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Abstract

Cell‐free DNA (cfDNA) is present in the circulating plasma and other body fluids

and is known to originate mainly from apoptotic cells. Here, we provide the first

in vivo evidence of global and local chromatin changes in human aging by analyzing

cfDNA from the blood of individuals of different age groups. Our results show that

nucleosome signals inferred from cfDNA are consistent with the redistribution of

heterochromatin observed in cellular senescence and aging in other model systems.

In addition, we detected a relative cfDNA loss at several genomic locations, such as

transcription start and termination sites, 5′UTR of L1HS retrotransposons and

dimeric AluY elements with age. Our results also revealed age and deteriorating

health status correlate with increased enrichment of signals from cells in different

tissues. In conclusion, our results show that the sequencing of circulating cfDNA

from human blood plasma can be used as a noninvasive methodology to study age‐
associated changes to the epigenome in vivo.
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1 | INTRODUCTION

During the last century, human life expectancy has more than dou-

bled, resulting in a large worldwide increase in the elderly popula-

tion: The number of individuals aged 80 or over is projected to triple

by 2050 and to increase to nearly seven times by 2100 (United

Nations, 2017), and the number of centenarians is also expected to

increase globally. Because increased longevity does not necessarily

translate into increased healthspan, improving the latter is an urgent

priority. Hence, biomarkers of aging that can be translated to the

clinical setting are of particular interest.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

Received: 31 May 2018 | Revised: 12 October 2018 | Accepted: 10 November 2018

DOI: 10.1111/acel.12890

Aging Cell. 2019;18:e12890.

https://doi.org/10.1111/acel.12890

wileyonlinelibrary.com/journal/acel | 1 of 14

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1111/acel.12890
http://www.wileyonlinelibrary.com/journal/ACEL


Several aging biomarkers such as C‐reactive protein and insulin‐
like growth factor‐1 have been identified as predictive for mortality

(Castagne et al., 2018). The identification of circulating biomarkers

is of increasing interest in the study of human aging, especially

when these biomarkers are applied to the measurement of biologi-

cal age (Capri et al., 2015). Recent data showed that subjects of

the same chronological age, including centenarians, can have

younger or older biological ages that, in turn, are associated with

morbidity and mortality (Chen et al., 2016). Among the different

biomarkers that have been proposed, which include DNA methyla-

tion and N‐glycans (Horvath, 2013; Miura & Endo, 2016), cell‐free
DNA (cfDNA) appears particularly promising due to the ease of

collecting specimens and the ever‐decreasing costs of genomic

sequencing. However, little is known about how cfDNA changes

with age.

High levels of cfDNA were first reported in 1966 in the circulat-

ing serum of patients with systemic lupus erythematosus (Tan, Schur,

Carr, & Kunkel, 1966) and were later discovered in the plasma of

cancer patients (Stroun, Anker, Lyautey, Lederrey, & Maurice, 1987).

cfDNA originates primarily from cell death through apoptosis or

necrosis (van der Vaart & Pretorius, 2007), and recently, new meth-

ods have been developed to trace the tissues of origin of cfDNA

through nucleosome positioning and methylation footprints (Leh-

mann‐Werman et al., 2016; Snyder, Kircher, Hill, Daza, & Shendure,

2016). These methodologies allow the detection of tissue‐specific
damage or disease through liquid biopsies.

The aging process is associated with cellular stress and is accom-

panied by alterations to the number of apoptotic cells and DNA

release (Jylhava et al., 2013; Pollack, Phaneuf, Dirks, & Leeuwen-

burgh, 2002). Older individuals were reported to exhibit higher

levels of circulating cfDNA (Jylhava et al., 2011), including mitochon-

drial DNA (cf‐mtDNA) (Pinti et al., 2014). Aging is also associated

with chronic systemic inflammation or inflammaging. The cause of

this phenomenon in older individuals may come from different

sources, one of which is the increased number of senescent cells

that can secrete senescence‐associated secretory phenotype factors

to drive inflammation (Franceschi & Campisi, 2014). Other factors

such as age‐associated accumulation of metabolites or cell debris,

including self and non‐self‐nucleic acids (Franceschi, Garagnani,

Vitale, Capri, & Salvioli, 2017), can act as damage‐associated molecu-

lar patterns (DAMPs) that trigger immune response and subsequent

inflammation (Franceschi & Campisi, 2014). For instance, high level

of total cfDNA in nonagenarians is associated with systemic inflam-

mation and frailty (Jylhava et al., 2013). cfDNA has also been shown

to be one of the triggers to adipocyte inflammation in obese mice

due to the increased cell death in fat tissues (Nishimoto et al.,

2016).

In this study, we used cfDNA to characterize the nucleosome

landscape and the contributing tissues of age‐associated cell death.

We performed whole‐genome sequencing on cfDNA collected from

the plasma of individuals in four groups composed of young, old,

and two cohorts of centenarians (divided into healthy and unhealthy

populations).

2 | RESULTS

2.1 | Profiling of cfDNA at different ages and in
extreme longevity

Aging is known to be associated with increased cell death, which

may contribute to a change in the cfDNA released into circulation.

