it can be
straightforwardly applied to other importance-sampling techni-
ques.
Determining kinetic parameters can be more subtle than

mapping the free-energy landscape, because kinetic descriptions

are usually approximations and cannot be exactly derived from
statistical mechanics.105 A commonly invoked diffusive model is
overdamped Langevin dynamics, in which the following
equation of motion106,107 is assumed for a set of M collective
variables z = (z1, z2, ..., zM),

∑ ∑β ζ̇ = + ∇ +
= =

z D f t D tz z z( ) ( , ) ( ) ( )t
i

j

M

ij t j t
j

M

j ij t i
1 1 (29)

where zṫ
i is the time derivative of the ith collective variable at

time t, Dij(zt) is the (i, j) component of the diffusivity tensor for
the configuration of the collective variables at time t, f j(zt,t) is
the total force on collective variable j for the configuration at
time t, ∇j = ∂/∂zj, and ζi(t) is a stochastic variable with ⟨ζi(t)
ζj(t′)⟩ = 2Dij(zt) δ(t′−t). The total force on variable j, f j(zt,t), is
the sum of the biasing force, f j

bias(t), and the system force,
which can be expressed as the negative of the gradient of the
potential of mean force Fj(z) = −∇jA(z).
Here, we will focus on diffusive models along a single

collective variable, but note that multidimensional transitions
have been analyzed by similar approaches.86,108,109 In one
dimension, the overdamped Langevin model has two free
parameters, the free-energy profile A(z) and the position-
dependent diffusivity D(z). The adaptive biasing force method,
as well as other techniques, provides a route to A(z), whereas a
number of methods have been applied to determining position-
dependent diffusivity.105,108−117 However, some of the most
basic methods are not compatible with nonuniform free-energy
landscapes,112 and others are based on the assumption that the
free energy can be approximated as a harmonic well.105,110,112

In methods specifically designed for compatibility with the
adaptive biasing force method, it is assumed that the
dependence of diffusivity on position is weak.87 To parametrize
a diffusive model, A(z) and D(z) should be determined
consistently, because, for example, coarsening A(z) results in a
reduction of the associated D(z).118 Furthermore, to save
computational resources, it would be desirable to obtain both
the free energy and the diffusivity in the same calculation.
However, in many methods cited above, equilibrium or steady-
state statistics is assumed, which is likely to yield erroneous
results with time-dependent biasing forces. Solutions to the
problem of calculating diffusivity in simulations with time-
dependent biases take advantage of statistical tools such as
maximum likelihood114 or Bayesian inference.117 Conceptually,
these methods rely on optimizing the parameters of the
diffusive model such that the observed trajectory has the
greatest likelihood of occurring.

Optimizing the Diffusive Model. The Bayesian inference
scheme described below86,99,117 begins with assuming a
particular dynamical model for the collective variable (or
collective variables) of interest. In practice, we represent the
functions Dij(z) and Fi(z) by piecewise cubic interpolation117

from a discrete grid in M-dimensional z-space. We seek the
optimal parameters comprising the values of the functions
Dij(z) and Fi(z) at each grid node that best correspond to the
simulated trajectory, denoted by T. For simplicity, we represent
these optimal parameters as H*. We consider the trajectory as a
set of discrete hops of duration Δt. Given trial parameters H, as
well as the biasing forces fbias(tα), we compute for each hop p
({zα+1, tα+1} {zα, tα}, f

bias(tα), H0), the conditional probability of
arriving at transition-coordinate configuration zα+1 at time tα+1,
given that the system occupied the configuration zα at time tα.
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The probability of the complete trajectory given the parameters
is the product of the probabilities at each step105,114,117

∏| =
α

α α α α α+ +P p t t tT H z z f H( ) ({ , } { , }, ( ), )1 1
bias

0
(30)

This equation yields the probability of the trajectory given an
assumed set of parameters. Using Bayes’ theorem,119,120 we can
infer the probability of the parameters given the trajectory:

| ∝ |P P pH T T H H( ) ( ) ( )prior (31)

An advantage of the Bayesian approach is that it permits
inclusion of any prior knowledge about the form of the
parameters in a consistent way by defining the prior probability
pprior(H) of the parameters.119,120 For example, one can assume
scale invariance of the function values121 or smoothness of the
functions.86,105,117 Finding the optimal parameters then
becomes a problem of finding the set of parameters H* that
maximizes posterior probability P(H*|T), which can be carried
out by generating a Markov chain of states Hk using the
Metropolis−Hastings algorithm.122

Trajectory Likelihood in One Dimension. In the one-
dimensional case (or for independent motions along multiple
dimensions), we can simplify and discretize eq 29 to yield

β− = + Δ + ∇ Δ

+ Δ
+Δz z D z F z f t t D z t

D z t g

( )[ ( ) ( )] ( )

(2 ( ) )
t t t t t t

t t

bias

1/2
(32)

where gt is a random variable with a standard normal
distribution. From the properties of gt, it is evident that eq
30 becomes

∏
π

β
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Below, using this formula and eq 31, we are able to reconstruct
D(z) and F(z) for deca-alanine, yielding a complete diffusive
model.
One might note that we have assumed nothing about fbias(t).

