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Abstract
We study the domain ordering kinetics in d = 2 ferromagnets which corresponds to popu-

lated neuron activities with both long-ranged interactions, V(r)* r−n and short-ranged inter-

actions. We present the results from comprehensive Monte Carlo (MC) simulations for the

nonconserved Ising model with n� 2, interaction range considering near and far neighbors.

Our model results could represent the long-ranged neuron kinetics (n� 4) in consistent with

the same dynamical behaviour of short-ranged case (n� 4) at far below and near criticality.

We found that emergence of fast and slow kinetics of long and short ranged case could imi-

tate the formation of connections among near and distant neurons. The calculated charac-

teristic length scale in long-ranged interaction is found to be n independent (L(t)* t1/(n−2)),
whereas short-ranged interaction follows L(t)* t1/2 law and approximately preserve univer-

sality in domain kinetics. Further, we did the comparative study of phase ordering near the

critical temperature which follows different behaviours of domain ordering near and far criti-

cal temperature but follows universal scaling law.

Introduction
Brain is a complex system that works through an interplay of neurons. The spiking activity in
complex neuron network in brain is dynamic (far from equilibrium) [1]. It has been modeled
as a network of neurons to mimic brain dynamics using Ising model and found that neural
population exhibit nonequilibrium critical dynamics [2] and the criticality in it has been used
to characterize brain signals [3]. The reason could be when such system starts to be quenched
from a disordered phase to an ordered phase, it becomes thermodynamically unstable. The
subsequent far-from-equilibrium evolution of the system is characterized by the emergence
and growth of domains enriched in the new equilibrium phases. This nonequilibrium evolu-
tion, usually called kinetics of phase ordering or domain growth, has been the subject of much
active investigation [4]. The domain here represents an ordered set of active/inactive neurons.
The domain morphology is quantified by the time dependence of the domain scale L(t), where
t is the time after the quench. There is a good understanding of domain growth kinetics in pure
and isotropic systems with short-ranged interactions, where the domain scale shows a power-
law behavior, L(t)* tϕ [5, 6]. For the case with nonconserved order parameter, e.g., ordering
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of a ferromagnet into up and down phases (spin-flip Glauber-Ising model [7]), one has ϕ = 1/2
[8, 9]. On the other hand, for the case with conserved order parameter, e.g., phase separation of
a binary (AB) mixture into A- and B-rich domains (spin-exchange Kawasaki-Ising model
[10]), we have ϕ = 1/3 when growth is driven by diffusion [11, 12]. Apart from the domain
growth laws, experimentalists are also interested in quantitative features of the domain mor-
phologies. An important experimental quantity is the time-dependent correlation function
Cð~r ; tÞ that measures the correlation of a spin (neuron) with the rest of the spins with time, or

its Fourier transform, structure factor Sð~k; tÞ (~k being the wave vector) [4, 5]. Most of the stud-
ies are concentrated around the nearest-neighbor (short-range) inter-molecular interaction.

Ferromagnetic ising system is pioneer yet simple equilibrium model that has been used
extensively to understand brain dynamics [13, 14]. However, analogy of this model with brain
dynamics sounds skeptical [15], but some empirical results of neuron spiking activity from net-
work of neurons has shown phase transition from low to high activity at criticality [16–19]
with optimum information transmission [20, 21] Here, we have used the concept of phase
ordering dynamics in Ising model as an effort to study brain functionality reflected from long
and short range interaction of neurons. We need to target how brain executes a specific task
and forms different patterns each time for a specific activity [22]. Multiple patterns are being
formed with both long and short range interactions. The neuron activities in brain at critical
point are believed to be effective for the long distance communication of the neurons [23]
because of coupling and variability to optimize information storage in the system [24] and
dynamic range of the system to response the input signal [25]. The core of the paper focuses on
long-range interactions which dynamically explains the rapid movement of the signal informa-
tion inside the brain. The fast emergence of long-range interactions, mimic the rapid neuronal
interactions in the brain. Further, we study the phase ordering dynamics in neurons with a spe-
cific interest to understand the role of the range of inter-neuron interactions. We address two
important questions in this context via kinetic MC simulations: (a) What is the growth law for
ordering phases of neurons? Is the growth law independent of the range of interaction? (b)
What is the morphology for ordering phases of neurons, as measured by the correlation func-
tion and structure factor? Is it comparable for all interaction range? We will be providing the
answers to the above questions from our extensive MC simulations.