Hence, we profiled cfDNA extracted from a total of 12 individuals

from different ages and health conditions. Specifically, we performed

whole‐genome sequencing of cfDNA from three 25‐year‐old ± 0.5

(SD) subjects (referred to as young), three 71‐year‐old ± 1.6 subjects

(referred to as old), and six 101.8‐year‐old ± 1.1 centenarians (Sup-

porting Information Tables S1 and S2). The centenarian cohort was

further divided into two groups: three healthy and three unhealthy

individuals. Healthy centenarians were characterized as having good

cognitive performance, that is, SMMSE (Standardized Mini‐Mental

State Examination) > 24 scores, retaining the ability to walk, and

having a high ADL (Activities of Daily Living) score (Supporting Infor-

mation Table S1). In contrast, unhealthy centenarians had dementia,

were not able to perform the SMMSE, and were bedridden. In addi-

tion, the two centenarian cohorts showed significant differences in 5

out of 32 hemato‐biochemical parameters tested: RBC, HGB, HCT,

ALB, and HDL (Supporting Information Table S5).

2.2 | Cell‐free DNA reveals in vivo nucleosome
landscape changes with age

The analysis of the fragment length of cfDNA derived from blood

plasma showed an enrichment of 166‐ to 175‐bp fragments (Fig-

ure 1a, Supporting Information Table S3), which corresponds to the

length of a chromatosome. In healthy individuals, most of these

cfDNA fragments originate from apoptotic cells of hematopoietic ori-

gin (Lo et al., 2010). Several studies have demonstrated that the

fragmentation patterns of cfDNA can reveal the nucleosome land-

scape of dead cells from which the cfDNA is derived. This is because

DNA wrapped around the histone octamers and linker histones is

protected from digestion during apoptosis (Ivanov, Baranova, Butler,

Spellman, & Mileyko, 2015; Snyder et al., 2016).

We used DANPOS2 to identify the cfDNA signals and to define

the nucleosome landscape in these samples (Chen et al., 2013). We

compared the nucleosome positioning patterns to micrococcal nucle-

ase‐seq (MNase‐seq) nucleosome signals of GM12878, a lymphoblas-

toid cell line, obtained from ENCODE (Consortium, 2012). The

signals from cfDNA aligned well with the nucleosome signals from

GM12878 (Pearson's = 0.77, p < 2.2 × 10−16), suggesting similarity

between the fragmentation patterns of cfDNA and MNase‐treated
samples (Figure 1b, Supporting Information Figure S1a,c). Notably,

signals observed in young individuals are smoothened with age, with

most of the regions showing a redistribution of the cfDNA signal

(Figure 1b,c, Supporting Information Figure S1a,b). The signals

became less pronounced, especially in the unhealthy centenarians.

To quantify and characterize this age‐dependent change on a global

scale, we analyzed the average cfDNA signals within 100‐kb regions
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across the whole genome and annotated the signals with subcom-

partments identified from the GM12878 cell line (Rao et al., 2014;

Figure 2a–c). These subcompartments were identified using Hi‐C
data and were associated with distinct histone modifications. Sub-

compartments A1 and A2 consist of euchromatic regions that are

gene rich, subcompartment B1 consists of facultative heterochro-

matic regions, subcompartment B2 is enriched at the nuclear lamina

and at nucleolus‐associated domains (NADs), whereas subcompart-

ment B3 is also enriched at the nuclear lamina but not at NADs. We

excluded subcompartment B4 because it is only present on chromo-

some 19 (Rao et al., 2014). In young individuals, cfDNA signals are

the highest in subcompartment B1, followed by compartment A and

subcompartments B2 and B3 (Rao et al., 2014) (p < 2 × 10−16; Krus-

kal–Wallis test and post hoc Dunn's test) (Figure 2a–d). We also

applied the same method to GM12878 MNase‐seq and observed

the same pattern of signal enrichment in the different subcompart-

ments to the cfDNA signals, further supporting the similarity

between MNase‐treated and cfDNA samples (p < 2 × 10−16; Krus-

kal–Wallis test and post hoc Dunn's test) (Supporting Information

Figure S2a,b). In contrast, we analyzed ATAC‐seq data from

GM12878 in the different subcompartments and observed higher

signals in compartment A and lower signals in compartment B,

including B1, suggesting that the highest signals observed previously

in subcompartment B1 is a unique feature of both MNase‐seq and

cfDNA‐seq (Supporting Information Figure S2c).

The variance of cfDNA signals across compartments significantly

decreased with age (Levene's test, all pairwise comparisons p < 0.05)

and is the lowest in the unhealthy centenarians, further supporting

the redistribution of signals from heterochromatin regions to euchro-

matic regions in old age and deteriorating health condition (Fig-

ure 2d). Overall, we observed a significant increase in cfDNA signals

in subcompartments B2 and B3 and decrease in subcompartments

A1, A2, and B1 in the old group, healthy centenarians (except for

A2), and unhealthy centenarians compared to young group (Fig-

ure 3a–d, Table 1). Significantly lower cfDNA signals were also

observed in subcompartments A1 and A2, and significantly higher

cfDNA signals were observed in subcompartments B2 and B3 in

unhealthy centenarians and in the old group compared to healthy

centenarians. This trend was similar to the comparison to the young

group. (Supporting Information Figure S3a–d, Table 1). The compar-

ison between unhealthy centenarians and the old group showed

increased signals in subcompartments A2, B2, and B3 and decreased

signals in subcompartments A1 and B1 in unhealthy centenarians.

The global cfDNA signals of unhealthy centenarians are highly corre-

lated to old and differed the most from the young group (Supporting

Information Figure S3e,f). Healthy centenarian displayed the highest

cfDNA signals correlation among other age groups when compared

to the young group (Pearson's correlation = 0.603).