Indeed, we may even set fbias = 0 and construct the diffusive
model from an equilibrium simulation. However, the accuracy
of the results of a Bayesian scheme are wholly dependent on
the quality of sampling near each point along z, necessitating
importance sampling for rugged free-energy landscapes. In the
Supporting Information, we discuss assessment of the precision
and reliability of the results of the Bayesian scheme, which
includes estimating the statistical error, as well as checking the
consistency of the diffusive model with itself and the output of
adaptive biasing force.
Application to the Toy-Model Deca-alanine. The z-

dependent diffusivity for reversible unfolding of deca-alanine is
shown in Figure 11B. The variation with z could not have been
inferred in any simple way from knowledge of the system force
or free-energy profiles. Diffusion along z, which can be thought
of as the rate at which the end-to-end distance randomly
changes, is highest near z = 16 Å, corrsponding to slightly
unfolded α-helical structures. The ensemble of diverse compact
structures in the range z ∈ [5, 10] Å seems to be associated
with the lowest diffusivity values, whereas a secondary
minimum appears near z = 22 Å. Given these data, one
might hypothesize that the diffusivity is inversely related to the

conformational degeneracy at z. Note that Figure 11B shows
considerable dependence of the calculated diffusivity on Δt, the
time over which the trajectory is discretized in eq 33, which
implies that the motion on the observed times is not well
modeled by overdamped Langevin dynamics, and that a more
sophisticated model of motion along z may be needed.

■ SUMMARY AND OUTLOOK
Free-energy calculations have become standard tools of
statistical mechanics applied to a wide variety of problems in
chemistry and biology. This has been possible due to significant
theoretical advances in this area, their highly efficient
implementations in software packages developed for modern,
parallel computers, and remarkable improvements in computa-
tional power available for free-energy calculations. Yet, these
calculations are still not sufficiently mature to be carried out
without careful supervision of the end user. This may be
fortunate, as there is no substitute for physical insight of the
researcher. This also implies that a number of good practices
should be followed in free-energy calculations in general, and in
applying the adaptive biasing force in particular. These good
practices are usually quite simple and involve careful design of
simulations, monitoring their progress and postprocessing
analysis. In favorable circumstances, they will simply increase
confidence that the calculated free energies are reliable. In less
favorable cases, they are even more important, as they allow for
identifying and correcting shortcomings of the calculations that
might adversely affect the results and their interpretation.
Below, we recapitulate these good practices, which have been
already discussed in a considerable detail in the preceding
sections.

(1) Careful choice of the transition coordinate is a key step
toward successful free-energy calculations. In making this
choice, it is desirable not only to capture the physical
nature of a problem of interest but also to ensure small
variance and smoothness of the biasing force.42 Ignoring
the latter issues may adversely affect efficiency and even
correctness of the calculation. Reducing the variance
should be balanced with the cost of calculating the
instantaneous value of the transition coordinate, as
usually the former will decrease and the latter will
increase with the number of atoms involved. This balance
will depend on implementation details and, therefore,
some familiarity with the underlying code might be
required.

Figure 11. Combining thermodynamics and kinetics for reversible
unfolding of deca-alanine. (A) Comparison of the system force as
determined by adaptive biasing force and that calculated from the
Bayesian scheme on the same trajectory. (B) Diffusivity as a function
of the end-to-end distance of deca-alanine for different observation
time intervals Δt.
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(2) A suitable stratification strategy should be planned in
advance. If there are concerns about possible quasi
nonergodic behavior of the system, and in particular the
existence of parallel channels between the end point
states, it is recommended to use large windows. If these
concerns prove to be unjustified, it is always possible to
switch to smaller windows without losing information
about the biasing force that has already been accrued. In
other instances it is usually more efficient to stratify the
transition coordinate into smaller windows throughout a
simulation.

(3) Free-energy calculations should always be accompanied
by estimates of statistical errors. For the adaptive biasing
force algorithm, a formula to do so exists and should be
applied whenever possible. Without error estimates the
reliability of the calculated free-energy values is
questionable and the ability to compare them with
experimental measurements is seriously hampered.

(4) In stratified simulations, lack of continuity in the biasing
force across consecutive windows that clearly exceeds
statistical errors is a sure sign of problematic free-energy
calculations. This issue should not be ignored, and any
attempt to circumvent it by way of some sort of
averaging is unlikely to succeed. Instead, remedial steps
aimed at improving ergodic behavior of the system, such
as applying the multiple-walker strategy, should be taken.