Neuron Activity Pattern Model
Brain can be considered as a complex network of neurons. In brain, network rewiring of hun-
dred billion neurons, forming multiple patches/patterns of firing neurons exhibiting a specific
cognitive function is the crust of brain functioning. In an effort to understand the gist of pat-
tern formation, we can think of brain as a system (square lattice) with neurons as number of
particles which can be mapped onto ferromagnetic Ising model with two spin interactions [26],
where random firing or non-firing of neuron can be represented by two states of a spin, s = +1
for firing and s = −1 for rest or non-firing neurons [27]. Even though neuron activity pattern
model is far from equilibrium dynamic model [18], Ising model can be serve an excellent
model to deal with critical phenomena of neuron activity pattern [1]. The large number of local
(short range) interaction of neurons [28] and significant amount of global (long range) interac-
tion of neurons [29] are main basis of neuronal communication in brain network [30]. The
transition from a disordered system of neurons to an ordered domain is studied using the
long-ranged spin (neuron) model (LSM). We consider the following Hamiltonian of two
dimensional Ising system which incorporates the (LSM),

H ¼ �
X
<ij>

Jðrij; nÞsisj; si ¼ �1; ð1Þ
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where J is the coupling strength, n characterizes the range of the interaction, rij ¼ j~ri �~r jj, and
si denotes the spin variable at site i. We consider two state spins: si = +1 denotes an up-spin
(active neurons) and si = −1 denotes a down-spin (inactive neurons). We consider only a ferro-
magnetic case, where J> 0 always. The case where J can be both> 0 (ferromagnetic) and< 0
(antiferromagnetic) is relevant to spin glasses. We associate stochastic dynamics with the Ising
model by placing it in contact with a heat bath. The appropriate dynamics for the phase order-
ing problem is spin-flip kinetics or Glauber kinetics.

If we consider interacting neurons (spins) through slowly decay potentials [31]. In order to
capture thermodynamical parameters, one can define the following potential function (obeying
power law functional form) [32, 33],

UðnÞ ¼ lim
N!1

1

N

XN
i;j;i 6¼j

J
rnij
: ð2Þ

Here n = d + σ = 2 + σ [34, 35] for two dimensional system. For short-ranged interaction, σ> 2
and the system size is not much important, whereas for long-ranged interaction, 0< σ< 2 and
it depends on the system size [36, 37]. The functional form of J(rij, n) is given by
Jðrij; nÞ ¼ J=rnij , where, J> 0 and n> 0 [33]. The asymptotic values of J are, for n!1 corre-

sponds to nearest neighbour, and n! 0 with J! J/N corresponds to Currie-Weiss model
[33]. Since, the size of the system is N, rescaling J! J/N to the Curie-Weiss model [33] and
using Euler-McLaurin sum formula [38] for N� 1, Eq (2) can be written as,

UðnÞ ¼ lim
N!1

J
XffiffiffiNp

x¼1

XffiffiffiNp

y¼1

1

ðx2 þ y2Þðn�2Þ=2;

� lim
N!1

Jdð¼2Þ
Z ffiffiffi

N
p

1

drgðrÞr3�n;

ð3Þ

where, g(r) is the pair distribution function such that g(r)� 1 for r� 1. The integration in Eq
(3) can be evaluated considering three conditions of n: (a) n = 4, the Eq (3) becomes,

UðnÞ � J lim N!1
R ffiffiffi

N
p

1
dr
r
� J

2
lim N!1 ln ðNÞ, (b) n> 4, the Eq (3) can be written as,

UðnÞ � J lim N!1
R ffiffiffi

N
p

1
drr�ðn�3Þ � J

n�4
lim N!1 1� N2�n=2½ �, and (c) 0< n< 4, the Eq (3)

becomes, UðnÞ � J lim N!1
R ffiffiffi

N
p

1
drr3�nÞ � J

4�n
lim N!1N

2�n=2. Combining all three cases, we

can reach the following equation,

UðnÞ � lim
N!1

J

1

2
ln ðNÞ for n ¼ 4;

1

n� 4
ð1� N2�n=2Þ for n > 4;

1

4� n
N2�n=2 for 0 < n < 4:

2
666666664

3
777777775

ð4Þ

The existence of critical point of the force derived from the potential Eq (2) depends on the
nature of the force (positive or negative) due to which singularity arises in the solution of the
system [32]. However, closed form approximation in the numerical solution of the system was
used by Hiley and Joyce [32] and could able to estimate critical point at which one can predict
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critical thermodynamical parameters, as given below,