2.3 | Local cfDNA profiles with age

To study local nucleosome profile changes with age in gene regions,

we computed the average cfDNA signals across all genes relative to

transcription start sites (TSS) and transcription termination sites

(TTS) of genes in autosomal chromosomes (Figure 4a,b). We

observed the typical nucleosome‐depleted regions (NDRs) at TSS
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and TTS, which are also commonly observed in MNase assays

(Schones et al., 2008; Valouev et al., 2011). Notably, within the

±1,500 bp range from TSS, we observed a relative loss of cfDNA

signals with age. We detected the highest cfDNA signals in young,

followed by healthy centenarian, old, and, lastly, unhealthy centenari-

ans (Figure 4a, Supporting Information Figure S4a) (Kruskal–Wallis
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(d) Chr11 
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test [p < 2.2 × 10−16] with Dunn's post hoc test: unhealthy cente-

narian and young, p = 7.4 × 10−112; old and young, p = 2.2 × 10−91;

healthy centenarian and young; p = 1.3 × 10−51, old and unhealthy

centenarian; p = 0.026, healthy centenarian and unhealthy centenar-

ian, p = 2.11 × 10−13; healthy centenarian and old, p = 2.8 × 10−7).

To identify the variability within age groups, we also calculated the

coefficient of variation (CV) of cfDNA signals at the TSS. Young

replicates showed a 6.2% CV, old replicates showed a 5.1% CV,

healthy centenarian replicates showed a 4% CV, and unhealthy cen-

tenarian replicates showed a 5% CV. In addition, we also observed a

similar decrease in signals within the ±1,500 bp range from TTS with

age (Figure 4b, Supporting Information Figure S4b) (Kruskal–Wallis

test [p < 2.2 × 10−16] with Dunn's post hoc test: unhealthy cente-

narian and young, p = 2.1 × 10−213; old and young, p = 6.4 × 10−93;

healthy centenarian and young, p = 7.8 × 10−38; old and unhealthy

centenarian, p = 8.4 × 10−27; healthy centenarian and unhealthy

centenarian, p = 7.1 × 10−75; healthy centenarian and old,

p = 2.7 × 10−14). Young replicates showed a 5.4% CV, old replicates

showed a 2.4% CV, healthy centenarian replicates showed a 2.2%

CV, and unhealthy centenarian replicates showed a 1.5% CV. Global

nucleosome loss has been reported in aging yeast, and this phe-

nomenon leads to the deregulation of transcriptional activity with

age (Hu et al., 2014).

In addition to TSS and TTS, we also assess cfDNA signals around

CCCTC‐binding factor (CTCF)‐binding sites, which were obtained

from GM12878 ENCODE ChIP‐Seq data. CTCF has been shown to

play roles in several biological processes, including the regulation of

3D chromatin structure in cells, mediating the formation of chro-

matin loops and the demarcation of heterochromatic and euchro-

matic regions (Figure 4c) (Ong & Corces, 2014). CTCF‐binding sites

are also known to be flanked by well‐positioned nucleosomes (Fu,

Sinha, Peterson, & Weng, 2008). We observed NDR at the center of

CTCF‐binding sites and strong oscillatory signals immediately flank-

ing the region (Figure 4c, Supporting Information Figure S4c). This

feature has been reported in different cell types, such as human T

cells, K562, and GM12878 cell lines (Chen, Tian, Shu, Bo, & Wang,

2012; Fu et al., 2008). Unlike TSS and TTS, we observed decreased

signals in all comparisons but not between old and unhealthy cente-

narians (Figure 4c, Supporting Information Figure S3c) (Kruskal–Wal-

lis test [p < 2.2 × 10−16] with Dunn's post hoc test: unhealthy

centenarian and young, p = 9.7 × 10−33; old and young,

p = 1.3 × 10−25; healthy centenarian and young, p = 3.7 × 10−12;

old and unhealthy centenarian, p = 0.13; healthy centenarian and

unhealthy centenarian, p = 7.8 × 10−7; healthy centenarian and old,

p = 5.1 × 10−4). Young replicates showed a 3.7% CV, old replicates

showed a 2.7% CV, healthy centenarian replicates showed a 1.4%

CV, and unhealthy centenarian replicates showed a 3.6% CV.

To assess the contribution of TSS and TTS to the global change

of cfDNA distribution and local nucleosome profile, we masked

±1,500 bp of all TSS and TTS from the genome and reanalyzed the

changes of cfDNA signals in subcompartments. We still observed a

loss of signals in compartment A and subcompartment B1 and a gain

of signals in compartment B2 and B3 in comparison with young

(Supporting Information Figure S4d, Table S4). Therefore, the local
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change of TSS and TTS is not a significant contributing factor to the

change in global chromatin accessibility.

2.4 | cfDNA signals at transposable elements

We observed decreased cfDNA signals with age within the first

668 bp of the 5′UTR of a transposable element, L1HS, in which the

promoter and enhancer were found (Speek, 2001; Swergold, 1990),

with the lowest and comparable signals in old individuals and

unhealthy centenarians (Figure 5a, Supporting Information Figure S5a)

(Kruskal–Wallis test [p < 2.2 × 10−16] with Dunn's post hoc test:

unhealthy centenarian and young, p = 6.8 × 10−301; old and young,

p < 0.0001; healthy centenarian and young, p = 7.4 × 10−191; old

and unhealthy centenarian, p = 0.48; healthy centenarian and

unhealthy centenarian, p = 3.2 × 10−14; healthy centenarian and old,

p = 1.3 × 10−16). To identify the variability within age groups, we

also calculated the CV of cfDNA signals at the 5′UTR of L1HS, in

which young replicates showed a 6.9% CV, old replicates showed a

11.1% CV, healthy centenarian replicates showed a 8.2% CV, and

unhealthy centenarian replicates showed a 10.97% CV.