(5) It is usually very useful to monitor the behavior of the
total, biased force, as it should converge to zero in long
simulations. Moreover, the rate of convergence at
sufficiently long times t should become proportional to
1/√t. If the biased force along the transition coordinate
or within a window exhibits large deviations from
nonuniformity, which clearly does not decrease with
time, or the convergence rate is erratic, we have, again, a
likely indication of quasi nonergodicity in orthogonal
degrees of freedom. Then, there is no basis for assuming
that a reliable free-energy dependence on the transition
coordinate can be extracted from the calculated forces.
Instead, in such circumstances, techniques for removing
quasi nonergodicities along orthogonal degrees of
freedom should be brought to bear.

Following these simple good practices guarantees the
improved quality of free-energy calculations carried out by
way of the adaptive biasing force method but does not ensure
that all problems encountered in such calculations, especially
those related to quasi nonergodicity, have been identified. To
this end, the toughest challenges to practitioners of the adaptive
biasing force algorithm and related methods are linked to
multiple slow degrees of freedom leading to orthogonal
barriers. One way to address these problems is through a
multiple-walker strategy, which has proven effective in a test
system that exhibits metastability in the orthogonal space, a
significant challenge to the classic adaptive force method.97

Along the same lines, the basic method can be integrated with
other enhanced sampling techniques that involve multiple-copy
schemes, such as parallel tempering and Hamiltonian
exchange.85 Another promising research direction is to increase
the dimensionality of the bias, as is done in an implicit way in
the generalized adaptive biasing force scheme.101 “Real-life”
applications would, however, require an accessible and well-
documented implementation, now available as part of the
independent collective variables module.39

Although better sampling of orthogonal degrees of freedom
is the most promising direction for increasing the efficiency of
the adapting biasing force method, there is also room for
improvement in achieving convergence along the transition
coordinate. For example, it would be of interest to develop
adaptive algorithms for the early stages of simulations that
would converge faster than the currently used step or ramp
functions. One possibility along these lines is to employ a
kernel function along ξ. In other words, adaptation in a given
bin would depend not only on samples accrued in this bin but
also on samples in neighboring bins. Developing binless
algorithms is also of interest. Another avenue to improve
convergence along the transition coordinate, which has not
been explored so far, is to exploit the freedom in defining the
ensemble average of instantaneous force and identify choices
that reduce the variance.
Several steps can be taken to obtain better estimates of free

energies. For example, the error in integrating force to calculate
free energy that is due to binning of force values could be
reduced by using improved, smooth interpolation schemes.
Further, we observe that the best accuracy is obtained not when
the free energy is flat but rather when the statistical error of the
average force is the same everywhere along the transition
coordinate. To achieve this, the number of samples, Nk, in bin k
should be such that σk/(Nk)

1/2 rather than Nk is constant for all
bins, where σk is the standard deviation of estimated average
force in bin k. This is realized if the biasing potential due to the
average force used in the standard adaptive biasing force
method is supplemented by the term 2kBT ln(σk/σ0), where σ0
is the standard deviation at a reference point. In practice, σk and
σ0 are estimated from their running values or their
approximations during the course of a simulation. The
additional term becomes important whenever the friction
coefficient changes markedly with ξ or parts of the system
undergo large fluctuation, for example because they are near
phase transition.
A number of extensions to the adaptive biasing force method

have not been explored yet. For example, the method could be
straightforwardly extended to transformations along a param-
eter of the Hamiltonian if an equation of motion was associated
with this parameter, as is done in metadynamics. It would be of
interest to check whether such application of the adaptive
biasing force method were more efficient and reliable than
other, related methods currently used for this purpose, such as
conventional thermodynamic integration, metadynamics, or the
Wang−Landau algorithm. Another extension of the method
that was outlined in one of the original studies on the adaptive
biasing force123 but has not been pursued so far, is to add to the
biasing force another contribution that would depend only on ξ
and would favor certain states of particular interest to the user
or drive the dynamics in a specified direction. The latter would
make the adaptive biasing force method a more efficient and
better controlled alternative to steered dynamics.
Finally, we emphasize that the adaptive biasing force is not

just a free-energy calculation technique but can also be seen as a
general adaptive biasing scheme (see, for instance, ref 124 for
applications in Bayesian statistics). Indeed, once a correct
sampling of the biased measure Zp

−1 exp(−βpTM−1p/2) dp
Zt0

−1 exp{−β[V − At0◦ξ](x)} dx has been obtained (t0 being a
fixed time, and the bias being fixed from time t0: ∀t ≥ t0, At =
At0, it is easy to recover canonical averages using standard
unbiasing procedures:
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Although the adaptive biasing force dynamics has been
applied so far almost exclusively to chemical and biological
systems, it could also be very useful for sampling a multimodal
measure (namely, a probability measure for which high-
probability regions, called “modes” in this context, are separated
by low-probability regions) in other fields, e.g., among others,
free-energy computations in material sciences125 or Markov
chain Monte Carlo techniques for Bayesian inference.124 In
summary, the combination of simplicity, versatility, and strong
mathematical underpinnings makes the adaptive biasing force
method an attractive target for a wide variety of extensions in
statistical mechanics and beyond.
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