UðnÞ
kBTC

¼ 1þ f2
UðnÞ2 þ OðUðnÞ�4Þ ð5Þ

where, the f2 = ∑i,j J(rij, n)
2 which has to be evaluated for the whole 2D lattice points. For vari-

ous types of lattice structure, the numerical solution of Eq (5) at large limit of N converges
approximately to 1 [32], from which critical temparature, TC can be obtained as follows,

TC � J
kB

UðnÞ ð6Þ

From Eq (4), one can see that U(n) is finite for n> 4 when N!1, and the asymptotic
behaviour of finite critical temperature Tc [32],

TcðnÞ �
J
kB

UðnÞ � J
kB

1

n� 4

� �
; ð7Þ

where, kB is Boltzmann constant. This shows that Tc(n)/ 1/n for short-ranged potential (n>>

4), whereas for long-ranged potential, Tc depends on the size of the systemN as well as n given by,

Tcðn;NÞ � J
kB

1

4� n

� �
N2�n=2 ð8Þ

and Tc diverges with system size. Further, Tc for n = 4 is independent of n and is given by,

TcðNÞ � J
2kB

ln ðNÞ ð9Þ

In this case Tc diverges logarithmically with system sizeN. Similarly, one can also calculate other
thermodynamical parameters such as internal energy, entropy, free energy per particle (neuron)
etc. at this asymptotic limit.

Details of Simulation
Since it is very difficult to obtain exact analytical solution of this problem, we straightforward
implement a MC simulation of the Ising model with spin-flip kinetics to understand the behav-
iour. In a single step of MC dynamics, we choose a spin at random in the lattice of distribution
of spins. The change in energy ΔH that would occur if the spin was flipped is computed with the
step of acceptance or rejection based on Metropolis acceptance probability [39, 40] given by,

P ¼
exp ð�bDHÞ if DH⩾0;

1 if DH < 0:

(
ð10Þ

where, β = (kB T)
−1 denotes the inverse temperature. One Monte Carlo step (MCS) is completed

when this algorithm is performed N times (where N is the total number of spins), regardless of
whether the move is accepted or rejected. All our simulations have been performed on a d = 2
lattice of size L2

s (Ls = 512) with periodic boundary conditions in both directions. The statistical
quantities presented here (e.g., correlation function, structure factor) are obtained as averages
over 10 independent runs. Each run starts with a randomly-mixed state with equal numbers of
up (active) and down (inactive) spins (neurons), which corresponds to a mean magnetizationm
= hsii = 0.

Here, thinking of the real scenario in the brain, we have considered various interaction
ranges (n) that could be taken as multiple synaptic connections in the brain. We study LSM for
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several values of n, namely 2, 3, 4, 6, and 12. The critical ordering temperatures, Tc(n) for each
n case, have different points of criticality at which they could mimic brain functionality as
shown in Fig 1, where the characteristic behavior of spontaneous magnetization (< si >) is
plotted against temperature (T). As expected, Tc(n) (dotted lines) increases with decreasing n
as evident from Eq (7). Above Tc the spontaneous magnetization vanishes, whereas below Tc it
takes a nonzero value, inducing the typical behavior of a ferromagnet. Therefore, the physical
properties of such systems and so its phase states depend on the value for the magnetization,
the parameter which is termed as order parameter: an ordered phase in which the spins are
aligned appears whenm 6¼ 0, whilem = 0 implies a disordered (or symmetric) phase. Since,
Tc’s for n� 4 are very close to each-other and hence, exhibit qualitatively similar behavior

Fig 1. Plot of < si > vs. T for n = 2, 3, 4, 6, and 12 as indicated. The magnetization drops-off sharply near the critical temperature (Tc) and then vanishes to 0
in the disordered high-temperature phase.

doi:10.1371/journal.pone.0141463.g001
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(explained in next section). We thus consider n< 4 cases for the long-ranged interaction. For
each value of n, we cut-off the interaction at rc = (2.5)6/n to accelerate our simulation [41]. We
stress that the simulations are numerically very demanding for larger cut-offs. We compute
several statistical quantities to characterize the system. These are described as follows.