In addition, we also analyzed the signals in another transposable

element, AluY. Healthy centenarians and young individuals showed

very similar cfDNA coverage at AluY (p = 0.67), whereas unhealthy

centenarians and old individuals showed lower cfDNA signals

compared to young (Figure 5b) (p = 1 × 10−52 and p = 1.2 × 10−35,

respectively). The CV of AluY signals is 14.4% for young, 8.3% for

old, 8.3% for healthy centenarian replicates, and 3.2% for unhealthy

centenarian. Transposable elements were previously found to be

derepressed in aging and cancer (Anwar, Wulaningsih, & Lehmann,

2017; Criscione, Zhang, Thompson, Sedivy, & Neretti, 2014; De

Cecco, Criscione, Peckham, et al., 2013; De Cecco, Criscione, Peter-

son, et al., 2013), which is possibly reflected in the cfDNA footprints.

Hence, we also analyzed cfDNA samples from three prostate cancer

patients, a liver cancer patient, and a healthy individual from Snyder

et al. (2016) to profile the cfDNA coverage at L1HS and AluY. We

observed the lowest cfDNA signals at the 5′UTR of L1HS retrotrans-

poson in the liver cancer patient, followed by the prostate cancer

samples (Kruskal–Wallis test [p < 2.2 × 10−16] with Dunn's post hoc

test: liver cancer and healthy, p = 9.4 × 10−51; liver cancer and pros-

tate cancer, p = 5.5 × 10−16; healthy and prostate, p = 7 × 10−25).

The healthy individual displayed the highest cfDNA coverage (Sup-

porting Information Figure S5b,c) at the 5′UTR of L1HS. We also

observed the highest signals at AluY in the healthy individual, fol-

lowed by liver cancer and prostate cancer (Supporting Information

Figure S5d) (Kruskal–Wallis test [p < 2.2 × 10−16] with Dunn's post

hoc test: liver cancer and healthy, p = 4.9 × 10−14; liver cancer and

prostate cancer, p = 7.9 × 10−21; healthy and prostate,

p = 5.2 × 10−77).

2.5 | Increased cfDNA from tissues in old
individuals and unhealthy centenarians

A significant portion of cfDNA is derived from the hematopoietic lin-

eage. However, deregulations of apoptosis have been implicated in

aging as its rate increases in some cell types (Ciccocioppo et al.,

2002; Tower, 2015; Vazquez‐Padron et al., 2004). To identify the

tissues that give rise to this cfDNA in young, old, and centenarians,

we used the method developed by Snyder et al. (2016) in calculating

window protection score (WPS) and performing fast Fourier trans-

formation (FFT) to correlate the corresponding intensities with the

gene expression values of tissues obtained from the Genotype‐Tis-
sue Expression Project (GTEx). Specifically, we used gene expression

values from individuals of two different age groups, 20–24 years old

and 66–70 years old, to avoid the bias of using young or old gene

expression to correlate with centenarians’ cfDNA intensities. Subse-

quently, we performed Kruskal–Wallis test to identify significant

changes in tissue rankings (Supporting Information Figure S6a).

We applied this method to the lung cancer dataset from Snyder

et al. (2016). We detected that liver tissues from GTEx significantly

increased in rank (p < 0.05) in the liver cancer sample compared to

the two healthy controls, suggesting an increased contribution of

cfDNA from the liver (Supporting Information Figure S6c) and verify-

ing the method using the GTEx dataset.

By analyzing the aging cfDNA data, we detected the highest cor-

relation between the FFT intensities and gene expression values for

each tissue in the 193–199 bp frequency range, which is also consis-

tent with the finding from Snyder et al. (2016) (Supporting
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F IGURE 5 Cell‐free DNA (cfDNA) signals at repetitive elements.
(a) cfDNA at the first 1,000 bp of L1HS consensus sequence. The
dotted lines indicate replicates in different age groups, and the solid
lines mark the average of cfDNA signals in the respective age group.
(b) cfDNA signals in dimeric AluY. The dotted lines indicate
replicates in different age groups, and the solid lines mark the
average of cfDNA signals in the respective age group
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Information Figure S6b). We observed that healthy centenarians did

not show any detectable increased tissues’ cell death in comparison

with the young group, whereas old individuals and unhealthy cente-

narians showed increased contributing tissues compared to young

individuals (Figure 6a,b).

3 | DISCUSSION

Cell‐free DNA has gained much attention in recent years for its

translational potential as a biomarker for cancer (Jung, Fleischhacker,

& Rabien, 2010), acute organ transplant rejection (De Vlaminck

et al., 2015), and aneuploidy maternal screening tests for genetic dis-

orders like Down syndrome (Ke, Zhao, & Wang, 2015). Here, we

studied cfDNA via DNA sequencing in individuals of different aged

and health conditions. cfDNA has been reported to increase with

age and in nonagenarians (Jylhava et al., 2013; Pinti et al., 2014).

However, we did not observe any significant difference in the con-

centration of cfDNA in our samples across groups, due to the high

interindividual variability within groups (1‐way ANOVA, p = 0.8;

Supporting Information Table S1). It is important to note that inter‐
individual variation in biological age markers, such as DNA methyla-

tion and potentially age‐associated proteins or transcript biomarkers,

is usually high (Franceschi et al., 2018; Horvath, Garagnani, et al.,

2015; Horvath, Pirazzini, et al., 2015; Kooman et al., 2017; Kooman,

Kotanko, Schols, Shiels, & Stenvinkel, 2014). This is in accordance

with the concept of “immunobiography,” which stipulates that high

heterogeneity is expected particularly in old populations, as individu-

als may have accelerated or decelerated aging processes (Franceschi,

Salvioli, et al., 2017). Therefore, it is important to study cfDNA in

the plasma of individuals in very different age groups, including cen-

tenarians, a group that has reached the extreme limit of human lifes-

pan (Arosio et al., 2017; Ostan et al., 2018). As of January 1st 2018,

the number of centenarians in Italy was 15,647 (83% females) out of

a resident population of 60,483,973 inhabitants, i.e. a ratio of

1:3865 (ISTAT, report on Italian population released on September

6th, 2018, https://www.istat.it/it/files//2018/09/Report_popolazione_

residente_e_stato_civile.pdf). In our dataset of Italian centenarians

(unpublished), those with an optimal and unimpaired cognitive status
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Old - Young Healthy centenarian - Young Unhealthy centenarian - Young
Esophagus squamous epithelium Decreased rank  ( 47 ) - Increased rank  ( 57 )
Thyroid gland Increased rank  ( 43.5 ) - -
Pituitary gland Increased rank  ( 19 ) - Increased rank  ( 16.5 )
Lymphoblast Increased rank  ( 5.5 ) - Decreased rank  ( 11.5 )
Tibial artery Decreased rank  ( 60 ) Decreased rank  ( 45 ) Decreased rank  ( 97 )

Healthy centenarian - Unhealthy centenarian Old - Unhealthy centenarian Healthy centenarian - Old
Esophagus squamous epithelium Decreased rank  ( 76 ) Decreased rank  ( 104 ) -
Thyroid gland - Increased rank  ( 52 ) Decreased rank  ( 40 )
Pituitary gland - - -
Lymphoblast Increased rank  ( 6 ) Increased rank  ( 17 ) Decreased rank  ( 11 )
Tibial artery Increased rank  ( 52 ) Increased rank  ( 37 ) -

(b)

Pituitary gland Lymphoblast Tibial artery

F IGURE 6 Cell‐free DNA origin changes with age. (a) Boxplots showing tissues that showed significant rank changes between age groups.
The top and bottom bounds of the boxplot correspond to the 75th and 25th percentiles, respectively. (b) Significant change in ranking is
shown in the table, with the magnitude of tissue ranking change indicated by numbers in parentheses (p‐value < 0.05, Kruskal–Wallis test and
post hoc Dunn's test)
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were 21.6% (SMMSE 24‐30), while those with worse cognitive sta-

tus (unable to perform the SMMSE test) were 23.2%. In addition,

centenarians with the best physical status were 17.5% (ADL = 5)

while those in worse status (ADL 0‐2) were 66.5%. In this study, we

included centenarians of extreme phenotypes, i.e. centenarians who

have both optimal cognitive and physical status or vice versa.

Deep sequencing of cfDNA with currently available DNA

sequencing technologies has never been applied to human aging and

longevity. This approach can be used to identify possible aging mark-

ers and to investigate basic molecular mechanisms of aging, such as

the changes of chromatin structure as cells age. For example, yeast

aging is associated with the loss of nucleosomes (Hu et al., 2014)

and replicative senescence is associated with increased accessibility

of heterochromatic regions (Criscione, Teo, & Neretti, 2016; De

Cecco, Criscione, Peckham, et al., 2013). So far, these genome‐wide

chromatin reorganizations have only been observed in model organ-

isms and cell cultures.

Here, we provide comprehensive in vivo evidences of global and

local chromatin changes in human aging. We observed the highest

cfDNA signal in subcompartment B1, followed by A1, A2, B2, and,

TABLE 1 Change of cell‐free DNA signals across different age groups. The change in direction is only identified for significant comparisons
in which zero is excluded from the credible interval

Comparisons
Mean of fold
change

Difference in posterior
median Credible interval

Change in
direction p‐Value

A1 Healthy centenarian–old 0.0448 0.0282 0.0268, 0.0298 Increased signal <0.0001

Healthy centenarian–unhealthy
centenarian

0.0760 0.0478 0.0461, 0.0494 Increased signal <0.0001

Healthy centenarian–young −0.0871 −0.0472 −0.0487, −0.0455 Decreased signal <0.0001

Old–unhealthy centenarian 0.0312 0.0196 0.018, 0.0212 Increased signal <0.0001

Old–young −0.1319 −0.0754 −0.0769, −0.0738 Decreased signal <0.0001

Unhealthy centenarian–young −0.1631 −0.095 −0.0967, −0.0933 Decreased signal <0.0001

A2 Healthy centenarian–old 0.0177 0.009 0.0082, 0.01 Increased signal <0.0001

Healthy centenarian–unhealthy
centenarian

0.0130 0.0045 0.0037, 0.0054 Increased signal <0.0001

Healthy centenarian–young −0.0166 −0.0006 −0.0015, 0.0003 — 0.5613

Old–unhealthy centenarian −0.0047 −0.0045 −0.0054, 0.0036 Decreased signal <0.0001

Old–young −0.0343 −0.0096 −0.0104, −0.0086 Decreased signal <0.0001

Unhealthy centenarian–young −0.0297 −0.0051 −0.006, −0.0041 Decreased signal <0.0001

B1 Healthy centenarian–old −0.0004 −0.0034 −0.0049, −0.0018 Decreased signal <0.0001

Healthy centenarian–unhealthy
centenarian

0.0338 0.0185 0.0171, 0.02 Increased signal <0.0001

Healthy centenarian–young −0.0591 −0.0288 −0.0303, −0.0274 Decreased signal <0.0001

Old–unhealthy centenarian 0.0342 0.0218 0.0204, 0.0233 Increased signal <0.0001

Old–young −0.0587 −0.0255 −0.027, −0.0241 Decreased signal <0.0001

Unhealthy centenarian–young −0.0928 −0.0474 −0.0487, −0.0459 Decreased signal <0.0001