The domain coarsening is characterized by a growing time-dependent length scale L(t),
measured at any time instant as the radii of the circle of the total area covered by either type of
the spin. The domain morphology i.e a small section of particular size taken at any time instant,
does not change with time, apart from a scale factor. For a particular interaction range (n),
their is a unique length scale L(t) depending on time by a constant scaling factor. A direct con-
sequence of the existence of a unique length scale is that the system exhibits a dynamical-scal-
ing in the correlation function and structure factor. We compute the time-dependent
correlation function:

Cð~r i;~r j; tÞ 	 hsisji � hsiihsji: ð11Þ

Here, the angular brackets denote an averaging over the independent initial ensemble and dif-
ferent noise realizations. As the system is translationally invariant, the correlation function
depends only on~r ¼~r j �~r i:

Cð~r i;~r j; tÞ ¼ Cð~ri;~r i þ~r; tÞ ¼ Cð~r; tÞ: ð12Þ

Usually most experiments study the structure factor, which is the Fourier transform of the real-
space correlation function:

Sð~k; tÞ ¼
Z

d~r C ð~r; tÞei~k 
~r : ð13Þ

Since the system is isotropic, we can improve statistics by spherically averaging the correlation
function and the structure factor. The corresponding quantities are denoted as C (r, t) and S (k,
t), respectively. The correlation function and structure factor obey the dynamical scaling forms:

Cðr; tÞ ¼ g½r=LðtÞ�;
Sðk; tÞ ¼ LðtÞdf ½kLðtÞ�: ð14Þ

Here, g(x) and f(p) are scaling functions; r is the separation between two spatial points; k is the
magnitude of the wave vector; and d is the system dimensionality. The characteristic domain
size L(t) is obtained as the distance over which the correlation function decays to some fraction
(say half) of its maximum value [C(r, t) = 1 at r = 0]. There are several other suitable definitions
for computing L(t), e.g., first zero-crossing of C(r, t), inverse of the first moment of S(k, t). In the
scaling regime, all these definitions differ only by constant multiplicative factors [42–44].

Numerical Results
For short-range interaction critical temperature is a function of interaction range only whereas,
for long-ranged TC is a function of both interaction range and system size (see Eqs (4–8)). It is
found that short-ranged interactions have their TCs in a narrow spectrum (See Fig 1) thus will
have similar coupling strength, however in long-ranged interactions keeping system size con-
stant they have TC over wide spectrum signifying an exponential change in coupling strength
with distance. This could have a direct implication with the synaptic connections made
between near and distant neurons in the brain. In Fig 2, we show the evolution snapshots
obtained from our MC simulations for n = 2, 3, 6 with T = 1 (< Tc, see Fig 2) at t = 100, 500
MCS. At low temperatures, energetic effects are dominant and the system minimizes its energy
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Fig 2. Evolution snapshots of domain coarsening for n = 2, 3, and 6 quenched at T = 1 below Tc at time t = 100, 500. The snapshots are obtained from
a Monte Carlo (MC) simulation of ordering kinetics in ferromagnetic system. The details of the MC simulation are provided in the text.

doi:10.1371/journal.pone.0141463.g002
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by ordering the spins parallel to each other. In the absence of an external field (e.g., magnetic
field, h = 0), the activated neuron (up-spin) and inactivated neuron (down-spin) states are
equivalent. In the mean-field (MF) limit, i.e., n = 0, all the spins interact with each other and
there is no spatial structure in the evolution morphology. For larger values of n, we see the
emergence and growth of domains of up-spin (marked in black) and down-spin (unmarked).
These domains interact and annihilate, resulting in coarsening of the characteristic length
scale, and therefore, domain patterns at different times look statistically similar, apart from a
global change of scale. The domain size at a fixed time (e.g., t = 500) is smaller for larger values
of n (short interactions). Spontaneous and simultaneous connections among near and distant
neurons is an inherent property underlying brain functionality, as the domain formed by long-
range interactions grow quickly in time as compared to short range explains for compensating
distance with time.

In Fig 3, we show a scaling plot of the correlation function, defined in Eq (11). We plot C(r,
t) as a function of the scaled distance r/L at three time instants, as indicated. Fig 3A corre-
sponds to n = 2, and Fig 3B shows data for n = 6. The dynamics of the spins (neurons) in terms
of correlation function and structure factor at different time points has shown a perfect congru-
ence with each other witnessing the universality in their behaviour as well as confirming the
validity of dynamical scaling.