B2 Healthy centenarian–old −0.0118 −0.0112 −0.0125, −0.0099 Decreased signal <0.0001

Healthy centenarian–unhealthy
centenarian

−0.0181 −0.0169 −0.0183, −0.0156 Decreased signal <0.0001

Healthy centenarian–young 0.0086 0.0169 0.0156, 0.0183 Increased signal <0.0001

Old–unhealthy centenarian −0.0063 −0.0057 −0.0071, −0.0044 Decreased signal <0.0001

Old–young 0.0204 0.0281 0.0268, 0.0296 Increased signal <0.0001

Unhealthy centenarian–young 0.0267 0.0338 0.0326, 0.0351 Increased signal <0.0001

B3 Healthy centenarian–old −0.0163 −0.0143 −0.015, −0.0135 Decreased signal <0.0001

Healthy centenarian–unhealthy
centenarian

−0.0326 −0.027 −0.0278, −0.0262 Decreased signal <0.0001

Healthy centenarian–young 0.0376 0.037 0.0363, 0.0379 Increased signal <0.0001

Old–unhealthy centenarian −0.0163 −0.0128 −0.0135, −0.012 Decreased signal <0.0001

Old–young 0.0539 0.0513 0.0505, 0.0520 Increased signal <0.0001

Unhealthy centenarian–young 0.0702 0.0641 0.0632, 0.0648 Increased signal <0.0001

TEO ET AL. | 9 of 14



lastly, B3, in young individual, consistent with the MNase‐seq result

of GM12878 lymphoblastoid cell line. The signal from B1, which is a

facultative heterochromatin subcompartment, behaves differently

than that of constitutive heterochromatin. It has been previously

shown that in HeLa cells, facultative heterochromatin bordering

euchromatin has higher MNase‐seq signal, which is consistent with

our findings (Li & Zhou, 2013). However, when we analyzed ATAC‐
seq signals in different subcompartments, all B subcompartments,

including B1, showed lower signals than any of the A subcompart-

ments. One way to explain this unique feature of B1 is a different

accessibility of facultative heterochromatin to the enzymes used in

the three assays. MNase is a 17‐kDa protein (Taniuchi, Anfinsen, &

Sodja, 1967) and caspase‐activated DNase (CAD) is a 40‐kDa protein

(Liu et al., 1998). Both are smaller in size than the Tn5 transposase

(53.3 kDa) (Naumann & Reznikoff, 2002) and the adapters that it

carries. Therefore, it is possible that MNase and CAD can more

easily access and cut DNA in the facultative heterochromatin than

the larger size transposase. On the other hand, B2 and B3 consisting

of constitutive heterochromatin are the least accessible for all three

enzymes, hence, display the lowest signals among all subcompart-

ments. This is consistent with the result of a recent study that

shows that different MNase titration is required to explain chromatin

accessibility because nucleosome signals vary with different level of

digestion (Mieczkowski et al., 2016).

We observed increased cfDNA signals in subcompartments B2

and B3, which are enriched in lamina‐associated domains (LADs),

with age. Specifically, cfDNA levels from subcompartment B2 in old

individuals and centenarian resemble that of subcompartment A1 in

young individuals, suggesting that B2 has become more euchromatic.

In addition, subcompartment A1 in old becomes more similar to sub-

compartment B2 in young. This indicates that there is a switch

between subcompartments A1 and B2 with age. The decrease in

cfDNA signals in subcompartment A1 in unhealthy centenarians

leads to the subcompartment having lower signals compared to sub-

compartments A2, B2, and B3, indicating that it has become the

most heterochromatic subcompartment. Although signals from sub-

compartment B1 decreased with age, it remains the subcompartment

with the highest cfDNA signals among other subcompartments. One

limitation of this study is the use of only a lymphoblastoid cell line

Hi‐C data in deriving the subcompartments information. As cfDNA

also originates from other cell lines, there might be other interpreta-

tions to our observations when Hi‐C data from other cell lines in the

hematopoietic system are available. For example, the age‐associated
change of signals in subcompartments might arise from the change

in the composition of other cell types that contribute to the cfDNA,

such as those of erythroid origins, which could have a different sub-

compartment organization. Nevertheless, the changes that we

observed are consistent with previous studies that demonstrated a

reduction in the peripheral heterochromatic compartment and an

overall compaction of euchromatin with senescence (De Cecco, Cris-

cione, Peckham, et al., 2013; De Cecco, Criscione, Peterson, et al.,

2013). Furthermore, we observed depleted signals near TSS and TTS

especially in unhealthy centenarians. Such change in the nucleosome

landscape might dictate the chromatin changes in aging cells and

suggest a crucial hypothesis on aging and aging‐related diseases as a

continuum during lifespan trajectories (Franceschi et al., 2018).

The activation of L1HS retrotransposon has also been implicated

in aging (De Cecco, Criscione, Peckham, et al., 2013; De Cecco, Cris-

cione, Peterson, et al., 2013). Unlike genes, L1HS has an internal

promoter at the 5′UTR (Speek, 2001). We detected a relative loss of

cfDNA signals in these locations with age, with unhealthy centenar-

ian and old group showing the lowest cfDNA coverage compared to

young individuals. We propose that cfDNA can be used as a method

to identify L1HS activation in vivo. AluY also showed a similar trend

of cfDNA level changes with age as L1HS, suggesting a derepression

of this repetitive element in aging and cancer.

We also noticed that the fraction of reads mapping to the mito-

chondrial genome is slightly increased with age although not signifi-

cant (data not shown). The key limitation that restricts our ability to

investigate this feature is the short‐length cell‐free mtDNA (cf‐
mtDNA) (Zhang, Nakahira, Guo, Choi, & Gu, 2016) and the protocol

that we used to extract cfDNA from the plasma does not specifically

enrich for short DNA. Therefore, the signals from our samples might

not represent the whole cf‐mtDNA population in the plasma.

Cell‐free DNA has been recently used to identify the tissue of

origin of apoptotic cells (Feng, Jin, & Wu, 2018; Guo et al., 2017;

Snyder et al., 2016; Sun et al., 2015). We applied one of these meth-

ods, originally developed for cancer studies (Snyder et al., 2016), to

our cfDNA data and observed that the magnitude of the shifts in tis-

sues ranking with age was lower compared to what has been

reported in cancer patients, suggesting a moderate‐to‐low increase

in cell death with age as compared to cancer. We did not detect any

changes in tissue ranking in healthy centenarian compared to young,

but we observed a few tissues increased in ranking in old and

unhealthy centenarians compared to young. Because the methodol-

ogy we used was developed in the context of conditions displaying

large shifts in cfDNA tissue composition, we cannot exclude that the

age‐dependent shifts might be below its detection limit. For example,

one of the limitations of this method is the low correlation between

nucleosome profiles at genes and gene expression (Supporting Infor-

mation Figure S6b), which reduces its sensitivity and specificity

when a large number of tissue types are queried. Alternative

approaches that use tissue‐specific nucleosome profiles as opposed

to gene expression might improve our ability to detect more subtle

changes in cell death across multiple tissues.

Consistently across our study, we noted more similarity in the

cfDNA profiles, both globally (compartments) and locally (e.g., TTS

and TSS), between young and healthy centenarians, as opposed to

old and unhealthy centenarians. Hence, our study suggests cfDNA

profiling could be used not only as a biomarker of age but also as a

predictor of health status. However, due to the small number of sub-

jects used, our power to translate these findings into a real predictor

is very limited. Larger cohorts, more age groups, and health condi-

tions would be needed to properly take into account the interindi-

vidual variability, as well as any potential association with lifestyle

and nutritional differences.
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4 | EXPERIMENTAL PROCEDURES

4.1 | Volunteer recruitment

Twelve volunteers across three different age groups; that is, three

healthy 25‐year‐old ± 0.5 (SD) young subjects, three healthy 71‐year‐
old ± 1.6 elderly subjects, and six 101.8‐year‐old ± 1.1 centenarians

were recruited. All volunteers were enrolled in Bologna, Italy, and

centenarians comprised two extreme phenotypes, that is, three

healthy and three unhealthy subjects. Ethical Committee of Sant'Or-

sola‐Malpighi Hospital (Bologna, Italy) approved the protocol (EM/26/

2014/U with reference to 22/2007/U/Tess). Centenarians’ phenotype

was defined by a specific questionnaire related to lifestyle, and phys-

ical and cognitive status. Healthy centenarians were characterized as

having good cognitive performance, that is, SMMSE>24 scores, and

ability to walk with high ADL (Activities of Daily Living) score. In

contrast, unhealthy centenarians were demented, not able to per-

form the SMMSE and bedridden. In all groups, the F:M ratio was

2:1, except for unhealthy centenarians that consisted of all females.

4.2 | Sample processing

Cell‐free DNA was isolated from 3 to 4 ml of plasma using the

QIAamp Circulating Nucleic Acid Kit (Qiagen, Hilden, Germany). At

least 20 ng of total DNA from each sample was extracted and quanti-

fied using Qubit fluorometer (Thermo Fisher Scientific, Waltham, MA,

USA).

4.3 | Sequencing library preparation and sequencing

Sequencing libraries were prepared from the purified DNA using Ova-

tion® Ultralow Library Systems V2 library preparation kit (NuGen Tech-

nologies, San Carlos, CA, USA). Sequencing was performed on HiseqX‐
Ten Illumina platform at BGI Beijing Genomics Institute, Hong Kong.

4.4 | cfDNA sequencing reads alignment and
processing

Paired‐end reads were aligned to hs37d5 genome using BWA‐MEM

0.7.12 (Heng Li, 2013). Reads mapping to the mitochondrial, X and Y

chromosomes, and reads with MAPQ 0 were removed. Duplicate

reads were discarded using picard‐tools‐1.88. Reads that were soft‐
clipped of <75 bp were retained. DANPOS2 (Chen et al., 2013) was

used to assess the cfDNA signals at TSS, TTS, and CTCF. BAM files

of triplicates from each age group were merged using SAMTools (Li

et al., 2009) and used to identify fragment sizes using picard‐tools‐
1.88 (http://broadinstitute.github.io/picard). Subcompartments infor-

mation was obtained from the Hi‐C data of GM12878 (Rao et al.,

2014). cfDNA signals across subcompartments were identified by

the number of reads mapping to each 100‐kb region after downsam-

pling all samples to 46,301,323 reads. The reads were averaged

between replicates to generate the average cfDNA signals. To recon-

struct the 3D organization of chr 11 at 100 kb resolution, Hi‐C

matrix of GM12878 was obtained using juicer (Durand et al., 2016)

and the xyz coordinates were obtained using ShRec3D (Lesne,

Riposo, Roger, Cournac, & Mozziconacci, 2014).

4.5 | Genome browser view

GM12878 MNase‐seq from ENCODE (GEO: GSM920558) data were

visualized in UCSC Genome Browser, alongside the cfDNA signals.

4.6 | Changes of cfDNA signals in
subcompartments

DESeq2 1.20.0 (Love, Huber, & Anders, 2014) was used to identify the

log fold change of each 100 kb region between age groups.