Let us next discuss whether the evolution morphology depends on the range of the interac-
tion characterized by n. Fig 4 shows a comparison of the scaling functions for four different n
values (n = 2, 3, 4, 6) at a time t = 500, when the system is already in the scaling regime. In Fig
4A, we plot the scaled correlation functions. The reasonably good data collapse suggests that
the scaling functions do not depend on the interaction range. The solid line in Fig 4A denotes
the analytical result due to Ohta et al. (OJK) [45], who studied ordering dynamics in a

Fig 3. A Scaling plot of C(r, t) vs. r/L for a phase ordering dynamics in d = 2 for n = 2. The data sets (for t = 100, 200, 500) collapse onto a single master
curve. B Similar plot for n = 6.

doi:10.1371/journal.pone.0141463.g003
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ferromagnet. The OJK function is

Cðr; tÞ ¼ 2

p
sin �1ðe�r2=L2Þ: ð15Þ

(The corresponding result for the case with vector order parameter has been obtained by Bray
and Puri [46].) Our correlation-function data is in excellent agreement with the OJK function,
showing that the phase ordering dynamics for n< 4 lie in the same dynamical universality
class as that for n> 4. In Fig 4B, we plot the scaled structure factor [L−2 S(k, t) vs. kL] for the
same time as in Fig 4A. Again, the data sets collapse neatly onto a single master curve, confirm-
ing the scaling form in Eq (14). The scaling function is in excellent agreement with the corre-
sponding OJK function. Notice that the structure factor, for large values of k, follows the well-
known Porod’s law, S(k, t)* k−(d+1), which results from scattering off sharp interfaces [47,
48]. The scaled correlation function and structure factor, in congruence with scale free behav-
iour of functional brain networks [49] depicts the universality of the interaction mechanism in
both short and long range interactions in brain.

In Fig 5, we turn our attention to the time-dependence of the domain size. We plot L(t) vs. t
on a log-log scale for n = 2, 3, 4 and 6. Here, the data sets are consistent with the Cahn-Allen
growth law, L(t)* t1/2–there is no sign of a crossover in the growth law at n = 4, as predicted by
Bray [50]. Bray has used the renormalization group (RG) approach to study ordering dynamics
with long-ranged interactions of the form rd+σ with 0< σ< 2. In our case, d = 2 and σ = n − 2.
Bray argues that the long-ranged interactions are relevant for 0< σ< 2 or 2< n< 4, and irrele-
vant for n> 4. The corresponding growth law is

LðtÞ � t1=ðn�2Þ for 2 < n < 4;

t1=2 for n > 4;

(

Fig 4. A Plot of C(r, t) vs. r/L at t = 500 for n = 2, 3, 4, 6. B Plot of S(k, t)L−2 vs. kL, corresponding to the data sets in A. The reasonably good data collapse
shows that the scaling functions do not depend on the interaction range. The solid line denotes the OJK function in Eq (15) [45].

doi:10.1371/journal.pone.0141463.g004
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with possible logarithmic corrections. As we can see that our numerical results are not consistent
with this prediction. The only difference as n is varied is that we have faster growth (higher pre-
factors) for smaller n, corresponding to more long-ranged interactions. The fast dynamics of
long-range interactions signifies the path of information processing and neuronal connections in
the brain. The longer persistance of long-ranged neural connections could give sense to cluster-
ing behaviour of neural circuitry, specifically during learning of a specific task, new synaptic con-
nections tend to form in vicinity of old connections related to that task [51] making it more
robust. Convincing to the fact that re-learning help us to memorize things for longer duration.

Fig 5. Time-dependence of the characteristic length scale L(t) for n = 2, 3, 4, 6, plotted on a log-log scale. The lines of slope 1/2 indicates the power-
law growth regimes expected for phase ordering in d = 2 ferromagnetic system.

doi:10.1371/journal.pone.0141463.g005
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In Fig 6, we show the evolution of the order parameter (m) near critical temperature (T’
Tc) from a disordered initial state (m = 0) for n = 2, 3, and 6 respectively. At higher temperature
below Tc we observe large fluctuations in the evolution patterns with very small global order-
ing; instead of picking one of the up-spin, down-spin, or zero order parameter states, the sys-
tem near Tc is a kind of fractal blend of all three [52]. Giving an insight that brain code
information in the form of pattern of neurons activated. For example, in visual cortex a partic-
ular information signal will activate a bunch of neurons related to that code of information and
leads to recognition of an object [53]. However the cluster size is larger for smaller n. Recall
that at T = 1 (� Tc), thermal energy (kB T) of the system is low, thus spins try to obtain mini-
mal energy by forming domains with a global ordering:m = +1 or -1.