MCMCglmm (Hadfield, 2010) with default parameters was used to iden-

tify significant changes of cfDNA signals in different subcompartments.

Age group was used as the fixed factor predictors, and the 100‐kb bin-

ning regions in each subcompartment were set as the random factor.

4.7 | Tissues RNA‐Seq

Gene expression values (RPKM) from different human tissues of differ-

ent ages were obtained from the GTEx portal. First, we filtered by data

that were prepared using TrueSeq.v1 and retained only samples that are

<25 years old or>65 years old. Second, we removed samples that were

reported with disease and overdose. Third, we excluded sex‐associated
tissues: ovary, prostate, vagina, uterus, testis from our analysis. Fourth,

we removed flagged tissues in the GTEx metadata and duplicate tissues

from the same donor. Lastly, we removed tissues with <5 donors. The

contributing tissues analysis was done with a total of 456 tissues from

37 donors and 33 tissue subtypes.

4.8 | Identification of cfDNA contributing tissues

We used the method developed by Snyder et al. (2016) in identify-

ing contributing tissues. Briefly, we computed the windows protec-

tion score (WPS) across 10‐kb downstream of TSS of each gene. We

converted the oscillating signals into frequency using fast Fourier

transformation method and performed Pearson's correlation between

the FFT intensities and gene expression values from the GTEx portal.

To identify the shift of contributing tissues ranks, we performed

Kruskal–Wallis test and subsequently Dunn test for multiple pairwise

comparisons between age groups. The shift in contributing tissues of

cancer dataset obtained from Snyder et al was identified using the

same method. p‐Values were adjusted using FDR.

4.9 | CTCF, L1HS, and dimeric AluY nucleosome
signals

Cell‐free DNA BAM files were used to identify average nucleosome

signals at 39,362 CTCF‐binding sites, 1,371 L1HS regions, and

94,024 dimeric AluY sites. Dimeric AluY are defined as 280–320 bp

in length. CTCF‐binding sites are obtained from GEO: GSM733752.
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4.10 | Cancer and healthy individuals cfDNA
sequencing data processing

Cell‐free DNA sequencing data from IH02 healthy (SRR2130051), IH03

healthy (SRR2130052), and IC17 liver cancer (SRR2130016) under

accession number GSE71378 (Snyder et al., 2016) were downloaded

and processed the same way as our cfDNA samples to identify the tis-

sues of origin. Prostate cancer cfDNA samples, IC26 (SRR2130025),

IC13 (SRR2130012), IC40 (SRR2130038), a healthy sample, IH02

(SRR2130051), and a liver cancer sample, IC17 (SRR2130016) under

accession number GSE71378 were downloaded and processed the same

way as our cfDNA samples to identify the signals at L1HS and AluY.

4.11 | GM12878 MNase‐seq data processing

GM12878 MNase‐seq data deposited under accession number

GSM920558 were downloaded and aligned to hs37d5 using bowtie

(Langmead, Trapnell, Pop, & Salzberg, 2009). Mitochondrial, X and Y

chromosomes mapped reads were removed. Duplicate reads were

discarded using picard‐tools‐1.88, and 100‐kb MNase‐seq signals

across subcompartments were identified by the number of reads

mapping to each 100‐kb region.

4.12 | GM12878 ATAC‐seq data processing

GM12878 ATAC‐seq data deposited under accession number

GSE47753 were downloaded and aligned to hs37d5 using BWA‐
MEM 0.7.12 (Li, 2013). Duplicates were removed, and peaks were

called using MACS 2.1.1 (Zhang et al., 2008). The number of reads

in each 100 kb of the subcompartments was identified.

4.13 | cfDNA coverage at repetitive elements

Paired‐end reads were aligned to hs37d5 using bowtie2 (Langmead &

Salzberg, 2012) and separated into uniquely mapped and multi‐mapped

reads. Uniquely mapped reads were counted at each repetitive element's

location, and their genomic positions in hs37d5 were converted to the

positions in the consensus. The counts were then averaged at each posi-

tion in the consensus. Multi‐mapped reads were aligned to the repeat's

assemblies representing each repetitive element subfamilies. Reads that

mapped to AluY or L1HS were extracted and subsequently mapped to

the respective repetitive element's consensus sequence. The read was

divided by the number of repetitive element subfamilies that it mapped

to, and the compiled counts in each consensus location were averaged.

The final counts were defined as the sum of counts obtained from the

uniquely mapped counts and that of the multi‐mapped counts and were

normalized by the library size.

4.14 | Hemato‐biochemical parameters

Centenarians were also analyzed for 32 hemato‐biochemical parameters

as follows: white blood cell (WBC), red blood cell count (RBC), hemoglo-

bin (HGB), hematocrit (HCT), mean cell volume (MCV), mean cell

hemoglobin (MCH), mean cell hemoglobin concentration (MCHC), plate-

let (PLT), red blood cell distribution width—standard deviation (RDW‐
SD), red blood cell distribution width—coefficient of variation (RDW‐
CV), platelet distribution width (PDW), mean platelet volume (MPV), pla-

telet large cell ratio (PLCR), neutrophil, lymphocyte, monocyte, eosino-

phil, basophil, glycemia, uric acid, creatinine, total protein, total

cholesterol, high‐density lipoprotein (HDL), low‐density lipoprotein

(LDL), triglycerides, glutamate‐pyruvate transaminase (GPT), albumin

(ALB), sodium (NA), potassium (K), C‐reactive protein (CRP), and iron.

4.15 | Data availability

Cell‐free DNA sequenced reads have been deposited in the NCBI

GEO database with accession number GSE114511.
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