Finally, in Fig 7A, we show the plot of correlation function [C(r, t) vs. r] corresponding to
the evolution shown in Fig 6 at t = 500. Note that the decay range of the correlation function is
larger for long-ranged interactions. Fig 7B shows the scaling plot of the data sets in Fig 7A. A
reasonable data collapse confirms the dynamical scaling and clarifies that the system for each
interaction range belongs to the same dynamical universality class.

Summary and Discussion
Let us conclude this paper with a summary and discussion of the results presented here. We
study the effect of interaction range on the morphology of neuron activity pattern. Several previ-
ous works on ising model has calculated nearest neighbor interaction at different temperature
and found that it could depict the functional brain activity at criticality [21, 27, 54]. We have
simulated a system of 2-D non- conserved ising model, far from equillibrium with Glauber
dynamics considering a parameter that controls the coupling strength over interaction range
and obtained patterns of neural activity represented as a domain showing the modularity of
functional brain networks at far below and near criticality. The long-ranged and short-ranged
interaction of neurons could be the main basis of how brain performs complicated functions at
fundamental level. With this prior knowledge, we have studied the effect of interaction range on
the morphology of the domains obtained, considered as neuron activity patterns. We analyzed
the system at far from criticality (T = 1) and near criticality (T’ Tc) and obtained neuron activ-
ity patterns which in general implies that the dynamics of long- range interaction outrace the
short range. As shown by our simulation results both short and long ranged interactions exhib-
its similar dynamics over time domain which makes its analogy with neuronal interactions flexi-
ble. We have studied the dynamics of long and short range interactions separately at fixed
temperature and concluded that they follow similar kinetics when scaled, however appear differ-
ent in the time domain. We anticipated that emergence of fast and slow kinetics of long and
short ranged cases could imitate the wiring and rewiring of neurons for relay information trans-
fer and topology of functioning of modules in brain. Neuron activities as well as wiring and
rewiring of the neurons in the network subjected to heat bath depend on the range of interaction
which are reflected in the dependence of critical temperature Tc and magnetization on n. The
domain sizes of the neurons (spins) in short range interaction at far-lower critical temperature
are smaller; some are isolated and numbers are more as compared to long ranged interaction for
any time domain, showing their fast dynamics. However, the domain dynamics both in short
and long ranged interaction system is quite different as compared to far-higher critical tempera-
ture dynamics due to emergence of more randomness in the domain organization in the system.
This leads to the change in domain growth laws of the neurons in short and long ranged interac-
tion in the system. As the system approches near critical temperature, the domain pattern for-
mation of interaction exhibits fractal kind of behaviour that could portray similar functionality
of different modules. Evolution snapshots of the system for distinct interaction range (coupling
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Fig 6. Evolution snapshots of phase ordering systems in d = 2 for n = 2, 3, and 6. The system is quenched at T’ Tc. The MC simulations are described
in the text.

doi:10.1371/journal.pone.0141463.g006
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strength) at near criticality has revealed fractal nature with pattern formation signifying strong
correlation to brain dynamics [53], however, power law behaviour of the characteristic domain
length scale further establishes the fact. The correlation of neurons (spins) decays much faster in
short ranged interaction as compared to long ranged, but it scales with r/L showing the univer-
sality of neuron interactions in brain. Thus, study of this simple system has lead us to the conjec-
ture that the system of neurons undergoes second order phase transition near criticality and
forms a pattern of active neurons performing a specific task upon receiving a signal or we can
say that a signal/stimulus might take the system towards criticality [13].

Given the current focus on the biological network and their functionality, we hope that this
paper will motivate fresh interest in the evolution dynamics and morphology of active and pas-
sive neurons. These kinetic processes play an important role in determining the functionality
of brain. We emphasize that one can gain a good understanding of the relevant neuron dynam-
ics (wiring and rewiring inside the brain network) from simple coarse-grained models of the
type discussed here. This model could correctly anticipate interconnected neuron kinetics
involved in functions like cognition, behaviour, thoughts, perception etc. One important con-
clusion from this study could be that when brain receives a signal it gets transformed from a
random system of neurons, undergoes second-order phase transition, and turns out into an
ordered sets of firing neurons. This could possibly correspond to emergence of functional mod-
ules in brain, needs more investigation. Thus it is an attempt to predict and an outlook to
understand the functionalities of the brain.
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